The Consistent Estimators of Charlier's Statistical Structures in Hilbert Space of Measures

Omar Purtukhia ${ }^{1 *}$, Zurab Zerakidze ${ }^{2}$
${ }^{1}$ I. Javakhishvili Tbilisi State University, 2 University St., 0186, Tbilisi, Georgia;
${ }^{2}$ Gori State University, 53 Chavchavadze Ave., 1400, Gori, Georgia
(Received June 25, 2021; Revised September 01, 2021; Accepted September 09, 2021)

In this paper, we consider the Charlier statistical Structures in a Hilbert space of measures. Sufficient and necessary conditions for the existence of consistent estimators of parameters are given.

Keywords: Consistent estimators, Orthogonal structure, Weakly separable structure, Separable structure, Strongly separable structure.

AMS Subject Classification: $62 \mathrm{H} 05,62 \mathrm{H} 12$.

1. Introduction

Let (E, S) be a measurable space with a given family of probability measures: $\left\{\mu_{i}, i \in I\right\}$.
We recall some definitions from [1] - [6].
Definition 1.1: An object $\left\{E, S, \mu_{i}, i \in I\right\}$ is called a statistical structure.
Definition 1.2: A statistical structure $\left\{E, S, \mu_{i}, i \in I\right\}$ is called orthogonal (singular) if a family of probability measures $\left\{\mu_{i}, i \in I\right\}$ constists of pairwise singular measures (i.e. $\mu_{i} \perp \mu_{j}, \forall i \neq j$).
Definition 1.3: A statistical structure $\left\{E, S, \mu_{i}, i \in I\right\}$ is called weakly separable if there exists a family of S-measurable sets $\left\{X_{i}, i \in I\right\}$ such that

$$
\mu_{i}\left(X_{j}\right)=\left\{\begin{array}{ll}
1, & \text { if } i=j ; \\
0, & \text { if } i \neq j
\end{array} \quad(i, j \in I) .\right.
$$

Let $\left\{\mu_{i}, i \in I\right\}$ be Charlier probability measures defined on the measurable space (E, S). For each $i \in I$ we denote by $\bar{\mu}_{i}$ the completion of the measure μ_{i}, and by $\operatorname{dom}\left(\bar{\mu}_{i}\right)$ - the σ-algebra of all μ_{i}-measurable subsets of E.

We denote

$$
S_{1}=\cap_{i \in I} \operatorname{dom}\left(\bar{\mu}_{i}\right) .
$$

[^0]Definition 1.4: A statistical structure $\left\{E, S_{1}, \bar{\mu}_{i}, i \in I\right\}$ is called strongly separable if there exists a family of S_{1}-measurable sets $\left\{Z_{i}, i \in I\right\}$ such that the following relations are fulfilled:

1) $\mu_{i}\left(Z_{i}\right)=1 \quad \forall i \in I$;
2) $Z_{i_{1}} \cap Z_{i_{2}}=\emptyset, \quad \forall i_{1} \neq i_{2}, i_{1}, i_{2} \in I$;
3) $\cup_{i \in I} Z_{i}=E$.

Let I be the set of hypotheses and let $B(I)$ be σ-algebra of subsets of I which contains all finite subsets of I.

Definition 1.5: We will say that the statistical structure $\left\{E, S, \bar{\mu}_{i}, i \in I\right\}$ admits a consistent estimators of parameters $i \in I$ if there exists at least one measurable mapping $\delta:(E, S) \longrightarrow(I, B(I))$, such that

$$
\bar{\mu}_{i}(\{x: \delta(x)=i\})=1, \quad \forall i \in I
$$

Let M^{σ} be a real linear space of all alternating finite measures on S.
Definition 1.6: A linear subset $M_{H} \subset M^{\sigma}$ is called a Hilbert space of measures if:

1) One can introduce on M_{H} a scalar product $(\mu, \nu)\left(\mu, \nu \in H\right.$ so that M_{H} is a Hilbert space and for every mutually singular measures μ and $\nu(\mu, \nu \in H)$ the scalar product $(\mu, \nu)=0$;
2) If $\nu \in M_{H}$ and $|f(x)| \leq 1$, then

$$
\nu_{f}(A)=\int_{A} f(x) \nu(d x) \in M_{H}
$$

where f is a S_{1}-measurable real function and $\left(\nu_{f}, \nu_{f}\right) \leq(\nu, \nu)$;
3) If $\nu_{n} \in M_{H}, \nu_{n} \geq 0, \nu_{n}(E)<\infty, n=1,2, \ldots$ and $\nu_{n} \downarrow 0$, then for any $\mu \in M_{H}$:

$$
\lim _{n \rightarrow \infty}\left(\nu_{n}, \mu\right)=0
$$

2. The consistent estimators of Charlier's Statistical Structure in Hilbert space of measures

The normal distribution is symmetrical, that is, the normal distribution density function

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}}
$$

is symmetric with respect to the line $x=m$. However, in practice, asymmetric distributions are also often encountered.In the case when the asymmetry in absolute value is not very large, the density can be expressed using the so-called Charlier's law.

The density of Charlier's law is determined by the equality

$$
\begin{equation*}
f_{C h}(x)=f(x)+\frac{1}{\sigma}\left[\frac{S_{k}(x)}{6} \cdot z_{u} \cdot\left(u^{3}-3 u\right)+\frac{E_{k}(x)}{24} \cdot z_{u} \cdot\left(u^{4}-6 u^{2}+3\right)\right] \tag{1}
\end{equation*}
$$

where $f(x)$ is the density of the normal distribution, $u=\frac{x-m}{\sigma}, z_{u}=\frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2}$, $S_{k}(x)=\mu_{3} / \sigma^{3}$ - asymmetry, and $E_{k}(x)=\mu_{4} / \sigma^{4}-3$ - kurtosis.

Thus, the second term on the right-hand side of (1) is a correction to the normal distribution. Obviously, for $S_{k}(x)=0$ and $E_{k}(x)=0$, the Charlier distribution coincides with the normal distribution.

Let μ be the probability measure given on $(R, L(R))$ by the formula

$$
\mu(A)=\int_{A} f_{C h}(x) d x, \quad A \in L(R)
$$

The probability measure determined in this way will be called the Charlier measure.
Definition 2.1: A statistical structure $\left\{E, S, \mu_{i}, i \in I\right\}$ is called a statistical Charlier structure if $\mu_{i}, \forall i \in I$ are Charlier measures.

Let $\left\{E, S, \bar{\mu}_{i}, i \in I\right\}$ be an orthogonal Charlier statistical structure. Next, consider S_{1}-measurable functions $g_{i}(x), i \in I$, such that:

$$
\sum_{i \in I} \int_{E}\left|g_{i}(x)\right|^{2} \bar{\mu}_{i}(d x)<+\infty
$$

Consider a measure ν of type

$$
\nu_{k}(B)=\sum_{i \in I_{k}} \int_{B} g_{i}^{(k)}(x) \bar{\mu}_{i}(d x), \quad B \in S_{1}, \quad k=1,2
$$

and define the scalar product on M_{H} by the formula

$$
\left(\nu_{1}, \nu_{2}\right)=\sum_{i \in I_{1} \cap I_{2}} \int_{E} g_{i}^{(1)}(x) g_{i}^{(2)}(x) \bar{\mu}_{i}(d x)
$$

where I_{1} and I_{2} are countable subsets of I.
Thus, we can assert that M_{H} is a Hilbert space of measures and, moreover, M_{H} is direct sum of Hilbert spaces $H_{2}\left(\bar{\mu}_{i}\right)$:

$$
M_{H}=\oplus_{i \in I} H_{2}\left(\bar{\mu}_{i}\right)
$$

where $H_{2}\left(\bar{\mu}_{i}\right)$ are the set of measures of the type

$$
\nu(B)=\int_{B} f(x) \bar{\mu}_{i}(d x), \quad B \in S_{1}
$$

with an integrand satisfying the condition

$$
\int_{E}|f(x)|^{2} \bar{\mu}_{i}(d x)<+\infty, \quad i \in I
$$

Let

$$
M_{H}=\oplus_{i \in I} H_{2}\left(\bar{\mu}_{i}\right)
$$

be a Hilbert space of measures, where $c a r d I \leq c$. Let E be a complete separable metric space and let S_{1} be a Borel σ-algebra on E. Let $F=F\left(M_{H}\right)$ be a set of real functions for which $\int_{E} f(x) \bar{\mu}_{i}(d x)$ is defined $\forall \bar{\mu}_{i} \in M_{H}$. Then we have.

Theorem 2.2: In order for the Charlier Statistical Structure $\left\{E, S_{1}, \bar{\mu}_{i}, i \in I\right\}$ to admit a consistent estimators of parameter $i \in I$ in the theory of $(Z F C) \&(M A)$ it is necessary and sufficient that the correspondence $f \longleftrightarrow \psi_{f}\left(f \in F\left(M_{H}\right)\right)$ defined by the equality

$$
\int_{E} f(x) \bar{\mu}_{i}(d x)=\left(\psi_{f}, \bar{\mu}_{i}\right) \quad \forall \bar{\mu}_{i} \in M_{H}
$$

was one-to-one.
Proof: Necessity. The existence of a consistent estimators of parameter δ : $\left(E, S_{1}\right) \longrightarrow(I, B(I))$ implies that $\bar{\mu}_{i}(\{x: \delta(x)=i\})=1 \quad \forall i \in I$. Setting $X_{i}=\{x: \delta(x)=i\}$ for $i \in I$ we get:

1) $\bar{\mu}_{i}\left(X_{i}\right)=\bar{\mu}_{i}(\{x: \delta(x)=i\})=1 \quad \forall i \in I$;
2) $X_{i_{1}} \cap X_{i_{2}}=\emptyset$ for all different parameters i_{1} and i_{2} from I;
3) $\cup_{i \in I} X_{i}=\{x: \delta(x) \in I\}=E$.

Hence, the statistical structure $\left\{E, S_{1}, \bar{\mu}_{i}, i \in I\right\}$ is strongly separable. Therefore there exist S_{1}-measurable sets $X_{i}(i \in I)$, such that

$$
\bar{\mu}_{i}\left(X_{i^{\prime}}\right)= \begin{cases}1, & \text { if } i=i^{\prime} \\ 0, & \text { if } i \neq i^{\prime}\end{cases}
$$

Let the function $I_{X_{i}}(x) \in E$ correspond to the measure $\bar{\mu}_{i} \in H_{2}\left(\bar{\mu}_{i}\right)$. Then

$$
\int_{E} I_{X_{i}}(x) \bar{\mu}_{i}(d x)=\int_{E} I_{X_{i}}(x) I_{X_{i}}(x) \bar{\mu}_{i}(d x)=\left(\bar{\mu}_{i}, \bar{\mu}_{i}\right)
$$

If now we associate the measure $\bar{\mu}_{i_{1}} \in H_{2}\left(\bar{\mu}_{i}\right)$ with the function $f_{i_{1}}(x)=$ $f_{1}(x) I_{X_{i}}(x) \in F\left(M_{H}\right)$ then for all $\bar{\mu}_{i_{2}} \in M_{H}\left(\bar{\mu}_{i}\right)$ we can write

$$
\begin{gathered}
\int_{E} f_{i_{1}}(x) f_{i_{2}}(x) \bar{\mu}_{i}(d x)=\int_{E} f_{1}(x) f_{2}(x) I_{X_{i}}(x) I_{X_{i}}(x) \bar{\mu}_{i}(d x) \\
=\int_{E} f_{1}(x) f_{2}(x) \bar{\mu}_{i}(d x)=\left(\bar{\mu}_{i_{1}}, \bar{\mu}_{i_{2}}\right)
\end{gathered}
$$

Further, we associate the measure

$$
\nu(C)=\sum_{i \in I_{f} \subset I} \int_{C} g_{i}(x) \bar{\mu}_{i}(d x) \in M_{H}
$$

with the function

$$
f(x)=\sum_{i \in I_{f}} g_{i}(x) I_{X_{i}}(x) \in F\left(M_{B}\right)
$$

Then for the measure

$$
\nu_{1}(C)=\sum_{i \in I_{f_{1}} \subset I} \int_{C} g_{i}^{1}(x) \bar{\mu}_{i}(d x) \in M_{H}
$$

we have

$$
\begin{gathered}
\int_{E} f(x) \nu_{1}(d x)=\int_{E} \sum_{i \in I_{f} \cap I_{f_{2}}} g_{i}(x) g_{i}^{1}(x) \bar{\mu}_{i}(d x) \\
=\sum_{i \in I_{f} \cap I_{f_{2}}} \int_{E} g_{i}(x) g_{i}^{1}(x) \bar{\mu}_{i}(d x)=\left(\nu, \nu_{1}\right) .
\end{gathered}
$$

From the discussion it follows that the above correspondence connects some function $f \in F\left(M_{B}\right)$ into correspondence with some $\nu_{f} \in M_{H}$. If in $F\left(M_{B}\right)$ we identify functions that coincide with respect to measures $\left\{\bar{\mu}_{i}, i \in I\right\}$, then the correspondence will be bijective.
Sufficiency. Let $f \in F\left(M_{H}\right)$ correspond to the measure $\bar{\mu}_{i} \in M_{H}$ for which

$$
\int_{E} f(x) \bar{\mu}_{i}(d x)=\left(\bar{\mu}_{f}, \bar{\mu}_{i}\right)
$$

Then for every $\bar{\mu}_{i^{\prime}} \in M_{H}$ we have

$$
\int_{E} f_{i}(x) \bar{\mu}_{i^{\prime}}(d x)=\left(\bar{\mu}_{i}, \bar{\mu}_{i^{\prime}}\right)=\int_{E} f_{1}(x) f_{2}(x) \bar{\mu}_{i}(d x)=\int_{E} f_{i}(x) f_{2}(x) \bar{\mu}_{i}(d x) .
$$

So $f_{i}(x)=f_{1}(x)$ almost everywhere with respect to the measure $\bar{\mu}_{i}$. Suppose that $f_{i}(x)>0$ and

$$
\int_{E} f_{i}^{2}(x) \bar{\mu}_{i}(d x)<+\infty
$$

If now

$$
\mu_{i}^{*}(C)=\int_{C} f_{i}(x) \bar{\mu}_{i}(d x)
$$

then

$$
\int_{E} f_{i}^{*}(x) \bar{\mu}_{i^{\prime}}(d x)=\left(\mu_{i}^{*}, \bar{\mu}_{i^{\prime}}\right)=0, \quad i \neq i^{\prime}
$$

where f_{i}^{*} is the function which corresponds to the measure μ_{i}^{*}.
On the other hand, $\bar{\mu}_{i}\left(E \backslash X_{i}\right)=0$, where $X_{i}=\left\{x: f_{i}^{*}(x)>0\right\}$. Hence, we obtain

$$
\bar{\mu}_{i}\left(X_{i^{\prime}}\right)= \begin{cases}1, & \text { if } i=i^{\prime} ; \\ 0, & \text { if } i \neq i^{\prime}\end{cases}
$$

Therefore the Charlier Statistical Structure $\left\{E, S_{1}, \bar{\mu}_{i}, i \in I\right\}$ is weakly separable. Further, we represent $\left\{\bar{\mu}_{i}, i \in I\right\}, \operatorname{cardI} \leq c$, as an inductive sequence $\left\{\bar{\mu}_{i}<\omega_{1}\right\}$, where ω_{1} denotes the first ordinal number of the power of the set I.

Since the Charlier Statistical Structure $\left\{E, S_{1}, \bar{\mu}_{i}, i \in I\right\}$ is weakly separable, there exists a family of S_{1}-measurable sets $X_{i}, i \in I$ such that for all $i \in\left[0, \omega_{1}\right)$ we have

$$
\bar{\mu}_{i}\left(X_{i^{\prime}}\right)= \begin{cases}1, & \text { if } i=i^{\prime} ; \\ 0, & \text { if } i \neq i^{\prime} .\end{cases}
$$

We define ω_{1} sequence Z_{i} of parts of the space E such that the following relations hold:

1) Z_{i} is a Borel subset of $E \forall i<\omega_{1}$;
2) $Z_{i} \subset X_{i} \forall i<\omega_{1}$;
3) $Z_{i} \cap Z_{i^{\prime}}=\emptyset$ for all $i<\omega_{1}, i^{\prime}<\omega_{1}, i \neq i^{\prime}$;
4) $\bar{\mu}_{i}\left(Z_{i}\right)=1 \quad \forall i<\omega_{1}$.

Assume that $Z_{i_{0}}=X_{i_{0}}$. Suppose further that the partial sequence $\left\{Z_{i^{\prime}}\right\}_{i^{\prime}<i}$ is already defined for $i<\omega_{1}$. It is clear that $\bar{\mu}^{*}\left(\cup_{i^{\prime}>i} Z_{i^{\prime}}\right)=0$. Thus there exists a Borel subset Y_{i} of the space E such that the following relations are valid:

$$
\cup_{i^{\prime}>i} Z_{i^{\prime}} \subset Y_{i} \text { and } \bar{\mu}_{i}\left(Y_{i}\right)=0 .
$$

Assuming that $Z_{i}=X_{i} \backslash Y_{i}$, we construct the ω_{1} sequence $\left\{Z_{i}\right\}_{i<\omega_{1}}$ of disjunctive measurable subsets of the space E. Therefore $\bar{\mu}_{h}\left(Z_{i}\right)=1$ for all $i<\omega_{1}$ and the Charlier statistical structure $\left\{E, S_{1}, \bar{\mu}_{i}, i \in I\right\}$, cardI $\leq c$, is strongly separable because there exists a family of elements of the σ-algebra $S_{1}=\cap_{i \in I} \operatorname{dom}\left(\bar{\mu}_{i}\right)$ such that:

1) $\bar{\mu}_{i}\left(Z_{i}\right)=1 \quad \forall i \in I$;
2) $Z_{i} \cap Z_{i^{\prime}}=\emptyset$ for all different i and i^{\prime} from I;
3) $\cup_{i \in I} Z_{i}=E$.

For $x \in E$, we put $\delta(x)=i$, where i is the unique parameter from the set I for which $x \in Z_{i}$. The existence of such a unique parameter from I can be proved using conditions 2), 3).
Now let $Y \in B(I)$. Then $\{x: \delta(x) \in Y\}=\cup_{i \in Y} Z_{i}$. We must show that $\{x$: $\delta(x) \in Y\} \in \operatorname{dom}\left(\bar{\mu}_{I_{0}}\right)$ for $i_{0} \in I$.
If $i_{0} \in Y$, then

$$
\{x: \delta(x) \in Y\}=\cup_{i \in Y} Z_{i}=Z_{i_{0}} \cup\left(\cup_{i \in Y \backslash\left\{i_{0}\right\}} Z_{i}\right) .
$$

On the one hand, from the validity of the condition 1), 2), 3) it follows that

$$
Z_{i_{0}} \in S_{1}=\cap_{i \in I} \operatorname{dom}\left(\bar{\mu}_{i}\right) \subseteq \operatorname{dom}\left(\bar{\mu}_{i_{0}}\right) .
$$

On the other hand, the validity of the condition

$$
\cup_{i \in Y \backslash\left\{i_{0}\right\}} Z_{i} \subseteq\left(E \backslash Z_{i_{0}}\right)
$$

implies that

$$
\bar{\mu}_{i_{0}}\left(\cup_{i \in Y \backslash\left\{i_{0}\right\}} Z_{i}\right)=0 .
$$

The last equality yields that

$$
\cup_{i \in Y \backslash\left\{i_{0}\right\}} Z_{i} \in \operatorname{dom}\left(\bar{\mu}_{i_{0}}\right) .
$$

Since $\operatorname{dom}\left(\bar{\mu}_{i_{0}}\right)$ is a σ-algebra, we deduce that

$$
\{x: \delta(x) \in Y\}=Z_{i_{0}} \cup\left(\cup_{i \in Y \backslash\left\{i_{0}\right\}} Z_{i}\right) \in \operatorname{dom}\left(\bar{\mu}_{i_{0}}\right) .
$$

If $i_{0} \notin Y$, then

$$
\{x: \delta(x) \in Y\}=\cup_{i \in Y} Z_{i} \subseteq\left(E \backslash Z_{i_{0}}\right)
$$

and we conclude that $\bar{\mu}_{i_{0}}\{x: \delta(x) \in Y\}=0$. Hence, we obtain that

$$
\{x: \delta(x) \in Y\} \in \operatorname{dom}\left(\bar{\mu}_{i_{0}}\right) .
$$

Thus we have shown the validity of the relation

$$
\{x: \delta(x) \in Y\} \in \operatorname{dom}\left(\bar{\mu}_{i_{0}}\right)
$$

for an arbitrary $i_{0} \in I$. Hence,

$$
\{x: \delta(x) \in Y\} \in \cap_{i \in I} \operatorname{dom}\left(\bar{\mu}_{i}\right)=S_{1} .
$$

Because $B(I)$ contains all singletons of I, we conclude that

$$
\bar{\mu}_{h}(\{x: \delta(x)=i\})=\bar{\mu}_{i}\left(Z_{i}\right)=1, \quad \forall i \in I
$$

References

[1] I. Ibramkhalilov, A. Skorokhod, Consistent Estimates of Parameters of Random Processes (Russian), "Naukova Dumka", Kiev, 1980
[2] T. Jech, Set Theory, Springer-Verlag, Berlin, 2003
[3] A. Kharazishvili, Topological Aspects of Measure Theory (Russian), "Naukova Dumka", Kiev, 1984
[4] Z. Zerakidze, Hilbert space of measures, Ukrainian. Math. J., 38, 2 (1986), 147-153
[5] Z. Zerakidze, Generalization criteria of Neyman-Pearson, In: International scientific conference "Information Technologies", Georgian Technical University, Tbilisi (2008), 22-24
[6] O. Purtukhia, Z. Zerakidze, On consistent criteria of hypotheses testing for non-separable complete metric space, Bulletin of TICMI, 23, 2 (2019), 97-108
[7] P.E. Danko, A.G. Popov, T.Ya. Kozhevnikova, S.P. Danko, Higher Mathematics in Exercises and Problems, II (Russian), "Mir i Obrazovanie", Moscow, 2009

[^0]: *Corresponding author. Email: o.purtukhia@gmail.com

