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1 Introduction

The purpose of this chapter is to present A. Scorichenko’s work for his dissertation
at Northwestern.

Theorem 1.1 [19] For a ring R, let P(R) be the category of finitely generated
projective left R-modules, and let D : P(R)op × P(R) → Ab be a bifunctor. If
D has finite degree with respect to both variables, then there is an isomorphism
between Waldhausen’s stable K-theory and the homology of P:

Kst
∗ (R,D)→ H∗(P(R), D) .

This proves a conjecture stated in [4]. The conjecture first appeared in [14] for
biadditive bifunctors, a case proved in [6] (see also [20] for the outline of another
approach). In the case of finite fields, the conjecture was proved for general
bifunctor coefficients in [3] and in [9, Appendix].

Stable K-theory is precisely related to homology of invertible matrices: Wald-
hausen explained [21, Section 6] that stable K-theory gives access to homology of
the general linear group, with twisted coefficients, through the spectral sequence
discussed in sections 2 and 6. One point of the theorem is that although stable K-
theory is defined in terms of invertible matrices, it is equal to a more manageable
theory, expressed in terms of all matrices. The isomorphism of Theorem 1.1 is in-
duced by the inclusion of invertible matrices in all matrices. There are variations
on this, as will be seen with Scorichenko’s use of the category of epimorphisms.

The conjecture has been a motivation for developing computation tools in
categories of functors. Indeed, the homology H∗(P(R), D) can be expressed purely
in terms of homological algebra in categories of functors.

2 Homology of general linear groups and stable

K-theory

Let R be a ring and GLn(R) be the group of invertible matrices over R. For a
bimodule P over R, the R-bimodule of n×n-matrices gln(P ) is a GLn(R)-module
for the conjugation action: X ∗M := X−1MX. We embed GLn(R) as a subgroup

in GLn+1(R) by: X 7→
(
X 0
0 1

)
, and define the direct limit GL(R) =

⋃
n GLn(R).

We embed gln(P ) in gln+1(P ) by: M 7→
(
M 0
0 0

)
, and define the direct limit

gl(P ) =
⋃

n gln(P ). This yields the conjugation action of GL(R) on gl(P ).
The homology groups with twisted coefficients H∗(GL(R); gl(P )) appear as

the E2
n1-terms of the following change of rings spectral sequence. Let:

0→ P → S → R→ 0
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be a singular extension of rings. Thus S is a ring and P is a two-sided ideal of S
such that P 2 = 0 and R = S/P . Then there is a short exact sequence of groups

0→ gl(P )→ GL(S)→ GL(R)→ 1 ,

where the inclusion is by the exponential map x 7→ 1 + x. It yields a Hochschild-
Serre spectral sequence

E2
pq = Hp(GL(R),Hq(gl(P ))) =⇒ Hp+q(GL(S)) .

Since gl(P ) is an abelian group, its homology H∗(gl(P )) is known [18, Section 8].
Here is a way to put these groups in a more general framework.

Let P(R), or simply P, be the category of finitely generated projective left R-
modules. The category P is equivalent to a small category and therefore we can do
homological algebra in Func(P,Ab). For a bifunctor D : Pop×P→ Ab the abelian
group D(Rn, Rn) has a natural GLn(R)-module structure, with action on both
variable. Define pn : Rn+1 → Rn and in : Rn → Rn+1 by: pn(x1, · · · , xn+1) =
(x1, · · · , xn) and in(x1 · · · , xn) = (x1, · · · , xn, 0). They yield an homomorphism

D(pn, in) : D(Rn, Rn)→ D(Rn+1, Rn+1)

which is compatible with the inclusions GLn(R) ⊂ GLn+1(R). At the limit, one
gets a GL(R)-module D∞ := colimnD(Rn, Rn). For example, when D(X, Y ) =
HomR(X,P ⊗R Y ) for a given bimodule P , then D∞ = gl(P ). Considering the
bifunctor defined byD(X,Y ) = Hq(HomR(X,P⊗RY )) recoversD∞ = Hq(gl(P )).

Therefore we are left with the general problem of understanding the groups
H∗(GL(R), D∞). This is achieved by comparing it with an appropriate notion
of homology of a small category for the category P (see Section 3.5). The group
GLn(R) appears as the subcategory of P consisting of the automorphisms of Rn,
and this inclusion induces an homomorphism

ψ∗ : H∗(GL(R), D∞)→ H∗(P(R), D) .

The homology of the right hand side is well understood in many cases (see [7, 8, 9]
or the article Introduction to functor homology in this volume). For example,
when D(X, Y ) = HomR(X,P ⊗R Y ), H∗(P(R), D) is canonically isomorphic to
the topological Hochschild homology [16] and to the MacLane homology [11] of
R with coefficients in P .

Unfortunately the homomorphism ψ∗ is very far from being an isomorphism
in general. Indeed, if D is a constant bifunctor, then H∗(P, D) vanishes in posi-
tive dimensions, because P has a zero object, while the homology of the general
linear group is highly nontrivial in general. There is a trick due to Waldhausen
[21, pp 387–388], which simplifies the situation. Define the stable K-theory
Kst
∗ (R,D) of R with coefficients in D as the homology of the homotopy fiber of
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BGL(R) → BGL(R)+, with twisted coefficients in D∞. In the resulting Serre
spectral sequence

E2
pq = H∗(GL(R), Kst

∗ (R,D)) =⇒ H∗(GL(R), D∞) (∗)

the action of GL(R) on Kst
∗ (R,D) is trivial (see [12]). The spectral sequence (∗)

degenerates at E2 in many cases (see [4], or Section 6 in this paper). Moreover
there is a natural transformation

ν∗ : Kst
∗ (R,D)→ H∗(P(R), D)

because H∗(P,−) is a universal sequence of functors defined on Func(Pop×P,Ab)
(see Lemma 3.1).

Scorichenko’s theorem 1.1 states that ν∗ is an isomorphism, if D has finite
degree with respect to both variables. For the definition of functors of finite
degree we refer the reader to Section 4. Symmetric, exterior or divided pow-
ers all have finite degree, as does indeed the bifunctor defined by D(X,Y ) =
Hq(HomR(X,P ⊗R Y )), which is relevant to the above change of rings spectral
sequence.

3 Preliminaries from homological algebra

3.1 Universal sequences of functors

We assume the reader to be familiar with the basics of homological algebra and
category theory, as in [5]. We recall the following axiomatic characterization of
derived functors, to be used several times in this paper. Let A and B be abelian
categories. A connected sequence of functors is a sequence of additive functors
(Tn : A→ B)n≥0 together with homomorphisms

∂n : Tn+1(C)→ Tn(A)

for each exact sequence in A

0 // A
i // B

s // C // 0

which are natural in respect of maps of short exact sequences. A connected

sequence is exact if for each exact sequence 0 // A
i // B

s // C // 0 in
A, the long sequence in B

· · · // Tn+1(C) ∂ // Tn(A)
i∗ // Tn(B)

s∗ // Tn(C) // · · · // T0(C) // 0

is exact. Assume A has enough projective objects. A universal sequence of
functors is an exact connected sequence of functors such that Tn(P ) = 0 for
all positive n and all projective P . The following is a particular case of [5,
Proposition III.5.2].

5



Proposition 3.1 Let T : A → B be an additive covariant functor. Its left
derived functors (LnT : A→ B)n≥0 form a universal sequence of functors. Con-
versely, if (Tn : A→ B)n≥0 is an exact connected sequence of functors, then there
is a unique morphism of connected sequence of functors (ξn : Tn → Ln(T0))n≥0

such that ξ0 : T0 → L0T0 is the canonical isomorphism. Furthermore ξn is an
isomorphism for all n ≥ 0 provided (Tn : A → B)n≥0 is a universal sequence of
functors.

3.2 A lemma on collapsing spectral sequences

We now extend these notions to spectral sequences of functors. A ∂-spectral
sequence is for each A ∈ A a upper-half-plane spectral sequence (Er

pq(A), dr)r≥2

in B, which is natural in A ∈ A, together with homomorphisms

∂r : Er
pq(C)→ Er

p,q−1(A)

for each short exact sequence 0 // A
i // B

s // C // 0 in A, which are
natural in respect of maps of short exact sequences, and such that:

1. for each r ≥ 2, ∂r+1 is the map induced in homology by ∂r

2. the diagrams

Er
pq(C) dr

//

∂
��

Er
p−r,q+r−1(C)

∂
��

Er
p,q−1(A) dr

// Er
p−r,q+r−2(A)

commute for all integers p, q, and r ≥ 2.

Lemma 3.2 Let A be an abelian category and let (Er
pq)r≥2 be a ∂-spectral se-

quence. Assume that the following condition holds: For any C in A, there is
a short exact sequence 0 → A → B → C → 0 in A such that the maps
∂2 : E2

pq(C) → E2
p,q−1(A) are monomorphisms. Then the spectral sequence

(Er
pq(C), dr)r≥2 stops at E2 for any C in A.

Proof : We need to show that dr = 0 for each r. Let C be in A, and let 0 →
A→ B → C → 0 be a short exact sequence as in the statement. Starting at the
E2-level, let us consider the commutative diagram:

E2
pq(C) d2

//

∂
��

E2
p−2,q+1(C)

∂
��

E2
p,q−1(A) d2

// E2
p−2,q(A)
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By hypothesis, the right vertical map is mono. When q = 0, the left bottom term
is 0: hence d2

p0 = 0. We then proceed by induction on q, applying the induction
hypothesis to A to show that the bottom map is 0.

At the next stage, we have E3 = E2 and ∂3 = ∂2, by the first condition of
a ∂-spectral sequence. Hence the conditions on the E2-term carry over to the
E3-term, and we repeat the argument ad lib.

3.3 Categories of functors

For a small category C and a category A we let Func(C,A) be the category of all
functors from C to A and natural transformations between them. The category
Func(C,A) carries lots of the properties of A. It has limits (resp. colimits)
provided A has limits (resp. colimits). The limits and colimits in Func(C,A) are
computed pointwise. In particular, if A is an abelian category, then Func(C,A)
is also an abelian category: A sequence

0→ F → G→ H → 0

is an exact sequence in Func(C,A) if

0→ F (X)→ G(X)→ H(X)→ 0

is exact for all X ∈ C.
We are especially interested in the case when A is the category R-Mod of left

modules over a ring R. We restrict to this case for the rest of the section. To
describe projective generators in the category Func(C,A), we recall the Yoneda
lemma.

Lemma 3.3 [13] Let X be an object in C. For any functor

T : C → Sets

to the category of sets, there is a natural (in X) bijection

HomFunc(C,Sets)(HomC(X,−), T ) ∼= T (X) ,

which assigns ξX(1X) ∈ T (X) to a natural transformation ξ : HomC(X,−)→ T .
Its inverse associates to each a in T (X) the natural transformation
HomC(X, Y )→ T (Y ) given by evaluation f 7→ T (f)(a).

For any X ∈ C, let us define PX ∈ Func(C,A) by

PX(Y ) : = R[Hom(X, Y )] =
⊕

f :X→Y

R.

Here and elsewhere R[S] denotes the free left R-module generated by a set S (it
is a covariant functor of S). Sometimes, to emphasize the category C we write
P CX instead of PX .
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Corollary 3.4 Let A be the category of left R-modules.
i) For any X ∈ C and any functor F : C → A there is a natural isomorphism

HomFunc(C,A)(PX , F ) ∼= F (X).

ii) For any X ∈ C, the functor PX is a projective object in Func(C,A).
iii) Any projective object in Func(C,A) is a direct summand in a coproduct of

objects PX .
iv) For any object F ∈ Func(C,A) there is an epimorphism P → F with

projective P .

Proof. The first statement is an immediate consequence of the Yoneda lemma.
The functor HomFunc(C,A)(PX ,−) is an exact functor, thanks to i) and we obtain
ii). Take any functor F : C → A and an element x ∈ F (X). Thanks to i) we have
a morphism ξx : PX → F such that (ξx)X(1X) = x. The collection of all (ξx),
x ∈ F (X), where X runs over the isomorphism classes of objects of the category
C, yields a homomorphism

ξ = (ξx) :
⊕
X

⊕
x∈F (X)

PX → F

which is clearly an epimorphism. This implies iii) and iv).
2

3.4 Tor in functor categories

We now discuss Tor groups in categories of functors. Assume M : C → R-Mod
and N : Cop → Mod-R are functors to the category of left and right R-modules
respectively. We let N⊗CM be the abelian group generated by all symbols x⊗y,
where x ∈ N(A), y ∈M(A) and A ∈ C, subjected to the following relations:

(x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y, x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2,

(xr)⊗ y = x⊗ (ry), α∗(x′)⊗ y = x′ ⊗ α∗(y) ,
for α: A→ B a morphism in C, x1, x2, x in N(A), y1, y2, y in M(B), x′ in N(B)
and r in R. In other words: N ⊗CM is the quotient of

⊕
A∈C N(A)⊗R M(A) by

the relations α∗(x′) ⊗ y = x′ ⊗ α∗(y). The bifunctor − ⊗C − is right exact with
respect to each variable and preserves direct sums.

Example 3.5 If R denotes the constant functor with value R, then R ⊗C M is
isomorphic to the colimit of M : C → R-Mod.

Lemma 3.6 For any functors M : C → R-Mod, N : C → Mod-R and any
A ∈ C, there exist natural isomorphisms

N ⊗C P CA ∼= N(A)
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P C
op

A ⊗C M ∼= M(A).

Where as usual P CA = R[HomC(A,−)] and P C
op

A = Rop[HomC(−, A)].

Proof. We construct mutually inverse homomorphisms f : N ⊗C P CA → N(A) and
g : N(A) → N ⊗C P CA by f(x ⊗ α) = N(α)(x) and g(a) = a ⊗ 1A respectively.
Here a ∈ N(A), x ∈ N(X) and α : A→ X is a morphism in C. Similarly for the
second isomorphism. 2

As usual, the left derived functors of −⊗C − are denoted by TorC∗(−,−).
The following lemma is similar to a change of rings in Tor-groups. Note

that any functor f : C → D between small categories yields a functor f ∗ :
Func(D, E)→ Func(C, E) defined by pre-composition: f ∗R = R ◦ f .

Lemma 3.7 Let C and D be small categories. Let l : C → D and r : D → C form
a couple of adjoint functors. For any F : C → R-Mod and G : Dop → Mod-R,
there is an isomorphism

TorD∗ (G, r∗F ) ∼= TorC∗(l
∗G,F ) .

Proof. For A ∈ C and B ∈ D one has

r∗P CA
∼= PDlA, and l∗PD

op

B
∼= P C

op

rB

Therefore l∗ and r∗ respect projective objects. Furthermore one has

l∗PD
op

B ⊗C P CA ∼= P C
op

rB ⊗C P CA ∼= R[HomC(A, rB)]

and
PD

op

B ⊗C r∗P CA ∼= P C
op

B ⊗D PDlA ∼= R[HomD(lA,B)]

Thus l∗G ⊗C F ∼= G ⊗D r∗F as abelian groups, provided both G and F are
projective objects. Since ⊗ is right exact it follows that the isomorphism exists
for any F and G. This proves the lemma in dimension 0. Since r∗ and l∗ are
exact functors and send projective objects to projectives, the result is also true
in all dimensions. 2

3.5 Homology of small categories

Let C be a small category and let

D : Cop × C → Ab

be a bifunctor, which is contravariant with respect to the first argument and
covariant with respect to the second argument. Thus, for x ∈ D(X, Y ), f : Y →
Z and g : W → X, one has: f∗x ∈ D(X,Z) and g∗x ∈ D(W,Y ).
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Consider diagrams in C:

X0 X1
f1oo f2oo · · · Xn

fnoo .

As usual, let Nn(C) be the set of all such diagrams, which we denote, for short,
by f or, for n > 0, (f1, · · · , fn). Define:

Fn(C, D) :=
⊕

f∈Nn(C)

D(X0, Xn) .

For n = 0,

F0(C, D) =
⊕
X0∈C

D(X0, X0) .

A typical generator of Fn(C, D) is denoted by (a; f1, · · · , fn), a ∈ D(X0, Xn).
The boundary map

d : Fn(C, D)→ Fn−1(C, D) , n > 0,

is defined by
d(a; f1, · · · , fn) =

(f ∗1a, f2 · · · , fn) +
n−1∑
i=1

(−1)i(a; f1, · · · , fifi+1, · · · , fn) + (−1)n(fn∗a, f1, · · · , fn−1).

The homology H∗(C, D) of the category C with coefficients in the bifunctor
D is defined as the homology of the complex F∗(C, D). Sometimes we write
H∗(C, (X,Y ) 7→ D(X, Y )) to make explicit the values of the bifunctor D. The
category of bifunctors Func(Cop × C,Ab) is a category of functors, hence it is
an abelian category with enough projective and injective objects. Lemma 3.4
applied to the category Cop × C says that projective generators are given by

PA,B = Z[HomC(−, A)× HomC(B,−)], A,B ∈ C.

Lemma 3.8 For any A, B in C one has:

Hn(C, PA,B) = 0 if n > 0, and H0(C, PA,B) = Z[HomC(B,A)] .

Proof. Since F0(C, PA,B) is the free abelian group on the set of diagrams A ←
X ← B, composition yields an homomorphism

F0(C, PA,B)→ Z[HomC(B,A)] .

Let F−1(C, PA,B) be Z[HomC(B,A)]. For n ≥ −1, Fn(C, PA,B) is the free abelian
group spanned by the diagrams

A X0
foo X1

f1oo f2oo · · · Xn
fnoo B

goo .

A contracting homotopy hn : Fn(C, PA,B)→ Fn+1(C, PA,B), n ≥ −1 is defined by

hn(f, f1, · · · , fn, g) = (IdA, f, f1, · · · , fn, g) .

2
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Corollary 3.9 The sequence of functors(
Hn(C,−) : Func(Cop × C,Ab)→ Ab

)
n≥0

is universal.

Proof. Since the functor Fn(C,−) : Func(Cop × C,Ab) is exact it follows that
Hn(C,−) is an exact connected sequence of functors. It is universal thanks to
Lemma 3.8. 2

We now express the homology of small categories as Tor-groups. Let R be a
ring and let F : Cop → Mod-R be a contravariant functor to the category of right
R-modules. Let T : C → R-Mod be a covariant functor to the category of left
R-modules. Then

(X,Y ) 7→ F (X)⊗R T (Y )

defines a bifunctor T �R F : Cop × C → Ab.

Proposition 3.10 Assume that the values of F or T are projective R-modules.
Then, for each i ≥ 0, there is an isomorphism

TorCi (F, T ) ∼= Hi(C, F �R T ) .

Proof. Since

H0(C, F �R T ) = Coker(
⊕

f :X→Y

F (Y )⊗R T (X)→
⊕
X

F (X)⊗R T (X)) ∼= F ⊗C T

we have the expected isomorphism for all T and F when i = 0. Assume now that
the values of F are projective. Varying T we obtain an exact connected sequence
of functors

Hn(C, F �R (−)) : Func(C, R−Mod)→ Ab, n ≥ 0 .

Thus it suffices to show Hn(C, F �R PA) = 0 for n > 0, where as usual PA(Y ) =
R[HomC(A, Y )]. Since

F0(C, F �R PA) ∼=
⊕
X←A

F (X)

projection on the identity factor yields a map F0(C, F �R PA) → F (A). Let
F−1(C, F �R PA) be F (A). For n ≥ −1,

Fn(C, F �R PA) =
⊕

X0←···←Xn←A

F (X0) .

A contracting homotopy hn : Fn(C, F �R PA) → Fn+1(C, F �R PA), n ≥ −1 is
defined by:

hn(a; f1, · · · , fn, g) 7→ (a; f1, · · · , fn, g, IdA) .

2
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Remark 3.11 Indeed the following more general result is true (compare with
[11, Theorem B]): If F and T are arbitrary functors, then there is a spectral
sequence

E2
pq = Hp(C, (X, Y ) 7→ TorR

q (FX, TY )) =⇒ TorC∗(F, T ) .

This is a consequence of Grothendieck’s spectral sequence for a composite of
functors.

Remark 3.12 Take C to be the category P(R) of finitely generated projective
modules over a ring R. For any functor T : P(R) → R-Mod, the MacLane
homology HML∗(R, T ) of R with coefficient in T is TorP

∗(Id
∗, T ), where Id∗ =

HomR(−, R). Proposition 3.10 shows that HML∗(R, T ) ∼= H∗(P(R), DT ), where
DT (X, Y ) = HomR(X,T (Y )).

Another application of Proposition 3.10 is the following. Consider the constant
functor with value R, still denoted by R. Note that

(R�R T )(X, Y ) = T (Y )

is a bifunctor which is constant with respect to the contravariant argument. Let
us denote this bifunctor again by T . Thus

H∗(C, T ) ∼= TorC∗(R, T ).

Since R⊗C T = colim T , the sequence of functors H∗(C,−) : Func(C, R-Mod)→
Ab is isomorphic to the left derived functors of the functor

colim : Func(C,R-Mod)→ Ab.

Corollary 3.13 If the category C has a terminal object C, then for any functor
T : C → R-Mod, the group Hi(C, T ) = 0 for positive i, and H0(C, T ) = T (C).

Proof. It is clear that colim(T ) = T (C). Thus colim is an exact functor and the
result follows. 2

Proposition 3.14 Let C be a category, with finite coproducts and finite products.
For any bifunctor D : Cop × C → Ab, let D∐ and D∏ be the bifunctors defined
on C by D∐(X, Y ) = D(X

∐
X, Y ) and D∏(X, Y ) = D(X,Y × Y ). There is an

isomorphism
H∗(C, D∐) ∼= H∗(C, D∏).

Proof. By varying D ∈ Func(Cop×C,Ab) we obtain two exact connected sequence
of functors D 7→ Hn(C, D∐), n ≥ 0 and D 7→ Hn(C, D∏), n ≥ 0. It suffices to
show that both of them are universal and take the same values on projective ob-
jects. Consider a projective PA,B: PA,B(X, Y ) = Z[HomC(X,A) × HomC(B, Y )].

12



One finds: (PA,B)∐ ∼= PA×A,B and (PA,B)∏ ∼= PA,B
∐

B. It follows from Lemma
3.8 that homology vanishes in positive dimensions for both functors, and it equals

Z[HomC(B,A× A)] ∼= Z[HomC(B
∐

B,A)]

in dimension 0. Lemma 3.1 finishes the proof. 2

Remark. The adjonction at the end of the proof shows the similarity with
Lemma 3.7.

4 Finite degree functors

4.1 Cross-effects

Let F : C → A be a functor from an additive category to an abelian category.
For all X and Y in C, the projections induce a natural map:

F (X ⊕ Y )→ F (X)⊕ F (Y ) .

Suppose F (0) = 0. This map is an epimorphism, which is naturally split by the
map induced by the inclusions of X and Y in X ⊕ Y . The second cross-effect of
F is the bifunctor defined by

(Cr2F )(X,Y ) : = Ker(F (X ⊕ Y )→ F (X)⊕ F (Y )) .

Since the cross-effect fits in a natural splitting:

F (X ⊕ Y ) ∼= F (X)⊕ F (Y )⊕ Cr2F (X, Y ) ,

the functor F is additive if and only if Cr2F = 0.
In order to define the third cross-effect of F , we proceed as follows. We con-

sider the second cross-effect (Cr2F )(X, Y ). We fix Y and let X vary. In this way
we obtain the functorX 7→ (Cr2F )(X, Y ) which we take the second cross-effect of.
We can continue this process and define the n-th cross-effect (CrnF )(X1, · · · , Xn).
Alternatively, CrnF (X1, · · · , Xn) is isomorphic to the kernel of the natural ho-
momorphism

F (X1 ⊕ · · · ⊕Xn)→
n⊕

i=1

F (X1 ⊕ · · · ⊕ X̂i · · · ⊕Xn)

This shows that the n-th cross-effect (CrnF )(X1, · · · , Xn) is symmetric onX1, · · · , Xn.
Another consequence of the definition is the following natural splitting:

F (X1 ⊕X2 ⊕ · · · ⊕Xn) ∼=
n⊕

k=1

⊕
1≤i1<···<ik≤n

(CrkF )(Xi1 , · · · , Xik) (†)

One observes that an arbitrary functor F : C → A has a natural decomposition
F ∼= F (0)⊕F ′ with F ′(0) = 0. This allows to define the n-th cross-effects of F to
be the cross-effects of F ′ for any n ≥ 2. It will be convenient to call the functor
F ′ the first cross-effect of F .
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4.2 Functors of finite degree

Definition 4.1 [10] A functor F : C → A is of degree n if its (n + 1)-st cross-
effect functor vanishes, but its n-th cross-effect does not. We then write: deg(F ) =
n.

Example 4.2 Assume C and A are the category of (left) modules over a com-
mutative ring R. Then the functors X 7→ ΛnX, SnX, X⊗n are of degree n, while
the functor X 7→ R[X] is not of finite degree.

For an integer d, we let Funcd(C,A) be the full subcategory of Func(C,A) of
functors of degree ≤ d. By definition, Func0(C,A) consists of constant functors.
The subcategory Funcd(C,A) is closed in respect of coproducts and products. It
is closed also in respect of subobjects, quotients and extensions. It follows that
the category Funcd(C,A) is an abelian category, and the inclusion Funcd(C,A) ⊂
Func(C,A) is an exact functor.

We now construct a left adjoint to this inclusion functor. Such a left adjoint
can be seen as a Taylor expansion at order d. Consider the following ”codiagonal”
morphism:

(1X , · · · , 1X) : X⊕(d+1) = X ⊕X . . .⊕X → X .

For a functor F : C → A, the codiagonal induces a natural map F (X⊕· · ·⊕X)→
F (X), whose restriction on (Crd+1F )(X, · · · , X) defines a morphism

%d,X(F ) : (Crd+1F )(X, · · · , X)→ F (X).

Note (for use in Definition 5.2) that the above formula defines a natural transfor-
mation to F which we denote %d(F ) (of course also natural in F ). A left adjoint
functor td : Func(C,A)→ Funcd(C,A) is given by:

(tdF )(X) = Coker (%D,X(F ) : (Crd+1F )(X, · · · , X)→ F (X)).

Similarly, a right adjoint functor td : Func(C,A)→ Funcd(C,A) is defined using
the diagonal morphism X → X⊕(d+1). Since (Crd+1)F (X, · · · , X) is a direct
summand of F (Xd+1), we obtain a natural transformation

ϑD,X(F ) : F (X)→ (Crd+1F )(X, · · · , X)

and a right adjoint is defined by: (tdF )(X) = Ker(ϑD,X(F )). Observe that the
natural transformation F → tdF is an isomorphism if and only if deg(F ) =
d. Similarly, tdF → F is an isomorphism if and only if deg(F ) = d. Since
Func(C, R-Mod) has enough projective and injective objects the same is also true
for Funcd(C, R-Mod). We sum up this discussion with the following lemma.

Lemma 4.3 The inclusion functor Funcd(C,A) ⊂ Func(C,A) has a left adjoint
(and a right adjoint). The category Funcd(C, R-Mod) is an abelian category with
enough projectives (and enough injectives).
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4.3 A cancellation lemma

For a bifunctor D : C × C → Ab we let deg1D (resp. deg2D) be the degree with
respect to the first (resp. second) variable. Similarly, Cr1

nD and Cr2
nD denote

the n-th cross-effect functor with respect to the first and the second variable
respectively. The following vanishing result is a variant of the vanishing result of
the second author [15] (see for example the page ? in this volume). The lemma
states that, after taking homology, cross-effects can be moved from one argument
of the bifunctor coefficients to the other.

Lemma 4.4 Let C be an additive category and let D : Cop × C → Ab be a
bifunctor. There is a natural isomorphism:

H∗(C, (X, Y ) 7→ (Cr1
n)D(X, . . . , X;Y )) ∼= H∗(C, (X, Y ) 7→ (Cr2

nD)(X;Y, . . . , Y )) .

In particular, if deg1D < n, then:

H∗(C, (X, Y ) 7→ (Cr2
nD)(X;Y, . . . , Y )) = 0 .

Proof. By a slight generalization of Lemma 3.14 to n+ 1 factors:

H∗(C, (X, Y ) 7→ D(X ⊕ . . .⊕X;Y )) ∼= H∗(C, (X,Y ) 7→ D(X;Y ⊕ . . .⊕ Y )) .

Consideration of the splitting (†) in 4.1 allows to deduce the first isomorphism.
If n > deg1D, the left hand side is zero, thus the same is true for the right hand
side. 2

5 Proof of Scorichenko’s Theorem

Scorichenko’s proof uses an intermediary category, the category E, which still
has finitely generated projective R-modules as objects, but where morphisms are
epimorphisms of R-modules. Scorichenko observed that the definition of stable
K-theory is still meaningful for bifunctors from Eop × P. This leads to Theorem
5.1 computing stable K-theory as homology of E, for those bifunctors having finite
degree in the covariant argument. Theorem 5.4 then compares the homology of
E and the homology of P, this time for bifunctors having finite degree in the
contravariant argument. The two comparisons together give Theorem 1.1.

5.1 Stable K-theory is homology of the category E
The first main step is similar in spirit to the approach given in [4], where stable
K-theory was obtained as the derived functor of the functor

Kst
0 : Func(Pop(R)× P(R),Ab)→ Ab
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under restricted conditions on the ringR (see Remark 6.3). Extending the domain
of definition of stable K-theory to the category Func(Eop×P,Ab) overcomes this
difficulty.

We let µ be the inclusion E ⊂ P. Thus µ is identity on objects.

Theorem 5.1 Let D : Eop(R) × P(R) → Ab be a bifunctor, and let µ∗D be the
composite:

E(R)op × E(R)
Id×µ // E(R)op × P(R) D // Ab

If D has finite degree with respect to the covariant argument, then

Kst
∗ (R,D) ∼= H∗(E(R), µ∗(D)) .

Proof. First we consider the case when D is constant with respect to the first
variable. In this case, the right hand side is the homology of the category E with
coefficients in a functor T = D(0,−). Because 0 is the terminal object of E,
this homology vanishes in positive dimensions and it equals T (0) in dimension 0
thanks to Corollary 3.13. The corresponding statement for stable K-theory is a
result of Betley [2].

Next, we extend the comparison to bifunctors ZU,B defined by

ZU,B = B(Y )[HomE(X,U)] = PU(X)⊗B(Y ) ,

where B : P → Ab is a finite degree functor, and U ∈ Ob(E) = Ob(P). Lemma
3.10 tells us that the right-hand side H∗(E, µ∗D) is isomorphic to TorE

∗ (PU , µ
∗B).

Since PU is a projective in Func(E,Ab), these groups vanish in positive dimensions
and they are isomorphic to B(U) in dimension 0. Let us again show the same
result for Kst

∗ (R,ZU,B).
Having fixed a projection π : R∞ → U and the corresponding stabilizer

Stab(π) we get an isomorphism of GL(R)-modules

Z∞U,B
∼= Ind

GL(R)
Stab(π)B

∞.

It follows from the Shapiro lemma in group homology that

H∗(GL(R), Z∞U,B) ∼= H∗(Stab(π), B∞) .

It is known that H∗(Stab(π), B∞) ∼= H∗(GL(R), B(U ⊕∞)). Because B has finite
degree, we can still use the result of Betley [2] to conclude that H∗(GL(R), Z∞U,B) ∼=
H∗(GL(R), B(U)) where GL(R) acts trivially on B(U). Now the spectral se-
quence (∗) yields that Kst vanishes on ZU,B in positive dimensions and it equals
B(U) in dimension 0.

To conclude, consider, for each integer d, the abelian subcategory of
Func(E × P,Ab) consisting of bifunctors D : E(R) × P(R) → Ab which have
degree d with respect to the first variable. Both terms in the statement form
an exact connected sequence of functors defined on this subcategory. The result
follows from Proposition 3.1. 2
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5.2 Another cancellation lemma

As pointed out in Example 4.2, while most of the usual functors have finite degree,
the cross-effect on projective functors has the opposite property of enlarging their
size. Scorichenko applies Lemma 4.4 to bifunctors which are of finite degree in
one variable, but have this opposite property with respect to the other variable.
Lemma 5.3’s homology cancellation was known to the first author in the special
case when R is a prime field and when D is the bifunctor defined by: D(X,Y ) =
Hom(F (X), PA(Y )) for a finite degree functor F and a projective PA (for a nice
proof due to L. Schwartz, see [17]).

Definition 5.2 Let D : Pop × P → Ab be a bifunctor and let d be an integer.
Consider the natural transformation %d(D):

%d,X,Y (D) : (Cr2
d+1D)(X;Y, . . . , Y )→ D(X, Y ) .

The bifunctor D is called Sd-acyclic if for each X, Y ∈ P the morphism %d,X,Y

has a section
sX,Y : D(X, Y )→ (Cr2

d+1D)(X;Y, . . . , Y )

which is natural on X ∈ P and on Y ∈ E.

Lemma 5.3 Let D : Pop×P→ Ab be a bifunctor and assume that D is of degree
≤ d with respect to the first variable. If D is Sd-acyclic then: H∗(P, D) = 0.

Proof. By assumption the natural transformation %d is surjective on D. We let C
be the kernel of this transformation. Direct computation checks that if D is Sd-
acyclic then C is Sd-acyclic as well. It follows from Lemma 4.4 that H0(P, D) = 0
and Hi+1(P, D) ∼= Hi(P, C). Now one can use induction to finish the proof. 2

5.3 The homology of the category E
We now turn to Scorichenko’s second theorem.

Theorem 5.4 Let D : Pop × P→ Ab be a bifunctor. If D has finite degree with
respect to the contravariant argument, then the inclusion µ : E ⊂ P yields an
isomorphism in homology

H∗(E, µ∗D) ∼= H∗(P, D) ,

where µ∗D : Eop × E→ Ab is the composite

Eop × E
µ×µ // Pop × P D // Ab .
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We refer to the original paper [19] for the proof of this theorem in full general-
ity. Here we give the proof in the case, when submodules of finitely generated
projective left R-modules are still finitely generated and projective. This holds
for instance when R is the ring Z, and more generally when R is left noetherian
and gl.dim(R) ≤ 1. In the rest of Section 5 we shall assume that R satisfies this
condition. Let µ : E → P be the inclusion. As does any functor between small
categories, it yields a functor

µ∗ : Func(P,Ab)→ Func(E,Ab), T 7→ T ◦ µ,

which has both left and right adjoint functors known as left and right Kan exten-
sions of the functor µ [13]. We shall need only the left Kan extension µ! . The
hypothesis on the ring allows canonical factorisation of linear maps by epimor-
phisms, and thus allows the following description of the left Kan extension of µ.
For a functor T : E→ Ab and a finitely generated projective left R-module P :

µ!T (P ) :=
⊕
W⊂P

T (W )

whereW runs through the submodules of P . The hypothesis on the ring R insures
that any such W is also finitely generated and projective, and T (W ) is thus well-
defined. A typical generator of µ!T (P ) is denoted by (a;W ), where a ∈ T (W ).
If Q is an another finitely generated projective R-module and f : P → Q is
R-linear, one defines µ!(f) : µ!T (P )→ µ!T (Q) by

µ!(f)(a,W ) = (T (f ′)(a), f(W )) ,

where f ′ : W → f(W ) is the restriction of f . We obtain a functor

µ! : Func(E,Ab)→ Func(P,Ab)

which is left adjoint to µ∗. The Kan extension µ! is the functor defined by Suslin
in the case when R is a finite field [9] (it is denoted ã there).

This construction bears some obvious variations. For example we also have
the functor

µ∗ : Func(Pop × E,Ab)→ Func(Eop × E,Ab), µ∗B = B ◦ (µ× IdE)

and the functor

µ! : Func(Pop × E,Ab)→ Func(Pop × P,Ab)

which is given by: (µ!B)(X, Y ) =
⊕

W⊂Y B(X,W ).

Lemma 5.5 For each A and B, the equation

SA,B(X, Y ) = Z[HomP(X,A)× HomE(B, Y )]
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defines an object SA,B of the category Func(Pop × E,Ab). These objects are pro-
jective generators of the category Func(Pop × E,Ab). Furthermore, the following
isomorphisms hold:

Hi(P, µ!SA,B) = 0 = Hi(E, µ∗SA,B), if i > 0,

and
H0(P, µ!SA,B) ∼= Z[HomP(B,A)] ∼= H0(E, µ∗SA,B).

Proof. The statement on projective generators follows from Lemma 3.4. We have
the following bijection

HomP(X,A) ∼=
∐

W⊂A

HomE(X,W ) (‡)

and it is natural on (X,A) ∈ E× P. It follows that

µ!(SA,B)(X, Y ) =
⊕
U⊂Y

Z[HomP(X,A)×HomE(B,U)] ∼= Z[HomP(X,A)×HomP(B, Y )]

Thus µ!(SA,B) is a standard projective generator of Func(Pop×P,Ab) and there-
fore Lemma 3.8 shows that

Hi(P, µ!SA,B) = 0, if i > 0, and H0(P, µ!SA,B) = Z[HomP(B,A)]

Similarly, we have

µ∗(SA,B)(X, Y ) = Z[HomP(X,A)×HomE(B, Y )] ∼=
⊕
W⊂A

Z[HomE(X,W )×HomE(B, Y )]

Thus: µ∗(SA,B) ∼=
⊕

W⊂B PW,B , and it is projective in Func(Eop×E,Ab). Lemma
3.8 still applies to get: Hi(E, µ∗SA,B) = 0, if i > 0 and

H0(E, µ∗SA,B) ∼=
⊕
W⊂B

Z[HomE(W,A)] ∼= Z[HomP(B,A)].

2

Lemma 5.6 Let B : Pop × E→ Ab be a bifunctor. For bifunctors

µ!B : Pop × P→ Ab and µ∗B : Eop × E→ Ab

there is an isomorphism

H∗(E, µ∗B) ∼= H∗(P, µ!B).
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Proof. The sequences of functors

Hn(E, µ∗(−)) : Func(Pop × E,Ab)→ Ab

and
Hn(P, µ∗(−)) : Func(Pop × E,Ab)→ Ab

are exact connected sequences of functors. Lemma 5.5 shows that both of them
are universal. Moreover, in dimension 0, both of them are isomorphic on projec-
tive generators. Since H0 is right exact and commutes with coproducts, it follows
that both exact connected sequences of functors are isomorphic. 2

Lemma 5.7 For any bifunctor D : Pop×P→ Ab the natural map ε : µ!µ
∗D → D

is an epimorphism and Ker(ε) is Sd-acyclic for any d ≥ 0.

Proof. By definition: (µ!µ
∗D)(X, Y ) = ⊕W⊂YD(X,W ). Let (a,W ), a ∈ D(X,W ),

be a typical generator. The co-unit ε sends (a,W ) to iW∗(a), where iW : W → Y
is the inclusion. The first statement is clear by considering the factor for W = Y .
We now prove the Sd-acyclicity of Ker(ε). Let us fix d ≥ 0 and let us consider
the map

sX,Y : µ!µ
∗D(X, Y ) =

⊕
W⊂Y

D(X,W )→ µ!µ
∗D(X, Y d+1) =

⊕
V⊂Y d+1

D(X,V )

defined by:
sX,Y (a,W ) = (−j∗a,W ⊕ Y d) + (a,W ) .

Here j : W → W ⊕ Y d is given by j(w) = (w, 0), while W ⊕ Y d and W are
considered as submodules of Y d+1 by embedding W in the first factor. Thus
sX,Y is natural on Pop × E, and the image of s lies in the subfunctor Cr2

d+1D.
Furthermore % ◦ s(a,W ) = −(iW∗(a), Y ) + (a,W ). Therefore the restriction of
% ◦ s on Ker(ε) is the identity. 2

Proof of Theorem 5.4. Let deg1D = d. Since Ker(ε) is Sd-acyclic we have
H∗(P,Ker(ε)) = 0 thanks to Lemma 5.3. It follows from the exact sequence
0→ Ker(ε)→ µ!µ

∗D → D → 0 that: H∗(P, D) ∼= H∗(P, µ!µ
∗D). We use Lemma

5.6 to finish the proof. 2

6 General Linear homology with twisted coeffi-

cients

Let us recall from Section 2 the spectral sequence (∗) for a ring R:

E2
pq = Hp(GL(R), Kst

q (R,D)) =⇒ Hp+q(GL(R), D∞) .
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In this section we show that the spectral sequence (∗) degenerates at E2, provided
that the bifunctor D takes vector space values and has finite degree with respect
to the second argument. It is clear that the spectral sequence (∗) is a functor of
D.

We begin by showing that it is a ∂-spectral sequence. To define the maps ∂,
we first extend the definition of stable K-theory to chain complexes of bifunctors.
Since stable K-theory is defined by homology with twisted coefficients, it suffices
to consider this case. Let Λ be a ring, let C∗ be a complex of Λ-modules and
let M be a Λ-module, and consider the twisted homology H∗(C∗ ⊗Λ M). One
can replace M by a complex of modules and take the homology of the resulting
total complex. When the complex C∗ is free, the resulting homology sends weak
equivalences to isomorphisms. This situation occurs for the twisted homology of
spaces, hence for stable K-theory. With such a definition, the spectral sequence
(∗) is now natural in respect of morphisms of chain complexes of bifunctors.

Let 0 → A → B → C → 0 be a short exact sequence of bifunctors. It gives
rise to a morphism from the complex

· · · → 0→ 0→ C

to the complex
· · · → 0→ B → C .

The latter is weakly equivalent to the complex · · · → 0 → A → 0. The induced
map on spectral sequences is the expected one.

We now prove that the spectral sequence (∗) satisfies the conditions of 3.2.
Let Funcd be the category of bifunctors D : Pop × P→ Ab such that deg2D ≤ d.
Let

0→ A→ P → C → 0

be a short exact sequence in Funcd such that P is a projective in Funcd. It follows
from Theorem 5.1 that the connecting homomorphism Kst

q (R,C)→ Kst
q−1(R,A)

is an isomorphism for q ≥ 1 and is a monomorphism for q = 1. This applies also
when considering only those functors taking values in vector spaces over a field.
When A takes vector space values, the monomorphism Kst

1 (R,C) → Kst
0 (R,A)

splits. The same is true for the homomorphism E2
pq(C) → E2

p,q−1(A), because
GL(R) acts trivially. We have proved:

Theorem 6.1 Let D be a vector space values bifunctor which has finite degree
with respect to the second argument. The spectral sequence (∗)

E2
pq = Hp(GL(R), Kst

q (R,D)) =⇒ Hp+q(GL(R), D∞)

stops at the E2-term.
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Remark 6.2 If the ring R is such that

Kst
∗ (R,−) : Func(Pop × P,Ab)→ Ab

is a universal connected sequence of functors, then Theorem 6.1 is true for
any bifunctor D : Pop × P → Ab. This follows again from Lemma 3.2. In-
deed, take A = Func(Pop × P,Ab), and for a given C ∈ Func(Pop × P,Ab)
take a standard projective B as in [4, Lemma 2.1]. Then the connecting ho-
momorphism Kst

q (R,C) → Kst
q−1(R,A) is an isomorphism for q ≥ 1 and it is

a monomorphism for q = 1. Because Kst
0 (R,B) is a free abelian group, the

monomorphism Kst
1 (R,C) → Kst

0 (R,A) splits. The above argument then ap-
plies. Indeed not only does the spectral sequence (∗) stop at E2, but no exten-
sion problem appears: there is a non-natural isomorphism Hn(GL(R), D∞) ∼=⊕

p+q=n Hp(GL(R), Kq(R,D)) [4].

Remark 6.3 According to [4]

Kst
∗ (R,−) : Func(Pop × P,Ab)→ Ab

is a universal connected sequence of functors provided that the ring R is semi-
simple. It was claimed in [4] that it is still the case for any commutative integral
domain of finite Krull dimension, but the proof given there is not correct. How-
ever, because Lemma 1.6 of [4] is true under the condition that R is a principal
ideal domain, the statement holds for such rings.

Example 6.4 Take R = Z, and D(X,Y ) = Hom(X, Y ⊗ Z/2Z). By [7, para-
graphe 9.2], Hi(P(Z), D) is Z/2Z when i ≡ 0, 3 (mod 4) and 0 else. Scorichenko’s
theorem says it is the answer for Kst

∗ (Z, D) as well. Recently [1] the Hopf algebra
H∗(GL(Z),Z/2Z) was computed; its Poincaré series is given by:

∏
n≥1

1−t2n+1

1−tn
.

Theorem 6.1 implies that the Poincaré series of H∗(GL(Z), gl(Z/2Z)) is:

1 + t3

1− t4
∏
n≥1

1− t2n+1

1− tn
.
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