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Abstract

We introduce the notion of crossed module for Lie–Rinehart algebras and prove that th
classified by the third cohomology of Lie–Rinehart algebras developed in [J. Huebschmann, J
Angew. Math. 408 (1990) 57–113; G.S. Rinehart, Trans. Amer. Math. Soc. 108 (1963) 195–2
 2004 Elsevier Inc. All rights reserved.

Keywords:Lie–Rinehart algebra; Crossed modules; Cohomology

1. Introduction

Lie–Rinehart algebras play an important role in many branches of mathematics, s
and references given there. In this paper we introduce the notion of crossed mod
Lie–Rinehart algebras, which generalizes the similar notion for Lie algebras introduc
Kassel and Loday [4].

Our main interest is to relate the crossed modules with cohomology of Lie–Rin
algebras. Our main result claims that the third dimensional cohomology of Lie–Rin
algebras classifies crossed modules of Lie–Rinehart algebras. This result is in th
spirit as the classical result for group cohomology due to Loday and others.
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2. Preliminaries on Lie–Rinehart algebras

2.1. Motivations, definitions and examples

We start by recalling the definition of Lie–Rinehart algebras. LetK be a field and A be
a commutative algebra overK. We let Der(A) be the set of allK-derivations of A. Thus
elements of Der(A) areK-linear mapsD : A → A such thatD(ab) = aD(b) + D(a)b

holds. It is well-known that Der(A) is a LieK-algebra under the bracket

[
D,D′] = DD′ − D′D.

Fora ∈ A andD ∈ Der(A) one hasaD ∈ Der(A), hereaD is defined by(aD)(b) = aD(b),
b ∈ A. Thus Der(A) is also an A-module. It is well-known and it is easy to check that
following holds

[
D,aD′] = a

[
D,D′] + D(a)D′, D,D′ ∈ Der(A).

In particular, Der(A) is not a Lie A-algebra. The above formula leads to the follow
definition, which goes back to Herz under the name “pseudo-algèbre de Lie” (see [1

Following Huebschmann [3], aLie–Rinehart algebraover A consists of a LieK-algebra
L together with an A-module structure onL and a map

α :L → Der(A)

which is simultaneously a Lie algebra and an A-module homomorphism such that

[X,aY ] = a[X,Y ] + X(a)Y (1)

holds. HereX,Y ∈ L, a ∈ A and we writeX(a) for α(X)(a).
It is clear that the Lie–Rinehart algebras withα = 0 are exactly the Lie A-algebra

On the other hand, any commutativeK-algebra A defines a Lie–Rinehart algebra w
L= Der(A).

If g is a K-Lie algebra acting on a commutativeK-algebra A by means ofγ :g →
Der(A), then the transformation Lie–Rinehart algebra of (g, A) is L = A ⊗ g with Lie
bracket

[
a ⊗ g,a′ ⊗ g′] = aa′ ⊗ [

g,g′] + aγ (g)
(
a′) ⊗ g′ − aγ

(
g′)(a) ⊗ g

and actionα :L → Der(A), α(a ⊗ g)(a′) = aγ (g)(a′). This is the infinitesimal analogu
of the transformation groupoid associated to an action of a group on a space.

If L is a Lie–Rinehart algebra over A, thenL� A with Lie bracket[(X,a), (X′, a′)] =
([X,X′],X(a′) − X′(a)) and actionα̃ :L � A → Der(A), α̃(X,a) = α(X), is a Lie–
Rinehart algebra.

Let R be the real numbers, A= C∞(M) the algebra of smooth functions on
manifold M andL a Lie–Rinehart algebra over A which is finitely generated projec
A-module. Then it follows from Swan’s theorem thatL = C∞(E) is the space of smoot
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sections of a vector bundle over M. The bundle mapα :E → T M inducesα :C∞(E) →
DerR(C∞(M)) = C∞(T M). So we recover Lie algebroids as a particular example of L
Rinehart algebras.

If L andL′ are Lie–Rinehart algebras, then aLie–Rinehart homomorphismf :L→ L′
is a map, which is simultaneously a LieK-algebra homomorphism and a homomorph
of A-modules. Furthermore one requires that the diagram

L

f

α

Der(A)

L′
α′

commutes. We denote byLR(A) the category of Lie–Rinehart algebras. As we said
has the full inclusion

L(A) ⊂ LR(A)

whereL(A) denotes the category of Lie A-algebras. Let us observe that the kernel o
Lie–Rinehart algebra homomorphism is a Lie A-algebra.

2.2. Actions and semi-direct product

LetL ∈LR(A) and letR be a Lie A-algebra. We will say thatL acts onR if a K-linear
map

L⊗ R → R, (X, r) �→ [X,r], X ∈L, r ∈ R,

is given such that the following identities hold

(1) [[X,Y ], r] = [X, [Y, r]] − [Y, [X,r]],
(2) [X, [r1, r2]] = [[X,r1], r2] − [[X,r2], r1],
(3) [aX, r] = a[X,r],
(4) [X,ar] = a[X,r] + X(a)r.

Let us observe that (1) and (2) mean thatL acts onR in the category of LieK-algebras.
If R is an abelian Lie A-algebra andL ∈ LR(A) acts onR then we callR as aLie–

Rinehart module overL. Let (L,A)-mod be the category of Lie–Rinehart modules overL.
Let us consider a Lie–Rinehart algebraL and a Lie A-algebraR on whichL acts. Since

L acts onR in the category of LieK-algebras as well, we can form the semi-direct prod
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L� R in the category of LieK-algebras, which isL⊕ R as a vector space, equipped w
the following bracket

[
(X, r),

(
X′, r ′)] := ([

X,X′], [r, r ′] + [
X,r ′] − [

X′, r
])

.

We claim thatL� R has also a natural Lie–Rinehart algebra structure. Firstly,L� R as an
A-module is the direct sum of A-modulesL andR. Hencea(X, r) = (aX,ar). Secondly
the map

α̃ :L� R → Der(A)

is given byα̃(X, r) := α(X). In this way we really get a Lie–Rinehart algebra. Indeed
is clear that̃α is simultaneously an A-module and Lie algebra homomorphism and
obtained (1)

[
(X, r), a

(
X′, r ′)] = [

(X, r),
(
aX′, ar ′)] = ([

X,aX′], [r, ar ′] + [
X,ar ′] − [

aX′, r
])

= (
a
[
X,X′] + X(a)X′, a

[
r, r ′] + a

[
X,r ′] + X(a)r ′ − a

[
X′, r

])
= a

([
X,X′], [r, r ′] + [

X,r ′] − [
X′, r

]) + (
X(a)X′,X(a)r ′)

= a
[
(X, r),

(
X′, r ′)] + X(a)

(
X′, r ′).

ThusL� R is indeed a Lie–Rinehart algebra.
We now give a construction of “differential operators” on a Lie A-algebra wh

generalizes the construction given in (2.11) of [3].
LetR be a Lie A-algebra and letL be a Lie–Rinehart algebra over A. LetDO(A,L,R)

be the vector space of pairs(d,X), whered :R→R is aK-derivation of a LieK-algebra
R andX ∈ L, such that

d(ar) = ad(r) + X(a)r

holds, for a ∈ A, r ∈ R. Then the componentwise operations makeDO(A,L,R) an
A-module and a LieK-algebra. Furthermore the composite

DO(A,L,R)
pr→L α→ Der(A)

can be used to get a Lie–Rinehart algebra structure onDO(A,L,R). The case of abelia
Lie algebrasR was considered in [3].

It is clear that one has an exact sequence of Lie–Rinehart algebras

0 → DerA(R) →DO(A,L,R)
p→L

where DerA(R) is the Lie A-algebra of all A-derivations of the Lie A-algebraR and
p(d,X) = X.
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One observes that actions ofL on R is in 1–1 correspondence with Lie–Rineh
algebras homomorphismsf :L→ DO(A,L,R) for which the diagram

DO(A,L,R)
p

L

L

f

commutes. Indeed, having suchf , for anyX ∈L one hasf (X) = (dX,X). Now

[X,r] := dX(r), X ∈L, r ∈ R

defines an action ofL onR and any action ofL onR comes in this way.

2.3. Cohomology of Lie–Rinehart algebras

Let us recall also the definition of the cohomologyH�(L,M) of a Lie–Rinehart algebr
L with coefficients in a Lie–Rinehart module M (see [3] and [6]). One puts

Cn(L,M) := HomA
(
Λn

AL,M
)

whereΛ∗
A(V ) denotes the exterior algebra over A generated by an A-moduleV . The

coboundary map

δ :Cn−1(L,M) → Cn(L,M)

is given by

(δf )(X1, . . . ,Xn) = (−1)n
n∑

i=1

(−1)(i−1)Xi

(
f

(
X1, . . . , X̂i, . . . ,Xn

))

+ (−1)n
∑
j<k

(−1)j+kf
([Xi,Xj ],X1, . . . , X̂i , . . . , X̂j , . . . ,Xn

)
.

HereX1, . . . ,Xn ∈L, f ∈ Cn−1(L,M). By the definitionH�(L,M) is the cohomology o
the cochain complexC�(L,M).

The cohomologyH 2(L,M), whenL is A-projective, classifies abelian extensions oL
by M thanks to Theorem 2.6 in [3].

3. Crossed modules of Lie–Rinehart algebras

Definition 1. A crossed module∂ :R → L of Lie–Rinehart algebras overA consists of a
Lie–Rinehart algebraL and a Lie A-algebraR together with the action ofL onR and the
Lie K-algebra homomorphism∂ such that the following identities hold:
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(1) ∂([X,r]) = [X,∂(r)],
(2) [∂(r ′), r] = [r ′, r],
(3) ∂(ar) = a∂(r),
(4) ∂(r)(a) = 0

for all r ∈ R, X ∈ L, a ∈ A.

The first two conditions say that∂ :R → L is a crossed module of LieK-algebras (see
[4]), the condition (3) says that∂ is a map of A-modules and the condition (4) says that
composition of the following maps is zero

R ∂→L α→ Der(A).

Example 2.(i) For any Lie–Rinehart morphismf :L→ L′, the diagram

kerf ↪→ L

is clearly a crossed module of Lie–Rinehart algebras.
(ii) Let L be a Lie–Rinehart algebra overA. A Lie–Rinehart subalgebraN of L consists

of aK-Lie subalgebraN which is an A-module andN acts on A via the composition

N ↪→ L α→ Der(A).

It is said that a Lie–Rinehart subalgebraN of L is an ideal ifN is an ideal ofL as
K-Lie algebra and the composition

N ↪→ L α→ Der(A)

is trivial. Then the inclusion mapi :N → L is a crossed module where the action ofL on
N is given by the Lie bracket.

(iii) Let R be a(L,A)-module. Then the morphism 0 :R→ L is a crossed module.
(iv) Let L be a Lie–Rinehart algebra. The centre ofL is the ideal

Z(L) = {
X ∈L/[X,Y ] = 0, ∀Y ∈ L andX(a) = 0, ∀a ∈ A

}
.

It is clear thatL is an abelian Lie–Rinehart algebra if and only ifZ(L) = L.
Let ∂ :R → L be a central epimorphism (i.e., ker∂ ⊆ Z(R)) from a Lie A-algebraR

to a Lie–Rinehart algebraL. Then∂ :R→ L is a crossed module where the action fromL
to R is given by[X,r] = [r ′, r] such that∂(r ′) = X.

(v) If L is a Lie–Rinehart algebra over A, then∂ : kerα → DO(A,L,kerα), ∂(X) =
(adX,0), is a crossed module, where the action ofDO(A,L,kerα) on kerα is
[(d,X), r] = d(r).

If ∂ :R → L is a crossed module of Lie–Rinehart algebras over A, then im∂ is
simultaneously a LieK-ideal ofL and an A-submodule, therefore coker∂ has a natura



198 J.M. Casas et al. / Journal of Algebra 274 (2004) 192–201

nical
nd

the

y the
ebra
same

s an
lex

f

structure of Lie–Rinehart algebra. Furthermore ker∂ is an abelian A-ideal ofR and the
action ofL onR yields the Lie–Rinehart module structure of coker∂ on ker∂ .

Let P be a Lie–Rinehart algebra and let M be a Lie–Rinehart module overP . We
consider the categoryCross(P,M), whose objects are the exact sequences

0 → M →R ∂→L υ→P → 0

where∂ :R → L is a crossed module of Lie–Rinehart algebras over A and the cano
maps coker∂ → P and M → ker∂ are isomorphisms of Lie–Rinehart algebras a
modules respectively. One requires also that the homomorphismsL → P andR → im ∂

have A-linear sections.
The morphisms in the categoryCross(P,M) are commutative diagrams

0 M R
∂

α

L
β

P 0

0 M R′ ∂ ′
L′ P ′ 0

whereβ is an A-split homomorphism of Lie–Rinehart algebras,α is an A-split morphism
of Lie A-algebras and for anyr ∈R, X ∈ L one has

α
([X,r]) = [

β(X),α(r)
]
.

Now we are in the position to formulate our main result:

Theorem 3. For any Lie–Rinehart algebraP which is projective as anA-module and
any Lie–Rinehart moduleM there exists a natural bijection between the classes of
connected components of the categoryCross(P,M) andH 3(P,M).

The result is quite similar to the classical result for the group cohomology proved b
several people including Loday [5] and Huebschmann [2]. Similar result for Lie alg
cohomology was proved by Kassel and Loday [4]. The proof of Theorem 3 is in the
line as the one given in [4]. First we need the relative version of Theorem 3.

Let υ :L → P be a surjective homomorphism of Lie–Rinehart algebras which ha
A-linear section. For any Lie–RinehartP-module M one can define the cochain comp
C∗(P,L,M) via the exact sequence

0 → C∗(P,M)
υ∗→ C∗(L,M)

κ∗→ C∗(P,L,M) → 0.

The cohomology of the chain complexC∗(P,L,M) is denoted byH ∗+1(P,L,M).
One denotes byCross(P,L,M) the subcategory ofCross(P,M) whose objects are o

the form

0 → M →R ∂→L υ→P → 0
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with fixedυ. The morphisms inCross(P,L,M) have the following form

0 M R
∂

α

L
υ

P 0

0 M R′ ∂ ′
L

υ
P 0

Let us observe thatCross(P,L,M) is a groupoid, that is all morphisms inCross(P,L,M)

are isomorphisms.

Theorem 4. For any surjective Lie–Rinehart algebra homomorphismυ :L → P , which
has anA-linear section there exists a naturalbijection between the set of connec
components ofCross(P,L,M) andH 3(P,L,M).

The fact that Theorem 4 implies Theorem 3 is quite formal and uses only the fact th
Hn(P,−) vanishes on injective Lie–Rinehart modules forn � 1, which was proved by
Rinehart [6]. Thus we have only to prove Theorem 4.

Observe that for A= K, Theorems 3 and 4 give Theorems A.3 and A.2, respecti
in [4].

Proof of Theorem 4. Let ∂ :R → L be a crossed module for Lie–Rinehart algebras.
setN = im ∂ = kerυ. By our assumption we can choose A-linear sectionss :P → L and
σ :N → R. Thusυs = 1P and∂σ = 1N . One definesg :P ⊗ P → R by g(X ⊗ Y ) =
σ([sX, sY ] − s[X,Y ]). We claim thatg(aX,Y ) = ag(X,Y ) = g(X,aY ). Indeed, one
easily checks that

g(aX,Y ) − ag(X,Y ) = −σ
(
(sY )(a)sX − s

(
Y (a)X

))
.

Sinceυ is a morphism of Lie–Rinehart algebras one hasZa = (υZ)(a) for anya ∈ A and
Z ∈ L. Thuss(Y )(a) = Y (a) and the claim is proved. Next one definesf :L⊗L →R by

f
(
Z,Z′) = g

(
υZ,υZ′) − [

Z′,ψ(Z)
] + [

Z,ψ
(
Z′)] − [

ψ(Z),ψ
(
Z′)] + ψ

([
Z,Z′])

whereψ :L→R is an A-linear map given by

ψ(Z) := σ
(
Z − sυ(Z)

)
.

Thanks to [4]f has values in M.
Our second claim is that

f
(
aZ,Z′) = af

(
Z,Z′) = f

(
Z,aZ′)

for all Z,Z′ ∈ L, a ∈ A. Indeed, sinceυ,ψ are A-linear andg(υZ,υZ′), [ψ(Z),ψ(Z′)]
are bilinear onZ andZ′ we have
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(
aZ,Z′) − af

(
Z,Z′) = −[

Z′, aψ(Z)
] + [

aZ,ψ
(
Z′)]

= −ψ
([

aZ,Z′]) + a
[
Z′,ψ(Z)

] − a
[
Z,ψ

(
Z′)] + aψ

([
Z,Z′])

= −Z′(a)ψ(Z) − ψ
(
Z′(a)Z

) = 0.

Similarly f (Z,aZ′) = af (Z,Z′). Hencef ∈ C2(L,M) and the computation in [4] show
that the imageκ∗f in C2(P,L,M) is a cocycle whose class inH 3(P,L,M) does not
depend on the choice ofs andσ . Thus one obtains the map

π0
(
Cross(P,L,M)

) → H 3(P,L,M).

To finish the proof of the theorem we have to define the map in the opposite directio

H 3(P,L,M) → π0
(
Cross(P,L,M)

)
.

Still according to [4], if we have a cocycle inC2(P,L,M) it can lift to a cochain
f ∈ C2(L,M). The fact thatκ∗f is a cocycle inC2(P,L,M) means that∂f = υ∗κ , for
someκ ∈ C3(P,M). LetR =N ⊕ M as A-modules. One puts

[
(X,m),

(
X′,m′)] = ([

X,X′], f (
X,X′))

for all X,X′ ∈N . ThenR is a Lie A-algebra, because the restriction off onN ×N is a
cocycle, thanks to equation∂f = υ∗κ . Moreover, by [4] the formula

[
Y, (X,m)

] = ([υY,m] + f (X,Y ), [Y,X]),
∂(X,m) = X ∈ N ,m ∈ M, Y ∈ L defines the crossed module∂ :R →L in the category of
Lie K-algebras. By definition∂ is an A-linear map and since im∂ = kerυ it follows that
∂ :R→ L is also a crossed module inLR(A). �
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