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BANACH SPACE VALUED FUNCTIONALS OF THE WIENER PROCESS

BADRI MAMPORIA1 AND OMAR PURTUKHIA2

Abstract. The problem of representation of the Banach space-valued functionals of the one- dimen-

sional Wiener process by the Ito stochastic integral is considered. Earlier, in [5] we have developed
this problem in case the joint distribution of the Wiener process and its functional is Gaussian. In

this article we consider the general case: firstly, for the weak second order Banach space-valued func-

tional the generalized random process is found as an integrand. Further, for the one-dimensional
functional of the Wiener process the sequence of adapted step functions converging to the inte-

grand function, generalizing the corresponding result for the Gaussian case, is obtained (see [2]);
the sequence of adapted step functions of generalized random elements converging to the integrand

generalized random process is constructed for a Banach space-valued functional.

In developing the Ito stochastic analysis in a Banach space the main goal of the problem is to
construct the stochastic integral in an arbitrary separable Banach space. This problem is considered
in the following cases: (a) the integrand adapted to the σ-algebra generated by the Wiener process
is Banach space-valued and the stochastic integral is constructed by the one-dimensional Wiener
process; (b) the integrand adaptive process is operator-valued (from the Banach space to the Banach
space), and the stochastic integral is constructed by the Wiener process in a Banach space; (c) the
integrand adaptive process is operator-valued (from the Hilbert space to the Banach space), and the
stochastic integral is constructed by the cylindrical Wiener process in a Hilbert space. In all the above-
mentioned cases the main difficulties are the same. Therefore, to realize simply all these difficulties,
in the previous article [5] and here we consider the first case (the Wiener process is one-dimensional).

Using traditional methods, it becomes possible to find the suitable conditions that guarantee the
construction of the Ito stochastic integral in a Banach space only in a very narrow class of Banach
spaces. This class is called the class of UMD Banach spaces (for survey, see [8]). In our approach,
the generalized stochastic integral for a wide class of adapted Banach space-valued random processes
is constructed and the problem of the existence of the stochastic integral is reduced to the problem
of decomposability of the generalized random element (cylindrical random element, or random linear
function) (see [4]).

In this article we consider the problem of representation of the functional of the Wiener process
by the stochastic integral in an arbitrary separable Banach space. This problem is, in some sense,
opposite to the problem of the existence of the stochastic integral: in this case we have the Banach
space-valued random element and the problem of finding the integrand Banach space-valued adapted
process whose stochastic integral is this random element. In [5], we considered this problem in the
case, where the joint distribution of the Wiener process and its functional is Gaussian. In [3], this
problem is considered for the case of UMD Banach space, where under special conditions the Wiener
functional is represented by the stochastic integral and the Clark–Ocone formula of representation of
the functional of the Wiener process is generalized.

Let X be a real separable Banach space, X∗ be its conjugate, and (Ω, B, P ) a probability space.
Remember that the continuous linear operator T : X∗ → L2(Ω, B, P ) is called the generalized

random element (GRE) Denote by M1 := L(X∗, L2(Ω, B, P ) the Banach space of GRE with the
norm

‖T‖2 = sup
‖x∗‖≤1

E(Tx∗)2.
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We can realize the weak second order random element ξ as an element of M1, Tξx
∗ = 〈ξ, x∗〉

(the boundedness of this operator follows by the closed graph theorem), but not conversely: in an
infinite-dimensional Banach space, for any T : X∗ → L2(Ω, B, P ), there does not always exist the
random element ξ : Ω→ X such that Tx∗ = 〈ξ, x∗〉 for all x∗ ∈ X∗. The problem of the existence of
such random element is well known as the problem of decomposability (radonizability) of the GRE.
Denote by M2 the linear normed space of all random elements of weak second order with the norm

‖ξ‖2 = sup
‖x∗‖≤1

E〈ξ, x∗〉2.

Thus we have M2 ⊂M1.
The family of linear operators (Tt)t∈[0,1] is called the weak second order generalized random process

(GRP) if Ttx
∗ is B([0, 1])×B(Ω) measurable and

‖Tt‖2 ≡ sup
‖x∗‖≤1

1∫
0

E(Ttx
∗)2dt <∞.

Denote by M(λ,P )
1 the Banach space of such GRP.

The Banach space-valued stochastic process f(t, ω), t ∈ [0, 1] is called a weak second order random
process, if for all x∗ ∈ X∗,

1∫
0

E〈f(t, ω), x∗〉2dt <∞.

The weak second order random process realizes the GRP Tf : X∗ → L2([0, 1] × Ω): Tfx
∗ =

〈f(t, ω), x∗〉.
Denote by M(λ,P )

2 the normed linear spaces of f(t, ω), t ∈ [0, 1], with the norm

sup
‖x∗‖≤1

( 1∫
0

E〈f(t, ω), x∗〉2dt
) 1

2

.

We have M(λ,P )
2 ⊂M(λ,P )

1 .
Let (Wt)t∈[0,1] be a real-valued Wiener process. Denote by FWt the σ-algebra generated by the

random variables (Ws)s≤t (FWt = σ(Ws, s ≤ t)), which are completed by P -null sets. Suppose that ξ
is FW1 -measurable weak second order random element i.e., ξ is the functional of the Wiener process.
Our main aim is to represent the random element ξ by the Ito stochastic integral

ξ = Eξ +

1∫
0

f(t, ω)dWt,

where f(t, ω) is the Banach space-valued FWt -adapted random process, but this is, in general, impos-
sible. We have the following positive result: For all weak second order Wiener functional we always

have integrand as a GRP, that is, an element of the Banach space M(λ,P )
1 . In developing this prob-

lem, we considered firstly in [5] the case, where ξ is a Gaussian random element which together with
the Wiener process generates the mutually Gaussian system. Even in this case we have constructed
an example (see [5, Example 1]), where a) the integrand function f(t) (in this case the integrand is
nonrandom) is X-valued; b) the integrand function is not X-valued, but it is X∗∗-valued and c) the
integrand function is not X∗∗-valued, but it is a GRE T : X∗ → L2[0, 1].

The following result gives representation of the Banach space-valued functional of the Wiener
process by the stochastic integral from the FWt -adapted GRP.
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Proposition 1. Let ξ be a Banach space-valued weak second order functional of the one-dimensional
Wiener process. There exists the FWt -adapted GRP T : X∗ → L2([0, 1]×Ω) such that for all x∗ ∈ X∗

〈ξ, x∗〉 = E〈ξ, x∗〉+

1∫
0

Tx∗(t, ω)dWt. (0.1)

Proof. Let ξ be a Banach space-valued weak second order functional of the one-dimensional Wiener
process. For any x∗ ∈ X∗, 〈ξ, x∗〉 is one-dimensional functional of the Wiener process. By the one-
dimensional theorem, there exists the unique FWt -adapted one-dimensional random process f(x∗, t, ω)
such that

〈ξ, x∗〉 = E〈ξ, x∗〉+

1∫
0

f(x∗, t, ω)dWt.

Consider the map T : X∗ → L2([0, 1],Ω), Tx∗ = f(x∗, t, ω). It is easy to see that T is a linear
operator. Further,

∞ > sup
‖x∗‖≤1

E〈ξ − Eξ, x∗〉2 = sup
‖x∗‖≤1

E

( 1∫
0

f(x∗, t, ω)dWt

)2

= sup
‖x∗‖≤1

1∫
0

Ef(x∗, t, ω)2dt = sup
‖x∗‖≤1

1∫
0

E(Ttx
∗)2dt.

That is, T : X∗ → L2([0, 1],Ω) is bounded, and therefore, this is the GRP. �

Remark 1. The representation (0.1) of the Wiener functional is unique for any x∗ dt ⊗ dP -almost
everywhere. Indeed, if we have two representations of ξ,

〈ξ, x∗〉 = E〈ξ, x∗〉+

1∫
0

T1x
∗(t, ω)dWt = E〈ξ, x∗〉+

1∫
0

T2x
∗(t, ω)dWt,

then

0 = sup
‖x∗‖≤1

E

( 1∫
0

(T1x
∗(t, ω)− T2x

∗(t, ω))dWt

)2

= sup
‖x∗‖≤1

E

1∫
0

(T1x
∗(t, ω)− T2x

∗(t, ω))2dt.

For any GRP T : X∗ → L2([0, 1] × Ω) from M(λ,P )
1 , the correlation operator of T is called the

linear, bounded operator from X∗ to X∗∗, RT = T ∗T.

Proposition 2. If for any functional of the Wiener process ξ,

〈ξ, x∗〉 =

1∫
0

Tx∗(t, ω)dWt,

then RT = T ∗T maps X∗ onto X.
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Proof. For any x∗ and y∗,

〈RTx∗, y∗〉 = 〈T ∗Tx∗, y∗〉 = 〈Tx∗, Ty∗〉 =

1∫
0

ETx∗(t, ω)Ty∗(t, ω)dt

= E

( 1∫
0

Tx∗(t, ω)dWt ×
1∫

0

Ty∗(t, ω)dWt

)
= E(〈(ξ − Eξ), x∗〉 × 〈(ξ − Eξ), y∗〉) = 〈Rξx∗, y∗〉,

where Rξ is a covariance operator of ξ, which maps X∗ onto X (see [7, Theorem 3.2.1]). Therefore,
RT maps X∗ onto X. �

As is known (see [2, Theorem 5.6]), for the one-dimensional case, if the joint distribution of the
Wiener process and its one-dimensional functional is Gaussian, then the sequence of step functions

fn(t) =

2n−1∑
i=0

2nE(ξ − Eξ)(W i+1
2n
−W i

2n
)I( i

2n ,
i+1
2n ](t)

converges in L2[0, 1] to the integrand function f(t),
1∫
0

f2(t)dt <∞ and

ξn = Eξ +

1∫
0

fn(t)dWt

converges in L2(Ω, B, P ) to

ξ = Eξ +

1∫
0

f(t)dWt.

First, we give the generalization of this theorem for an arbitrary (non Gaussian) case when the
functional of the Wiener process is one-dimensional.

Theorem 1. Let the square integrable random variable ξ be a functional of the Wiener process. The
sequence of step functions

fn(t, ω) =

2n−1∑
i=0

2nE((ξ i+1
2n
− ξ i

2n
)(W i+1

2n
−W i

2n
)/FWi

2n
)I( i

2n ,
i+1
2n ](t) (0.2)

converges in L2([0, 1],Ω) to the FWt -adapted random process f(t, ω) and

ξ = lim
n→∞

1∫
0

fn(t, ω)dWt =

1∫
0

f(t, ω)dWt.

Proof. First of all, we prove the following

Lemma 1. Let ξ =
1∫
0

f(t, ω)dW (t) be a real-valued functional of the Wiener process. Then for any

0 ≤ a ≤ b,

E((ξb − ξa)(Wb −Wa)/FWa ) = E

( b∫
a

f(t, ω)dt/FWa

)
,

where ξt = E(ξ/FWt ) =
t∫

0

f(s, ω)dW (s).
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Proof of Lemma 1. Consider the left part of the equality and denote m ≡ (b− a)−1. Remember that
by Lemma 1.1.3 from [7], for any f(t, ω) ∈ L2([0, 1]× Ω), the sum

2n−1∑
i=1

2n

i
2n∫

i−1
2n

f(s, ω)dsI( i
2n ,

i+1
2n ](t)

converges to f(t, ω) in L2([0, 1]× Ω).
Next, we have

E((ξb − ξa)(Wb −Wa)/FWa ) = lim
n→∞

E

((( 2n−1∑
i=1

(2nm

a+ i
2nm∫

(a+
(i−1)
2nm )∨0

f(s, ω)ds)

×(W
a+

(i+1)
2nm
−Wa+ i

2nm
)

)( 2n−1∑
i=0

(W
a+

(i+1)
2nm
−Wa+ i

2nm
)

))
/FWa

)

= lim
n→∞

E

( 2n−1∑
i=1

((
2nm

a+ i
m2n∫

(a+
(i−1)
m2n )∨0

f(s, ω)ds

)
/FWa

)

×E(W
a+

(i+1)
m2n
−Wa+ i

m2n
)2

)
= lim
n→∞

2n−1∑
i=1

E

(
2nm

a+ i
m2n∫

(a+
(i−1)
m2n ∨0

f(s, ω)ds)/FWa

)
1

m2n

= lim
n→∞

E

( 2n−1∑
i=1

a+
(i+1)
m2n∫

a+ i
m2n

(
2nm

a+ i
m2n∫

(a+
(i−1)
m2n ∨0

f(s, ω)ds)I
(a+ i

m2n ,a+
(i+1)
m2n ]

(t)

)
dt/FWa

)

= lim
n→∞

E

( 2n−1∑
i=1

(
2nm

a+ i
m2n∫

(a+
(i−1)
m2n ∨0

f(s, ω)ds)
1

m2n

)
/FWa

)

= lim
n→∞

E

( 2n−1∑
i=1

a+ i
m2n∫

(a+
(i−1)
m2n )∨0

f(s, ω)ds/FWa

)
= E

( a+ 1
m∫

a

f(t, ω)dt/FWa

)
,

as

E

( a+ i
m2n∫

(a+
(i−1)
m2n )∨0

f(s, ω)ds(W
a+

(i+1)
2nm
−Wa+ i

2nm
)(W

a+
(j+1)
2nm
−Wa+ j

2nm
)/FWa

)
= 0,

when i 6= j.
Thus, the proof of the lemma 1 is completed.
Consider now the following sum

2n−1∑
i=1

2n

i+1
2n∫
i

2n

f(s, ω)dsI( i
2n ,

i+1
2n ](t).

According to Lemma 1.1.3 of [7], this sum converges likewise to f(t, ω) in L2([0, 1]×Ω). Therefore,

2n−1∑
i=1

2n

i
2n∫

i−1
2n

f(s, ω)dsI( i
2n ,

i+1
2n ](t)−

2n−1∑
i=1

2n

i+1
2n∫
i

2n

f(s, ω)ds)I( i
2n ,

i+1
2n ](t)
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tends to 0 in L2([0, 1]× Ω). That is,

1∫
0

E

( 2n−1∑
i=1

2n
( i

2n∫
i−1
2n

f(s, ω)ds−

i+1
2n∫
i

2n

f(s, ω)ds

)
I( i

2n ,
i+1
2n ](t)

)2

dt→ 0.

Hence,

2n−1∑
i=1

22nE

( i
2n∫

i−1
2n

f(s, ω)ds−

i+1
2n∫
i

2n

f(s, ω)ds

)2( 1

2n

)
→ 0.

Therefore,

2n−1∑
i=1

2nE

(
E

( i
2n∫

i−1
2n

f(s, ω)ds/FWi
2n

)
− E

( i+1
2n∫
i

2n

f(s, ω)ds/FWi
2n

))2

→ 0.

That is,

1∫
0

E

( 2n−1∑
i=1

2n

i
2n∫

i−1
2n

f(s, ω)dsI( i
2n ,

i+1
2n ](t)

−
2n−1∑
i=1

2nE

( i+1
2n∫
i

2n

f(s, ω)ds/FWi
2n

)
I( i

2n ,
i+1
2n ](t)

)2

→ 0.

But the first sum converges to the f(t, ω). Therefore the sequence of FWt -adapted step functions

2n−1∑
i=1

2nE

( i+1
2n∫
i

2n

f(s, ω)ds/FWi
2n

)
I( i

2n ,
i+1
2n ](t)

converges to f(t, ω) in L2([0, 1]× Ω).
Now we can construct the sequence of step functions fn(t, ω), n ∈ N , the stochastic integral of

which converges to ξ: let us consider

ξn =

2n−1∑
i=1

2nE((ξ i+1
2n
− ξ i

2n
)(W i+1

2n
−W i

2n
)/FWi

2n
)× (W i+1

2n
−W i

2n
) =

1∫
0

fn(t, ω)dWt,

where

fn(t, ω) =

2n−1∑
i=1

2nE((ξ i+1
2n
− ξ i

2n
)(W i+1

2n
−W i

2n
)/FWi

2n
)I( i

2n ,
i+1
2n ](t)

2n−1∑
i=1

2nE

( i+1
2n∫
i

2n

f(s, ω)ds/FWi
2n

)
I( i

2n ,
i+1
2n ](t). (0.3)

Then we have fn(t, ω)→ f(t, ω) in L2([0, 1]× Ω) and

1∫
0

fn(t, ω)dWt →
1∫

0

f(t, ω)dWt in L2(Ω). �
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Remark 2. In case when the joint distribution of functional of the Wiener process and of the Wiener
process is Gaussian, then

fn(t) =

2n−1∑
i=0

2nEξ(W i+1
2n
−W i

2n
)I( i

2n ,
i+1
2n ](t)

=

2n−1∑
i=0

2nE((ξ i
2n

+ (ξ i+1
2n
− ξ i

2n
) + (ξ − ξ i+1

2n
)))(W i+1

2n
−W i

2n
)I( i

2n ,
i+1
2n ](t)

=

2n−1∑
i=0

2nE((ξ i+1
2n
− ξ i

2n
)(W i+1

2n
−W i

2n
))I( i

2n ,
i+1
2n ](t)

=

2n−1∑
i=0

2nE(((ξ i+1
2n
− ξ i

2n
)(W i+1

2n
−W i

2n
))/FWi

2n
I( i

2n ,
i+1
2n ](t).

Therefore formula (0.3) is the generalization of formula (0.2) for an arbitrary (nonGaussian) case.
Let now ξ be a Banach space-valued functional of the Wiener process. As in the one-dimensional

case, consider the sequence of step functions

fn(t, ω) =

2n−1∑
i=0

2nE((ξ i+1
2n
− ξ i

2n
)(W i+1

2n
−W i

2n
)/FWi

2n
)I( i

2n ,
i+1
2n ](t).

The random step function fn(t, ω) does not always exist as a X-valued random process, because
the conditional expectation E((ξt − ξs)(Wt −Ws)/F

W
s ) for the weak second order random element

ξt − ξs does not exist, in general. Nevertheless, we can consider the GRE

Tx∗ = E(〈(ξt − ξs), x∗〉(Wt −Ws)/F
W
s ).

From Proposition 1 and Theorem 1 we immediately obtain the following

Proposition 3. For any weak second order Banach space-valued functional of the Wiener process
ξ : Ω → X, there exists the sequence of step generalized random functions (Tn)n∈N , such that for all
x∗ ∈ X∗,

1∫
0

E(Tnx
∗ − Tx∗)2dt→ 0,

when n→∞, where T is the GRP such that

〈ξ, x∗〉 = E〈ξ, x∗〉+

1∫
0

Tx∗(t, ω)dWt.

Proof. For any x∗ ∈ X∗, let Tnx
∗ = 〈fn(t, ω), x∗〉. By Theorem 1, Tnx

∗ → Tx∗, when n → ∞. By
Proposition 1, we have

〈ξ, x∗〉 = E〈ξ, x∗〉+

1∫
0

Tx∗(t, ω)dWt. �

The following theorem is a generalization of the one-dimensional Theorem 1 for the Banach space-
valued functionals of the one-dimensional Wiener process.

Theorem 2. Let ξ be a Banach space-valued FW1 measurable weak second order random element such

that in the representation (0.1) the GRP T ∈Mλ,P
1 T : [0, 1]→M1 is separable-valued and

1∫
0

‖T‖2M1
<∞.
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There exists the sequence of FWt -adapted step functions Tn(t, ω), n ∈ N converging in Mλ,P
1 to the

FWt -adapted GRP T : X∗ → L2([0, 1],Ω) such that the sequence of the stochastic integrals

1∫
0

Tnx
∗(t, ω)dWt

converges to
1∫

0

Tx∗(t, ω)dWt = 〈ξ − Eξ, x∗〉 in M1.

Proof. By Proposition 1, for the weak second order random element ξ, there exists the unique GRP
T : X∗ → L2([0, 1],Ω) such that for all x∗ ∈ X∗

〈ξ, x∗〉 = E〈ξ, x∗〉+

1∫
0

Tx∗(t, ω)dWt.

Consider

〈Tn(t, ω), x∗〉 =

2n−1∑
i=0

2nE((〈ξ i+1
2n
, x∗〉 − 〈ξ i

2n
, x∗〉)(W i+1

2n
−W i

2n
)/FWi

2n
)I( i

2n ,
i+1
2n ](t).

By Theorem 1, 〈Tn(t, ω), x∗〉, n ∈ N converges in L2([0, 1],Ω) to the one-dimensional functional of
the Wiener process Tx∗(t, ω) and we have

Tnx
∗(t, ω) =

2n−1∑
i=1

2n
( i

2n∫
i−1
2n

Tx∗(s, ω)ds

)
I( i

2n ,
i+1
2n ](t).

Further, it is easy to see that Tn ∈Mλ,P
1 for all n ∈ N and ‖Tn‖ ≤ ‖T‖. Indeed,

‖Tn‖2 = sup
‖x∗‖≤1

1∫
0

E

( 2n−1∑
i=1

2n
( i

2n∫
i−1
2n

Tx∗(s, ω)dsI( i
2n ,

i+1
2n ](t)

)2

dt

)

= sup
‖x∗‖≤1

1∫
0

E

( 2n−1∑
i=1

22n

( i
2n∫

i−1
2n

Tx∗(s, ω)ds

)2

I( i
2n ,

i+1
2n ](t)

)
dt

= sup
‖x∗‖≤1

( 2n−1∑
i=1

22n 1

2n
E

( i
2n∫

i−1
2n

Tx∗(s, ω)ds

)2)

≤ sup
‖x∗‖≤1

2n−1∑
i=1

E

i
2n∫

i−1
2n

(Tx∗(s, ω))2ds

= sup
‖x∗‖≤1

E

1− 1
2n∫

0

(Tx∗(s, ω))2ds ≤ ‖Tx∗(t, ω)‖2.

If T ∈Mλ,P
1 is a continuous function T : [0, 1]→M1, then Tn → T in Mλ,P

1 . Really,

‖T − Tn‖2 = sup
‖x∗‖≤1

E

1∫
0

( 2n−1∑
i=1

2n
( i

2n∫
i−1
2n

Tx∗(s, ω)dsI( i
2n ,

i+1
2n ](t)

)
− Tx∗(t, ω)

)2

dt
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= sup
‖x∗‖≤1

E

1∫
0

( 2n−1∑
i=1

(
2n

i
2n∫

i−1
2n

Tx∗(s, ω)ds− Tx∗(t, ω)

)
I( i

2n ,
i+1
2n ](t)

)2

dt

= sup
‖x∗‖≤1

E

1∫
0

( 2n−1∑
i=1

(
2n

i
2n∫

i−1
2n

Tx∗(s, ω)ds− Tx∗(t, ω)

))2

I( i
2n ,

i+1
2n ](t)dt

= sup
‖x∗‖≤1

E

2n−1∑
i=1

i
2n∫

i−1
2n

(
Tx∗(t, ω)−

(
2n

i
2n∫

i−1
2n

Tx∗(s, ω)ds

))2

dt

≤
2n−1∑
i=1

sup
‖x∗‖≤1

E

i
2n∫

i−1
2n

(
Tx∗(t, ω)−

(
2n

i
2n∫

i−1
2n

Tx∗(s, ω)ds

))2

dt

≤
2n−1∑
i=1

i
2n∫

i−1
2n

2n−1∑
i=1

sup
‖x∗‖≤1

E

(
2n

i
2n∫

i−1
2n

(Tx∗(t, ω)− Tx∗(s, ω)ds)

)2

dt

≤
2n−1∑
i=1

i
2n∫

i−1
2n

2n−1∑
i=1

(
22n 1

2n

i
2n∫

i−1
2n

sup
‖x∗‖≤1

E(Tx∗(t, ω)− Tx∗(s, ω))2ds

)
dt < ε,

as the function T : [0, 1]→M1 is continuous, for any ε > 0 and sufficiently large n,

sup
‖x∗‖≤1

E(Tx∗(t, ω)− Tx∗(s, ω))2ds)) < ε,

when |t− s| < 1
2n .

Consider now an arbitrary separable-valued T : [0, 1] → M1. Any fixed x∗ ∈ X∗ and g ∈ L2(Ω),
generates the linear continuous functional f :M1 → R,

f(x∗, g)(T ) =

∫
Ω

Tx∗(ω)g(ω)dP.

The set of such functionals separates the points of the Banach space M1. As T : [0, 1] → M1 is
separable-valued and f(x∗, g)T (t) is measurable, by the Pettis theorem (see [6, Proposition 1.1.10]),

T : [0, 1] → M1 is measurable. As
∫ 1

0
‖T (t)‖dt < ∞, the Bochner integral

∫ t
s
T (t)dt exists for all

0 ≤ s < t ≤ 1. Let T (t) be a bounded function. Consider Tm(t) := m
∫ t

(t− 1
m )∨0

T (s)ds, m ∈ N .

Tm(t) → T (t) a.s. (see [1, Corollary 2 of Theorem 3.8.5]). By the Lebesgue theorem,
∫ 1

0
‖Tm(t) −

T (t)‖2dt→ 0. As Tm(t) is continuous for all m ∈ N , there exists the sequence of FWt - adapted step

functions Tmn, n ∈ N such that
∫ 1

0
‖Tmn(t)−Tm(t)‖2dt→ 0. Therefore we can choose the sequence of

step functions (Tn)n∈N such that
∫ 1

0
‖Tn(t)−T (t)‖2dt→ 0. It is now easy to get the sequence of step

functions converging to the arbitrary separable-valued T : [0, 1]→M1, with
∫ 1

0
‖T (t)‖2dt <∞. �

Remark 3. By Proposition 1, for the X-valued weak second order functional of the Wiener process

the integrand T (t, ω) belongs to the Banach space Mλ,P
1 . The existence of step functions converging

to the integrand we prove in the case for T ∈ L2([0, 1],M1) which is separable-valued. We prove the

convergence in L2([0, 1],M1), but there arises the question whether this theorem is true for Mλ,P
1

without the above restrictions? The answer is unknown.

Remark 4. If the sequence fn(t, ω), n ∈ N is such that the members of it as X-valued random
processes exist (for example, the functional ξ has strong p-th moment for any p > 1), then from
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Theorem 2 it follows that the integrand process T (t, ω) belongs toM(λ,P )
2 ⊂M(λ,P )

1 . If the sequence
fn(t, ω), n ∈ N , of X-valued random processes converges in X, then the integrand process is X-valued
and in this case we have the representation of the Banach space-valued functional by the stochastic
integral from the Banach space FWt -adapted X-valued random process.

Remark 5. It is easy to see that

2n−1∑
i=0

2nE((ξ i+1
2n
− ξ i

2n
)(W i+1

2n
−W i

2n
)/FWi

2n
)I( i

2n ,
i+1
2n ](t)

=

2n−1∑
i=0

2nE(ξ(W i+1
2n
−W i

2n
)/FWi

2n
)I( i

2n ,
i+1
2n ](t).

As

E(ξ(W i+1
2n
−W i

2n
)/FWi

2n
)

= E(((ξ − ξ i+1
2n

) + (ξ i+1
2n
− ξ i

2n
) + ξ i

2n
)(W i+1

2n
−W i

2n
)/FWi

2n
)

= E((ξ i+1
2n
− ξ i

2n
)(W i+1

2n
−W i

2n
)/FWi

2n
).
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