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Abstract

We introduce the notion of crossed module for Lie—Rinehart algebras and prove that they are
classified by the third cohomology of Lie—Rinehart algebras developed in [J. Huebschmann, J. Reine
Angew. Math. 408 (1990) 57-113; G.S. Rinehart, Trans. Amer. Math. Soc. 108 (1963) 195-222].
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1. Introduction

Lie—Rinehart algebras play an important role in many branches of mathematics, see [3]
and references given there. In this paper we introduce the notion of crossed module for
Lie—Rinehart algebras, which generalizes the similar notion for Lie algebras introduced by
Kassel and Loday [4].

Our main interest is to relate the crossed modules with cohomology of Lie—Rinehart
algebras. Our main result claims that the third dimensional cohomology of Lie—Rinehart
algebras classifies crossed modules of Lie—Rinehart algebras. This result is in the same
spirit as the classical result for group cohomology due to Loday and others.
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2. Preliminaries on Lie—Rinehart algebras
2.1. Motivations, definitions and examples

We start by recalling the definition of Lie—Rinehart algebras.K die a field and A be
a commutative algebra ovéf. We let De(A) be the set of alKk -derivations of A. Thus
elements of DdA) are K-linear mapsD : A — A such thatD(ab) = aD(b) + D(a)b
holds. It is well-known that D&A) is a Lie K-algebra under the bracket

[D.D'|=DD'—D'D.

Fora €e AandD € Der(A) one hasi D € Der(A), herea D is defined bya D) (b) = a D(b),
b € A. Thus DerA) is also an A-module. It is well-known and it is easy to check that the
following holds

[D.aD'|=a[D,D'|+ D@)D’, D,D'DerA).

In particular, De¢A) is not a Lie A-algebra. The above formula leads to the following
definition, which goes back to Herz under the name “pseudo-algebre de Lie” (see [1]).
Following Huebschmann [3],lae—Rinehart algebraver A consists of a Li& -algebra

L together with an A-module structure dghand a map

oL — Der(A)
which is simultaneously a Lie algebra and an A-module homomorphism such that
[X,aY]=a[X,Y]+ X(a)Y (1)

holds. HereX, Y € £, a € A and we writeX (a) for a(X)(a).

It is clear that the Lie—Rinehart algebras with= 0 are exactly the Lie A-algebras.
On the other hand, any commutatike-algebra A defines a Lie—Rinehart algebra with
L =Der(A).

If g is a K-Lie algebra acting on a commutative-algebra A by means of :g —
Der(A), then the transformation Lie—Rinehart algebra @f4) is £ = A ® g with Lie
bracket

[a®g.d ®g|=ad ®[g,¢] +ay(@)(d)®g —ay(¢g)@ g

and actionx: £ — Der(A), a(a ® g)(a’) = ay(g)(a’). This is the infinitesimal analogue
of the transformation groupoid associated to an action of a group on a space.

If £ is a Lie—Rinehart algebra over A, thénx A with Lie bracket[(X, a), (X', a’)] =
([X,X'],X(@@) — X'(a)) and actiona:L x A — Der(A), a(X,a) = a(X), is a Lie—
Rinehart algebra.

Let R be the real numbers, A C*°(M) the algebra of smooth functions on a
manifold M and£ a Lie—Rinehart algebra over A which is finitely generated projective
A-module. Then it follows from Swan’s theorem that= C*°(E) is the space of smooth
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sections of a vector bundle over M. The bundle reaiE — TM inducesa : C*°(E) —
Derg (C*°(M)) = C*(TM). So we recover Lie algebroids as a particular example of Lie—
Rinehart algebras.

If £and/£’ are Lie—Rinehart algebras, thehi@—Rinehart homomorphisih: £ — £’
is a map, which is simultaneously a Lie-algebra homomorphism and a homomorphism
of A-modules. Furthermore one requires that the diagram

commutes. We denote hyR(A) the category of Lie—Rinehart algebras. As we said one
has the full inclusion

LA)CLRA)

whereL(A) denotes the category of Lie A-algebras. Let us observe that the kernel of any
Lie—Rinehart algebra homomorphism is a Lie A-algebra.

2.2. Actions and semi-direct product

Let £ € LR(A) and letR be a Lie A-algebra. We will say tha@ acts onR if a K -linear
map

LOR—R, X,r)—|[X,r], XeLl, reR,

is given such that the following identities hold

Q) [[X, Y] rl=[X,[Y,r]] =Y, [X,r]],
(2) [X, [r1, r2ll=[[X, 1], r2] = [[X, r2], r1],
Q) [aX,rl=alX,r],

4) [X,ar]l=alX,r]+ X(a)r.

Let us observe that (1) and (2) mean tBacts onR in the category of Liek -algebras.
If R is an abelian Lie A-algebra anfle LR(A) acts onR then we callR as alLie—
Rinehart module ovef. Let (£, A)-mod be the category of Lie—Rinehart modules oxder
Let us consider a Lie—Rinehart algelff&and a Lie A-algebr& on whichL acts. Since
L acts onR in the category of Li&k -algebras as well, we can form the semi-direct product
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L % R in the category of Liek -algebras, which i€ & R as a vector space, equipped with
the following bracket

(X, r), (X )] = (X, X]. [r.r] + [X. "] = [X. r]).

We claim thatC x R has also a natural Lie—Rinehart algebra structure. FirStly,R as an
A-module is the direct sum of A-modulesandR. Hencea (X, r) = (aX, ar). Secondly
the map

a:L xR — Der(A)

is given bya (X, r) := a(X). In this way we really get a Lie—Rinehart algebra. Indeed, it
is clear thatr is simultaneously an A-module and Lie algebra homomorphism and it is
obtained (1)

[(X,r),a(X’, r’)]

[(X,r), (aX' ar')] = ([X.aX'].[r.ar'] + [X.ar'] = [aX',r])
(a[X, X/] +X@X, a[r, r/] + a[X, r’] + X(a)r' — a[X’, r])
a([ X, X'], [r.r]+[X. /] = [X'.r]) + (X @)X, X (@)r)
al[(X,r), (X'.r) ]+ X(@(X'.r).

ThusL x R is indeed a Lie—Rinehart algebra.
We now give a construction of “differential operators” on a Lie A-algebra which
generalizes the construction given in (2.11) of [3].
LetR be aLie A-algebraand let be a Lie—Rinehart algebra over A. LBO (A, L, R)
be the vector space of pait@, X), whered : R — R is aK -derivation of a LieK -algebra
R andX € L, such that

d(ar)=ad(r)+ X(a)r

holds, fora € A, r € R. Then the componentwise operations mdk@ (A, L, R) an
A-module and a Li&K -algebra. Furthermore the composite

DO, L,R) 5 £ 5 DerA)
can be used to get a Lie—Rinehart algebra structurP 6rA, £, R). The case of abelian

Lie algebrask was considered in [3].
Itis clear that one has an exact sequence of Lie—Rinehart algebras

0— Dery(R) — DO, L,R) 2 L

where Deji(R) is the Lie A-algebra of all A-derivations of the Lie A-algebf and
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One observes that actions df on R is in 1-1 correspondence with Lie—Rinehart
algebras homomorphisnfs: £ — DO (A, L, R) for which the diagram

DOM.L.R) — = r
fT /
C

commutes. Indeed, having sughfor any X € £ one hasf (X) = (dx, X). Now
[X,r]:=dx(r), XeLl, reR

defines an action of on'R and any action of on’R comes in this way.

2.3. Cohomology of Lie—Rinehart algebras

Let us recall also the definition of the cohomolddy (L, M) of a Lie—Rinehart algebra
L with coefficients in a Lie—Rinehart module M (see [3] and [6]). One puts

C"(L, M) := Homa (A4 £, M)

where A% (V) denotes the exterior algebra over A generated by an A-modul&éhe
coboundary map

§:C" L, M) > (L, M)

is given by

GHXL .. X)) = (D" Y (DX (f (X1 ... Xi o X))
i=1

+ (DY DI (X XL X K X X)),
j<k

HereXs,..., X, € £, f € C"~1(£, M). By the definitionH* (£, M) is the cohomology of
the cochain compleg™ (£, M).

The cohomology2(£, M), whenZ is A-projective, classifies abelian extensiongof
by M thanks to Theorem 2.6 in [3].

3. Crossed modules of Lie—Rinehart algebras
Definition 1. A crossed modulé: R — L of Lie—Rinehart algebras ovek consists of a

Lie—Rinehart algebr& and a Lie A-algebr& together with the action of on'R and the
Lie K-algebra homomorphisihsuch that the following identities hold:
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(1) a(X,rD) =[X,9()],
(2) 0", r1=1r",rl,
(3) daar) =ad(r),

(4) 9(r)(@)=0

forallre R, X eL,acA.

The first two conditions say that R — L is a crossed module of Li& -algebras (see
[4]), the condition (3) says thatis a map of A-modules and the condition (4) says that the
composition of the following maps is zero

R 2% DerA).
Example 2.(i) For any Lie—Rinehart morphisri: £ — £’, the diagram
kerf — L

is clearly a crossed module of Lie—Rinehart algebras.
(i) Let £ be a Lie—Rinehart algebra ov&r A Lie—Rinehart subalgebt&” of £ consists
of a K -Lie subalgebraV” which is an A-module and/” acts on A via the composition

N < £ 5 DerA).

It is said that a Lie—Rinehart subalgebkaof £ is an ideal if A/ is an ideal of£ as
K-Lie algebra and the composition

N < £ 5 DerA)

is trivial. Then the inclusion majp: N — L is a crossed module where the actionfofn
N is given by the Lie bracket.
(iiif) Let R be a(L, A)-module. Then the morphism ® — L is a crossed module.
(iv) Let £ be a Lie—Rinehart algebra. The centrefois the ideal

Z(L)={X e L/[X,Y]=0, VY € LandX (a) =0, Va € A}.

Itis clear thatl is an abelian Lie—Rinehart algebra if and onlZifL) = L.

Let 3:R — L be a central epimorphism (i.e., ke Z(R)) from a Lie A-algebrak
to a Lie—Rinehart algebrd. Thend: R — L is a crossed module where the action frém
to R is given by[X, r] =[r/, r] such thab (+') = X.

(v) If £ is a Lie—Rinehart algebra over A, thénkera — DO(A, L, kera), 3(X) =
(adx,0), is a crossed module, where the action DO (A, L, kera) on kera is
[d, X),r]=d(r).

If 3:R — L is a crossed module of Lie—Rinehart algebras over A, thea im
simultaneously a Li&k -ideal of £ and an A-submodule, therefore cokenas a natural
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structure of Lie—Rinehart algebra. Furthermoredkés an abelian A-ideal ofR and the
action of £ on R yields the Lie—Rinehart module structure of cokem kera.

Let P be a Lie-Rinehart algebra and let M be a Lie—Rinehart module Bvaie
consider the catego@ross(P, M), whose objects are the exact sequences

0—>M—>R—8>£—U>77—>O

whered : R — L is a crossed module of Lie—Rinehart algebras over A and the canonical
maps coked — P and M — kerd are isomorphisms of Lie—Rinehart algebras and
modules respectively. One requires also that the homomorphismsP andR — imad
have A-linear sections.

The morphisms in the categoGrosy(P, M) are commutative diagrams

0 M R ’ L P 0
a/
0 M R/ r P’ 0

whereg is an A-split homomorphism of Lie—Rinehart algebrass an A-split morphism
of Lie A-algebras and for anye R, X € £ one has

a([X,r]) =[BX), a(n)].
Now we are in the position to formulate our main result:

Theorem 3. For any Lie—Rinehart algebrg& which is projective as am-module and
any Lie—Rinehart modul® there exists a natural bijection between the classes of the
connected components of the categBrgssP, M) and H3(P,M).

The resultis quite similar to the classical result for the group cohomology proved by the
several people including Loday [5] and Huebschmann [2]. Similar result for Lie algebra
cohomology was proved by Kassel and Loday [4]. The proof of Theorem 3 is in the same
line as the one given in [4]. First we need the relative version of Theorem 3.

Let v: L — P be a surjective homomorphism of Lie—Rinehart algebras which has an
A-linear section. For any Lie—RinehaP-module M one can define the cochain complex
C*(P, L, M) via the exact sequence

0— C*P,M) %5 C*(L, M) S C*(P, £, M) — 0.
The cohomology of the chain compl€X (P, £, M) is denoted by *+1(P, £, M).

One denotes bZrosgP, L, M) the subcategory aErosgP, M) whose objects are of
the form

0>M>RA3LEPS0
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with fixed v. The morphisms ilCrosg(P, £, M) have the following form

a v

0 M R L P 0
e
0 M R L P 0

Let us observe th&rosgP, L, M) is a groupoid, that is all morphisms@rosg(P, £, M)
are isomorphisms.

Theorem 4. For any surjective Lie—Rinehart algebra homomorphigmC — P, which
has anA-linear section there exists a naturaijection between the set of connected
components aEross(P, £, M) and H3(P, £, M).

The fact that Theorem 4 implies Theorems3quite formal and uses only the fact that
H" (P, —) vanishes on injective Lie—Rinehart modules fop 1, which was proved by
Rinehart [6]. Thus we have only to prove Theorem 4.

Observe that for A= K, Theorems 3 and 4 give Theorems A.3 and A.2, respectively,
in [4].

Proof of Theorem 4. Let 9: R — L be a crossed module for Lie—Rinehart algebras. We
setA =ima = kerv. By our assumption we can choose A-linear sectior® — £ and
o0:N — R. Thusus = 1p anddo = 1y. One defineg: PP > R by g(X ®Y) =
o([sX,sY] — s[X,Y]). We claim thatg(aX,Y) = ag(X,Y) = g(X,aY). Indeed, one
easily checks that

gaX,Y)—ag(X,Y)=—o((sY)(@)sX —s(Y(@)X)).

Sincev is a morphism of Lie—Rinehart algebras one Bas= (vZ)(a) for anya € A and
Z € L. Thuss(Y)(a) = Y (a) and the claim is proved. Next one defingsL ® L — R by

1(2.7) = 8wz v2) ~ 2.y @]+ [2.9(2)] - v @9 (2)] + ¥ (2. 7))
wherey : £ — R is an A-linear map given by
V(Z):=0(Z —sv(2)).

Thanks to [4]f has values in M.
Our second claim is that

faz,.2))=af(2,2')=f(Z,aZ')

forall Z, Z' € £, a € A. Indeed, sincey, ¥ are A-linear an(vZ,vZ'), [¥(Z), v (Z)]
are bilinear onZ andZ’ we have



200 J.M. Casas et al. / Journal of Algebra 274 (2004) 192-201

faz,2')—af(2,2")=-[Z",ay(D)]+[aZ,v(Z')]
=—y([az,.Z'))+a[Z . v (D)) —alZ,v(Z)] +av([Z, Z'))
=—-Z'"(a)y(Z) -y (Z'(a)Z) =0.

Similarly f(Z,aZ'y=af(Z,Z'). Hencef € C%(£, M) and the computation in [4] shows

that the imagec* f in C2(P, £, M) is a cocycle whose class iH3(P, £, M) does not
depend on the choice efando . Thus one obtains the map

mo(Cross(P, £,M)) — H3(P, L,M).

To finish the proof of the theorem we have to define the map in the opposite direction
H3(P, £,M) — mo(Cross(P, £, M)).

Still according to [4], if we have a cocycle iB2(P, £, M) it can lift to a cochain

f € C3(L£,M). The fact thatc* f is a cocycle inC2(P, £, M) means thabf = v*«, for
somex € C3(P,M). LetR =N @& M as A-modules. One puts

[(X.m), (x'm')] = ([X. X'], £ (X, X))

forall X, X’ e N. ThenR is a Lie A-algebra, becae the restriction of on NV x N is a
cocycle, thanks to equatidy = v*«. Moreover, by [4] the formula

[¥, (X,m)] = (lvY,m]+ f(X,Y),[Y, X]),

X, m)=XecN,meM,Y e L defines the crossed moddleR — L in the category of
Lie K-algebras. By definitiord is an A-linear map and since iin= keruv it follows that
d:R — L is also a crossed module £R(A). O
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