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Abstract

In development of stochastic analysis in a Banach space one of the main problem is to establish the existence of the stochastic
integral from predictable Banach space valued (operator valued) random process. In the problem of representation of the Wiener
functional as a stochastic integral we are faced with an inverse problem: we have the stochastic integral as a Banach space valued
random element and we are looking for a suitable predictable integrand process. There are positive results only for a narrow class of
Banach spaces with special geometry (UMD Banach spaces). We consider this problem in a general Banach space for a Gaussian
functional.
c⃝ 2018 Published by Elsevier B.V. on behalf of Ivane Javakhishvili Tbilisi State University. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction and preliminaries

The problem of construction of the Ito stochastic integral in a Banach space is developing in three directions. In the
first (relatively) direction the integrand is Banach space valued predictable random process and the stochastic integral
is taken by the one dimensional Wiener process. In the second direction the integrand is operator valued (from Banach
space to Banach space) predictable random process and stochastic integral is taken from Wiener process in a Banach
space. In the third direction the integrand is operator-valued (from Hilbert space to Banach space) predictable process
and stochastic integral is taken from cylindrical Wiener process in a Hilbert space. In all of these cases difficulties are
the same. Therefore, for simplicity, in this article we consider the first case (Wiener process is one dimensional).

Using traditional methods, to find the suitable conditions that guarantee the construction of the stochastic integral
is possible only in a very narrow class of Banach spaces. This class is so called UMD Banach spaces class (see
survey in [1]). We consider the generalized stochastic integral for a wide class of predictable random processes and
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the problem of existence of the stochastic integral we reduced to the problem of decomposability of the generalized
random element (see [2]).

In this article we consider the problem of representation of the Wiener functional by the stochastic integral in
an arbitrary separable Banach space. This problem is, in some sense, opposite to the problem of existence of the
stochastic integral: here we have the stochastic integral as a random element and the problem is to find the integrand
as a Banach space valued predictable process. In this direction there exists the following result in UMD Banach space
case: under special condition every Wiener functional is represented by the stochastic integral and is generalized the
Clark–Ocone formula of representation of the functional of the Wiener process by Malliavin derivative (see [3]).

Let X be a real separable Banach space. X∗ – its conjugate, (Ω , B, P) – a probability space. Let (Wt )t∈[0,1]
-be a real valued Wiener process. Denote by F W

t the minimal σ -algebra generated by the random variables (Ws)s≤t

(F W
t = σ (Ws, s ≤ t)). The random element ξ is a weak second order if for all x∗, E⟨ξ, x∗

⟩
2 < ∞. Suppose that ξ is

F W
1 - measurable i.e., ξ is the functional of the Wiener process. Our main aim is to represent the random element ξ by

the Ito stochastic integral

ξ = Eξ +

∫ 1

0
f (t, ω)dWt ,

where f (t, ω) is Banach space valued predictable random process. In the development of this difficult problem firstly,
in this article, we consider the case when ξ is a Gaussian random element which with the Wiener process generates
mutually Gaussian system. In this case the integrand (if it exists) will be nonrandom function. Remember, that the
continuous linear operator T : X∗

→ L2(Ω , B, P) is called the generalized random element (GRE).1

Denote by M1 := L(X∗, L2(Ω , B, P)) the Banach space of GRE with the norm

∥T ∥
2

= sup
∥x∗∥≤1

E(T x∗)2.

We can realize the weak second order random element ξ as an element of M1, Tξ x∗
= ⟨ξ, x∗

⟩, but not conversely:
in infinite dimensional Banach space for all T : X∗

→ L2(Ω , B, P), there does not always exist the random element
ξ : Ω → X such that T x∗

= ⟨ξ, x∗
⟩ for all x∗

∈ X∗. The problem of existence of such random element is the well
known problem of decomposability of the GRE. Denote by M2 the linear normed space of all random elements of
the weak second order with the norm

∥ξ∥2
= sup

∥x∗∥≤1
E⟨ξ, x∗

⟩
2.

Thus, we have M2 ⊂ M1. The family of random processes (Tt )t∈[0,1] is called the generalized random processes
(GRP). In this paper we will consider the linear bounded operators T : X∗

→ L2[0, 1]. In this special case
instead of L2(Ω , B, P), we have L2([0, 1], B([0, 1]), λ), Nevertheless we use the term GRE in this special case too.
The decomposability problem is: for the GRE T : X∗

→ L2[0, 1] existence of the weak second order function
f : [0, 1] → X such that for all x∗

∈ X∗, T x∗
= ⟨ f, x∗

⟩ λ-a.e. Denote by Mλ
1 the linear space of GRE

T : X∗
→ L2[0, 1]. Mλ

1 is a Banach space with the norm

∥T ∥
2

= sup
∥x∗∥≤1

∫ 1

0
[T x∗(t)]2dt = sup

∥x∗∥≤1
∥T x∗

∥
2
L2
.

Denote by Mλ
2 the linear space of functions f : [0, 1] → X , such that

∫ 1
0 ⟨ f (t), x∗

⟩
2 < ∞.Mλ

2 ⊂ Mλ
1 .

2. Integral representation of functionals

For simplicity assume that Eξ = 0.

Proposition 2.1. Let ξ be a F W
1 -measurable Gaussian random element. There exists a GRE T : X∗

→ L2[0, 1], such
that for all x∗

∈ X∗,

⟨ξ, x∗
⟩ =

∫ 1

0
T x∗(t)dWt . (2.1)

1 sometimes it is used the terms: random linear function or cylindrical random element.
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Proof. We use the technique developed in one dimensional case (see [4]). Denote

F W
n = σ {W 1

2n
,W 2

2n
, . . . ,W1} = σ {W 1

2n
, (W 2

2n
− W 1

2n
), . . . , (W1 − W 2n−1

2n
)}

= σ {2
n
2 g1, 2

n
2 g2, . . . , 2

n
2 g2n } = σ {g1, g2, . . . , g2n },

where

g1, g2, . . . , g2n , gi = 2
n
2 (W i+1

2n
− W i

2n
)

are independent, standard Gaussian random variables. Denote ξn ≡ E(ξ |F W
n ) — the conditional mathematical

expectation.
It is obvious that

ξn = E(ξ |F W
n ) =

2n
−1∑

i=0

E(ξgi )gi

=

2n
−1∑

i=0

2n E(ξ (W i+1
2n

− W i
2n

)(W i+1
2n

− W i
2n

)) =

∫ 1

0
fn(t)dWt ,

where

fn(t) =

2n
−1∑

i=0

2n Eξ (W i+1
2n

− W i
2n

)I( i
2n ,

i+1
2n ](t).

As (ξn)n∈N is Gaussian martingale, we have

E∥ξn − ξm∥
2

=

 ∫ 1

0
fn(t)dWt −

∫ 1

0
fm(t)dWt

2

→ 0.

That is

ξ = lim
n→∞

∫ 1

0
fn(t)dWt .

For all x∗
∈ X∗ denote T x∗(t) = limn→∞⟨ fn(t), x∗

⟩. We have

sup
∥x∗∥≤1

∫ 1

0
(T x∗(t))2dt = sup

∥x∗∥≤1
E⟨ξ, x∗

⟩
2

≤ E∥ξ∥2 < ∞.

Therefore, T : X∗
→ L2[0, 1] is GRE and

⟨ξ, x∗
⟩ =

∫ 1

0
T x∗(t)dWt . □

Remark 2.1. Note that if we have two representations of the F W
1 measurable random element ξ , by the stochastic

integral

⟨ξ, x∗
⟩ =

∫ 1

0
T1x∗(t)dWt =

∫ 1

0
T2x∗(t)dWt ,

then

0 = sup
∥x∗∥≤1

E
(∫ 1

0
(T1x∗(t) − T2x∗(t))dW (t)

)2

= sup
∥x∗∥≤1

∫ 1

0
((T1 − T2)x∗)2dt.

Hence, the representation (2.1) is unique.

The main problem is to find the function f : [0, 1] → X such that T x∗(t) = ⟨ f (t), x∗
⟩ a. e. for all x∗

∈ X∗.

In this case we will have ξ =
∫ 1

0 f (t)dWt . The following example shows that, in general, such function (even
f : [0, 1] → X∗∗) does not exist.
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Example. Let X = c0 and denote ek,n(t) = an I( k−1
n , k

n ](t), n ∈ N , k = 1, 2, . . . , n, the sequence (an)n∈N we will
choose later. Suppose f (t) ≡ (ekn(t))n∈N ,k≤n, t ∈ [0, 1]. f : [0, 1] → RN . Consider the map T (t) : l1 → R1,
t ∈ [0, 1].

T (t)λ⃗ =

∞∑
n=1

n∑
k=1

λnkenk(t),

where λ⃗ = (λnk)n∈N ,k≤n ∈ l1 (
∑

∞

n=1
∑n

k=1∥λnk∥ < ∞).

We will show that T is the linear bounded operator from l1 to L2[0, 1]. We have∫ 1

0
(T (t)(λ⃗))2dt =

∫ 1

0

∞∑
n=1

n∑
k=1

∞∑
m=1

m∑
l=1

λnkλmlanam I( k−1
n , k

n ](t)I( l−1
m , l

m ](t).

If we demand that |an| ≤ n
1
2 , we receive∫ 1

0
(T (t)(λ⃗))2dt ≤

∫ 1

0

∞∑
n=1

n∑
k=1

∞∑
m=1

m∑
l=1

λnkλml(mn)
1
2 min

(1
n
,

1
m

)
≤

∞∑
n=1

n∑
k=1

∞∑
m=1

m∑
l=1

|λnk ||λml | = ∥λ⃗∥2
l1
.

Therefore, T : c∗

0 → L2[0, 1] is bounded linear operator, ∥T ∥ ≤ 1.
On the other hand,∫ 1

0
T (t)λ⃗dwt =

∞∑
n=1

n∑
k=1

λnkan(W k
n

− W k−1
n

) = ⟨λ⃗, ξ⟩,

where ξ := ((W k
n

− W k−1
n

)an)n∈N ,k≤n.

Let us check the sufficient condition of N. Vakhania (see [5], prop. 5.5.8) on the belonging of the random element
ξ to the Banach space c0. If we denote σk,n = E[an(W k

n
− W k−1

n
)]2

=
a2

n
n , then

∞∑
n=1

n∑
k=1

exp
(
−
µ

σkn

)
=

∞∑
n=1

n∑
k=1

exp
(
−

nµ
a2

n

)
.

For example, if an = n
1
3 , then the series

∑
∞

n=1nexp(−n
1
3µ) converges for all fixed µ. Therefore, by the theorem

N. Vakhania ξ ∈ c0.
In this example we have ⟨ξ, x∗

⟩ =
∫ 1

0 T (t)x∗dWt , where T (t) : X∗
→ L2[0, 1]. There does not exist

f : [0, 1] → X or f : [0, 1] → X∗∗ such that T (t)x∗
= ⟨ f (t), x∗

⟩ (if an → 0, then f ∈ X ; if an = 1, n = 1, 2, . . . ,
then f ∈ X∗∗; if an → ∞, an ≤ n

1
3 , then f ∈̄X∗∗).

Proposition 2.2. Let ξ : Ω → X be Gaussian F W
1 measurable random element. Tξ : X∗

→ L2[0, 1] be such that
⟨ξ, x∗

⟩ =
∫ 1

0 T x∗(t)dW (t), then Tξ ∈ M̄λ
2 ⊆ Mλ

1 , T ∗T : X∗
→ X ⊂ X∗∗ is Gaussian covariance, there exists

aξ ∈ X such that∫ 1

0
Tξ x∗(t)dt = ⟨a, x∗

⟩, f or all x∗
∈ X∗.

Proof. From the proof of Proposition 2.1, we have

fn(t) =

2n
−1∑

i=0

2n Eξ (W i+1
2n

− W i
2n

)I( i
2n ,

i+1
2n ](t), fn ∈ Mλ

2
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and

∥ fn − T ∥
2
Mλ

1
= sup

∥x∗∥≤1

∫ 1

0
Tξ x∗(t) − ⟨ fn(t), x∗

⟩
2dt → 0.

Therefore, Tξ ∈ M̄λ
2 .

As Tξ ∈ M̄λ
2 , by the proposition 1 of [2] T ∗

ξ Tξ : X∗
→ X . This statement follows also from the equality

⟨T ∗

ξ Tξ x∗, y∗
⟩ =

∫ 1

0
Tξ x∗(t)Tξ y∗(t)dt = E⟨ξ, x∗

⟩⟨ξ, y∗
⟩ = ⟨Rξ x∗, y∗

⟩

and as Rξ : X∗
→ X , then T ∗T : X∗

→ X ⊂ X∗∗ too.
Further, we have∫ 1

0
fn(t)dt =

2n
−1∑

i=0

2n Eξ (W i+1
2n

− W i
2n

)2−n
=

2n
−1∑

i=0

Eξ (W i+1
2n

− W i
2n

)

= Eξ
(2n

−1∑
i=0

(W i+1
2n

− W i
2n

)
)

= EξW1.

Denote a := E(ξW1), then we have∫ 1

0
Tξ x∗(t)dt = ⟨a, x∗

⟩, f or all x∗
∈ X∗.

Whereas that Tξ is not X -valued function, the integral
∫ 1

0 Tξ (.)(t)dt is X -valued, that is, the Pettis integral from Tξ
exists. More clearly, if there exists f : [0, 1] → X such that Tξ x∗

= ⟨ f (t), x∗
⟩ for all x∗

∈ X∗, then a is the Pettis
integral from f . □

Proposition 2.3. For any X-valued F W
1 -measurable Gaussian random element ξ and g ∈ L2[0, 1], there exists

ag ∈ X such that∫ 1

0
Tξ x∗(t)g(t)dt = ⟨ag, x∗

⟩, f or all x∗
∈ X∗.

Proof. Consider the family of σ -algebras

Fn = σ
{( i

2n
,

i + 1
2n

]
, i = 0, 1, . . . , 2n

}
.

It is evident that Fn ⊂ Fn+1, n = 1, 2, . . . ; E(g|Fn) → g in L2[0, 1];

E(g|Fn)(t) =

2n
−1∑

i=0

2n
∫ i+1

2n

i
2n

g(s)ds I( i
2n ,

i+1
2n ](t);∫ 1

0
Tξ x∗(t)g(t)dt = lim

n→∞

∫ 1

0

2n
−1∑

i=0

2n E(ξ (W i+1
2n

− W i
2n

))I( i
2n ,

i+1
2n ](t)

2n
−1∑

i=0

gi I( i
2n ,

i+1
2n ](t)dt

= lim
n→∞

∫ 1

0

2n
−1∑

i=0

[2n E(ξ (W i+1
2n

− W i
2n

)gi )]I( i
2n ,

i+1
2n ](t)dt

= lim
n→∞

2n
−1∑

i=0

[E[ξ (W i+1
2n

− W i
2n

)gi ]]

= lim
n→∞

Eξ (
2n

−1∑
i=0

(W i+1
2n

− W i
2n

)gi ) = Eξ
∫ 1

0
g(t)dWt ,
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where

gi ≡ 2n
∫ i+1

2n

i
2n

g(t)dt.

As

E∥ξ

∫ 1

0
g(t)dWt∥ ≤ (E∥ξ∥2)

1
2 + (

∫ 1

0
g(t)2dt)

1
2 < ∞,

the Bochner integral
∫ 1

0 Tξ x∗(t)g(t)dt ≡ ag exists. □

3. Representation of functionals in the form of series

Consider now the minimal subspace of L2(Ω , B, P), consisting only random variables (Wt , t ∈ [0, 1]). Denote
G0 = L(Wt , t ∈ [0, 1]). G0 consists only Gaussian Random variables. Denote G := Ḡ0. G ⊂ L2(Ω , B, P) is a
Hilbert space. As limit of Gaussian random variables is also Gaussian, G-contains only Gaussian random variables.
Denote ξt = E(ξ |F W

t ), t ∈ [0, 1]. ξt : Ω → X . (ξt )t∈[0,1] is a Gaussian process of independent increments. Firstly
we consider one dimensional case and give the representation of the functional of the Wiener process by the sum of
independent Gaussian random variable.

Theorem 3.1. Let ξt : Ω → R1 be F W
t -measurable Gaussian random process, f : [0, 1] → R1 be such, that

ξ (t) =

∫ t

0
f (τ )dW (τ ).

For any orthonormal Basis (en)n∈N of L2[0, 1], there exists the sequence of independent, identically distributed,
standard Gaussian random variables (gn)n∈N , such that

ξt =

∞∑
k=1

∫ t

0
f (τ )ek(τ )dτgk .

The convergence of the sum is a.s. uniformly in t.

Proof. As (Wt )t∈[0,1] has a.s. continuous sample paths, we can consider the corresponding C[0, 1] valued random
element W : Ω → C[0, 1]. The covariance operator RW : C[0, 1]∗ → C[0, 1],

RWϕ(t) =

∫ 1

0
min(t, s)dϕ(s)

admits the factorization (see [4] factorization lemma 3.1.1) through the Hilbert space L2[0, 1], RW = AA∗:

A : L2[0, 1] → C[0, 1], Ah(t) =

∫ t

0
h(τ )dτ, A∗(t) : C[0, 1]∗ → L2[0, 1],

A∗δt = χ[0,t](τ ), δt ∈ C[0, 1]∗, ⟨δt , ψ⟩ = ψ(t), ψ ∈ C[0, 1], t ∈ [0, 1].

We have also another factorization of RW : RW = T ∗T , T : C[0, 1]∗ → G, T δt = ⟨W, δt ⟩ = Wt . By
the factorization lemma, there exists the isometric operator I : G → L2[0, 1], such that I T = A∗. Therefore,
I (T δt ) = I (Wt ) = A∗δt = χ[0,t](τ ). Thus,

EWt gk = ⟨T δt , gk⟩ = ⟨I T δt , ek⟩ = ⟨χ[0,t], ek⟩ =

∫ t

0
ek(τ )dτ.

Accordingly, we have Wt =
∑

∞

k=1 E(Wt gk)gk . Therefore

Wt =

∞∑
k=1

∫ t

0
ek(τ )dτgk . (3.1)

We have convergence of sum (3.1) in C[0, 1]. Therefore, this formula gives representation of the Wiener process
by the a.s. uniformly in t convergent sum of independent Gaussian random variables.
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Return now to the functional of the Wiener process ξ =
∫ 1

0 f (t)dWt . ξt = E(ξ |F W
t ) =

∫ t
0 f (τ )dWτ . (ξt )t∈[0,1] is

a Gaussian process of independent increments. Dispersion of the random variable ξt is
∫ t

0 f 2(τ )dτ . As (ξt )t∈[0,1] is
the process with continuous sample paths, we can consider corresponding random element ξ : Ω → C[0, 1]. The
covariance operator of this random element is Rξ : C[0, 1]∗ → C[0, 1],

Rξϕ(t) =

∫ 1

0
min(t, s) f (s)dϕ(s), Rξ = AA∗, A : L2[0, 1] → C[0, 1],

Ah(t) =

∫ t

0
h(τ ) f (τ )d(τ ), A∗

: C[0, 1]∗ → L2[0, 1], A∗δt = χ[0,t](τ ) f (τ ).

It is clear that

⟨Rδt , δs⟩ = ⟨AA∗δt , δs⟩ = ⟨T δt , T δs⟩

=

∫ 1

0
χ[0,t](τ ) f (τ )χ[0,s](τ ) f (τ )dτ =

∫ min(t,s)

0
f 2(τ )dτ.

Further, we have:

ξ =

∫ 1

0
f (t)dWt = lim

n→∞

∫ 1

0
fn(t)dWt ,

where

fn(t) =

2n
−1∑

i=0

2n Eξ (W i+1
2n

− W i
2n

)I( i
2n ,

i+1
2n ](t).

Hence,

ξ = lim
n→∞

2n
−1∑

i=0

2n Eξ (W i+1
2n

− W i
2n

)(W i+1
2n

− W i
2n

)

= lim
n→∞

2n
−1∑

i=0

2n Eξ (W i+1
2n

− W i
2n

)
∞∑

k=1

∫ i+1
2n

i
2n

ek(τ )d(τ )gk

= lim
n→∞

∞∑
k=1

∫ 1

0

2n
−1∑

i=0

2n Eξ (W i+1
2n

− W i
2n

)I( i
2n ,

i+1
2n ](τ )ek(τ )d(τ )gk

= lim
n→∞

∞∑
k=1

∫ 1

0
fn(τ )ek(τ )d(τ )gk =

∞∑
k=1

∫ 1

0
f (τ )ek(τ )d(τ )gk,

as

lim
n→∞

E
( ∞∑

k=1

∫ 1

0
f (τ )ek(τ )d(τ )gk −

∞∑
k=1

∫ 1

0
fn(τ )ek(τ )d(τ )gk

)2

= lim
n→∞

E
( ∞∑

k=1

∫ 1

0
( fn(τ ) − f (τ ))ek(τ )d(τ )gk

)2

= lim
n→∞

∞∑
k=1

(∫ 1

0
( fn(τ ) − f (τ ))ek(τ )d(τ )

)2

= lim
n→∞

∞∑
k=1

⟨( f (τ ) − fn(τ )), ek⟩
2

= lim
n→∞

∥ f (τ ) − fn(τ ) ∥
2
L[0,1]

→ 0.

We received that

ξ =

∫ 1

0
f (t)dWt =

∞∑
k=1

∫ 1

0
f (τ )ek(τ )d(τ )gk .
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Therefore

ξt =

∞∑
k=1

∫ t

0
f (τ )ek(τ )d(τ )gk . (3.2)

Consider the partial sum

(ξt )n =

n∑
k=1

∫ t

0
f (τ )ek(τ )d(τ )gk

of independent, C[0, 1]-valued random elements. By the Ito–Nisio theorem [6], we have convergence of the last sum
in C[0, 1]. Therefore, the last sum converges a.s. uniformly in t . □

Remark 3.1. N.Wiener [7] shows that the series

Wt ≡ g0t +

∞∑
k=1

2k
−1∑

n=2k−1

n−1gn

√
2 sinπnt

converges (along an appropriate subsequence) uniformly in t to the Wiener process. Paul Levy [8] simplified Wiener’s
construction using Haar functions. Z.Ciesielsky [9] proved a.s. uniformly in t convergence of the series (3.1) in case,
when (ek)k∈N are Haar functions. K.Ito and M.Nisio [6] proved convergence of the sum (3.1) uniformly in t for an
arbitrary orthonormal Basis (ek)k∈N of L2[0, 1]. Representation any fixed Wiener process by the sum (3.1) requires an
additional effort, for example, to use the factorization lemma.

Consider now the corresponding problem for Banach space valued Wiener functional. Let ξ : Ω → X be F W
1

measurable Gaussian random element. By Proposition 2.1, there exists GRE T : X∗
→ L2[0, 1] such that

⟨ξ, x∗
⟩ =

∫ 1

0
T x∗(t)dWt ,

for all x∗
∈ X∗. Denote ξt = E(ξ |F W

t ). (ξt )t∈[0,1] is the Gaussian process with independent increments in a Banach
space X . By continuity of the family (F W

t )t∈[0,1] follows stochastically continuity of the process (ξt )t∈[0,1] and, as it is
a stochastically continuous Gaussian process with independent increments, it has continuous sample paths (see [10]).
Therefore, we can consider the corresponding random element in a Banach space C([0, 1], X ). The following theorem
is similar to Theorem 3.1 for the case of Banach space X .

Theorem 3.2. Let ξt : Ω → X be F W
t -measurable Gaussian random process, Tξ : X∗

→ L2[0, 1] be corresponding
GRE, ξt =

∫ t
0 Tξ x∗(τ )dWτ . For any orthonormal basis (en)n∈N of L2[0, 1] there exists the sequence of independent,

identically distributed, standard Gaussian random variables (gn)n∈N such that

ξt =

∞∑
k=1

∫ t

0
Tξ (τ )ek(τ )dτgk . (3.3)

The elements of the sum are X-valued and convergence of the sum is a.s. uniformly in t in X.

Proof. For any fixed orthonormal basis (en)n∈N of L2[0, 1], there exists the sequence of independent, identically
distributed, standard Gaussian random variables (gn)n∈N such that Wt =

∫ t
0 ek(τ )dτgk . By Theorem 3.1, for any

x∗
∈ X∗, we have

⟨ξt , x∗
⟩ =

∞∑
k=1

∫ t

0
Tξ x∗(τ )ek(τ )dτgk .

By Proposition 2.3 for an arbitrary k ∈ N , and t ∈ [0, 1]
∫ t

0 Tξ (τ )ek(τ )dτ ≡ ak(t) belongs to X . As (ξt )t∈[0,1] is
X -valued Gaussian process of independent increments with continuous sample paths, we can consider corresponding
random element with values in Banach space valued continuous functions: ξ̄ : Ω → C([0, 1], X ). In the process of
proof of Proposition 2.1 we have considered the sequence

fn(t) =

2n
−1∑

i=0

2n Eξ (W i+1
2n

− W i
2n

)I( i
2n ,

i+1
2n ](t),
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for which we have ∥ fn − Tξ∥Mλ
1

→ 0 and

ξ =

∫ 1

0
Tξ x∗(t)dWt = lim

n→∞

∫ 1

0
fn(t)dWt .

Analogously to the proof of Theorem 3.1 we obtain

ξ = lim
n→∞

∫ 1

0
fn(t)dWt = lim

n→∞

2n
−1∑

i=0

2n Eξ (W i+1
2n

− W i
2n

)(W i+1
2n

− W i
2n

)

= lim
n→∞

∞∑
k=1

∫ 1

0
fn(τ )ek(τ )d(τ )gk =

∞∑
k=1

∫ 1

0
Tξ (τ )ek(τ )d(τ )gk

According to Proposition 2.3 we have∫ 1

0
Tξ (τ )ek(τ )d(τ ) =

∫ 1

0
ak(τ )d(τ ) ∈ X.

Therefore, the last sum converges in X to ξ .
Consider the partial sum

n∑
k=1

∫ t

0
Tξ (τ )ek(τ )d(τ )gk (3.4)

of independent C([0, 1], X ) valued random elements. By the Ito–Nisio Theorem this sum converges in C([0, 1], X )
to (ξt )t∈[0,1], therefore, we have a.s. uniformly in t convergence of the partial sum (3.4) to the sum (3.3). □
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