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Abstract

We introduce a bicomplex which computes the triple cohomology of Lie—Rinehart algebras. We
prove that the triple cohomology is isomorphic to the Rinehart cohomology provided the Lie—
Rinehart algebra is projective over the corresponding commutative algebra. As an application we
construct a canonical class in the third dimensional cohomology corresponding to an associative
algebra and extend Sridharan’s result on almost commutative algebras.
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1. Introduction

Let A be a commutative algebra over a fiekl A Lie—Rinehart algebra is a Lie
K -algebra, which is also an A-module and these two structures are related in an appro-
priate way [7]. The leading example of Lie—Rinehart algebras is the set Der(A) of all
K -derivations of A. Lie—Rinehart algebras are algebraic counterpart of Lie algebroids [11].
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The cohomologyHy; (£, M) of a Lie-Rinehart algebra with coefficients in a Lie—
Rinehart moduleM was first defined by Rinehart [14] and further developed by Hueb-
schmann [7]. However these groups have good properties only in the casefmsen
projective over A. In this paper following to [13] we introduce a bicomplex (A, £, M),
whose cohomology?*(A, £, M) is isomorphic toH; (£, M) provided. is projective as
an A-module. It turns out, that for generélthe groupH* (A, £, M) is isomorphic to a
triple cohomology of Barr—Beck [1] applied to Lie—Rinehart algebras. We also prove that
for generall, unlike the Rinehart cohomologsi,, (£, M), the groupsH*(A, £, M) in
dimensions two and three classify all abelian and crossed extensighigyo#/ .

It should be mentioned that the cohomology grodpsA, £, M) are new even for Lie
algebras. The classical theory of Chevalley—Eilenberg works well only in the case when a
Lie algebral is projective as a module over the ground algebra A. The recent work of Barr
[2] shows that in this case the classical theory defined via Chevalley—Eilenberg complex
is isomorphic to a cotriple cohomology of Barr and Beck. Therefore, our result extends
Barr’s not only to all Lie algebras, but also to all Lie—Rinehart algebras as well.

The fact thatH2(A, £, M) classifies all abelian extensions of Lie—Rinehart algebras is
used to classify almost commutative algebras, such that the associated graded algebra is
isomorphic to a symmetric algebra over A on a free A-module. These results extend the
result of Sridharan, who considered the case K.

The fact thatH3(A, £, M) classifies all crossed extensions of Lie—Rinehart algebras is
used to construct a canonical class corresponding to an associative afgélhia con-
struction uses the Hochschild cohomologySafiith coefficients inS, which is denoted by
H*(S, ). Itis well known thatH1(S, S) is a Lie K -algebra. It turns out tha/1(S, S) is
in fact a Lie-Rinehart algebra over A, wheresAH(S, S) is the center of. Thus we can
consider the cohomologsf* (A, H(S, §), A). We construct an element

o(S) e H3(A, HY(S, $), A)

which we call thecanonical class of. o(S) measures the noncommutativity $fand we
prove thato(S) is a Morita invariant. The construction of S) uses crossed modules of
Lie—Rinehart algebras introduced in [4].

2. Preliminaries on Lie—Rinehart algebras

The material of this section is well known. We included it in order to fix terminology,
notations and main examples. In what follows we fix a fi&d All vector spaces are
considered ovekK . We write ® andHom instead of® x andHomg .

2.1. Definitions, examples

Let A be a commutative algebra over a fidd Then the set Der(A) of alk -derivations
of Ais a Lie K -algebra and an A-module simultaneously. These two structures are related
by the following identity

[D.aD'|=a[D,D'|+ D(@)D’, D,D €DerA).
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This leads to the notion below, which goes back to Herz under the name “pseudo-algébre
de Lie” (see [6]) and which is algebraic counterpart of the Lie algebroid [11].

Definition 2.1. A Lie—Rinehart algebraver A consists of a Li& -algebral together with
an A-module structure o and a map

oL — Der(A)
which is simultaneously a Lie algebra and A-module homomorphism such that
[X,aY]=a[X, Y]+ X(a)Y.

HereX,Y € L, a € A and we writeX (a) for «(X)(a) [7]. These objects are also known
as(K, A)-Lie algebras [14] and-Lie rings [12].

Thus DefA) with o = Idpera) iSs a Lie—Rinehart A-algebra. Let us observe that
Lie—Rinehart A-algebras with trivial homomorphism: £ — Der(A) are exactly Lie
A-algebras. Therefore the concept of Lie—Rinehart algebras generalizes the concept of
Lie A-algebras. If A= K, then DefA) = 0 and there is no difference between Lie and
Lie—Rinehart algebras. We denote BR(A) the category of Lie—Rinehart algebras. We
have the full inclusion

LA) C LRA),

where£(A) denotes the category of Lie A-algebras. Let us observe that the kernel of any
Lie—Rinehart algebra homomorphism is a Lie A-algebra.

Example 2.2.If g is aK-Lie algebra acting on a commutatike-algebra A by derivations

(that is, a homomorphism of Li& -algebrasy : g — Der(A) is given), therthe transfor-
mationLie—Rinehart algebra afg, A) is £ = A ® g with the Lie bracket

[a®g.d®g]|:=ad ®[g.8'] +ay(®)(d)®g —d'y(¢) @) ®¢g
and with the actionx : £ — Der(A) given bya(a ® g)(a") = ay (g)(a).

Example 2.3.Let us recall that #oisson algebras a commutativek -algebraP equipped
with a Lie K -algebra structure such that the following identity holds

la, bc] = bla, c] + [a, b]c.
There are (at least) three Lie—Rinehart algebra relate®l. fbhe first one isP itself con-
sidered as @-module in an obvious way, where the action®fas a Lie algebra) o®

(as a commutative algebra) is given by the homomorphkisnP — Der(P) given by

ad(a) =[a, —] € Der(P).
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The second Lie—Rinehart algebra is the Kahler differenﬂb}is Itis easily shown (see [7])
that there is a unique Lie—Rinehart algebra structurez(‘iv,nsuch thatida, db] = d]a, b]
and such that the Lie algebra homomorph'@iﬁ: — Der(P) is given byadb +— a[b, —].
To describe the third one, we need some preparations. We put

Hgoiss(Pv P) = {a eP|la,—]= o},

ThenHSoiSS(P, P) contains the unit oP and is closed with respect to products, thus it is a
subalgebra of. A Poisson derivatiomf P is a linear mapD : P — P which is a simulta-
neous derivation with respect to commutative and Lie algebra structures. Wéedgtd P)

be the collection of all Poisson derivations Bf It is closed with respect to Lie bracket.
Moreover ifa € Hgoiss(P, P) and D € Derpgisd P) thena D € Derpgisd P). It follows that
Derpoisd P) is a Lie—Rinehart algebra oveH,goiss(P, P). There is the following variant
of the first construction in the graded case. Bgt= (P, P, be a commutative graded
K-algebra in the sense of commutative algebra (i.e., no signs are involved) and d@sume
is equipped with a Poisson algebra structure such that the bracket has @etyre€hus
[—,—1:P,® P, —> P,1n—1. ThenPy is a Lie—Rineharty-algebra, where the Lie algebra
homomorphismP; — Der(Py) is given byai — [a1, —1, [a1, —]1(ao) = [a1, ap], where

a; EPl',i=0,l.

Definition 2.4. A Lie—Rinehart modulever a Lie—Rinehart A-algebré is a vector space
M together with two operations

LOM—>M, (X,m)— X(m),
and
ARM—> M, (a,m)— am,

such that the first one makas into a module over the Li& -algebral in the sense of the
Lie algebra theory, while the second map makemto an A-module and additionally the
following compatibility conditions hold

@X)(m) = a(X(m)),
X(am)=aX(m)+ X(a)m.

Herea e A, me M andX € L.

It follows that A is a Lie—Rinehart module ovér for any Lie—Rinehart algebrd. We
let (£, A)-mod be the category of Lie—Rinehart modules oxer
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2.2. Rinehart conomology of Lie—Rinehart algebras

Let M be a Lie—Rinehart module ovet. Let us recall the definition of the Rinehart
cohomologyHg,,(£, M) of a Lie-Rinehart algebrd with coefficients in a Lie-Rinehart
moduleM (see [7,14]). We write

CA(L, M) :=Homa (ARL, M),

where A% (V) denotes the exterior algebra over A generated by an A-modulgéhe
coboundary map

§:Ch L, M) — CR(L, M)

is given by

n

GAX1 o X)) = (D" Y (DX (f(X1. ... XL Xa))
i=1

+ (D" D (X XL X K X ).

i<j

HereXy,..., X, € £, f € Ca (L, M). By the definitionH;, (L, M) is the cohomology

of the cochain compleg’x (£, M). We observe that if A= K, then this definition general-
izes the classical definition of Lie algebra cohomology. For a general A by forgetting the
A-module structure we obtain the canonical homomorphism

Hgin(L, M) — Hyj (L. M),

where H. (L, M) denotes the cohomology df considered as a Li& -algebra. On the
other hand if A is a smooth commutative algebra, tihg§} (Der(A), A) is isomorphic to
the de Rham cohomology of A (see [7,14]).

It follows from the definition that we have the following exact sequence
0— HR\(L, M) - M — Dem (L, M) — Hain(L, M) — 0, (1)

where Dek (L, M) consists of A-linear mapg: L — M which are derivations from the
Lie K-algebral to M. In other words?/ must satisfy the following conditions:

daX)=adX), aceA,XeLl,
d([X,Y]) = X(d(Y)) — Y (d(X)).
For a Lie—Rinehart modul#/ over a Lie—Rinehart algebrd we can define theemi-

direct productL x M to be L & M as an A-module with the brackétX, m), (Y,n)] =
([X, Y], X(n) — Y (m)).
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Lemma 2.5.Let £ be a Lie—Rinehart algebra over a commutative algefrand letM <
(L, A)-mod. Then there is 4—1 correspondence between the elemenBeif (£, M) and
the sectiongin the categoryCR(A)) of the projectionp: L x M — L.

Proof. Any sectioné: £ — £ x M of p has the formt(x) = (x, f(x)) and it is easily
shown that is a morphism inCR(A) iff f € Dera(L£, M). O

2.3. Abelian and crossed extensions of Lie—Rinehart algebras

Definition 2.6. Let £ be a Lie—Rinehart algebra over a commutative algebra A and let
M e (£, A)-mod. An abelian extension of by M is an exact sequence

0—>M—i>£’—a>/3—>0

where/’ is a Lie—Rinehart algebra over A aads a Lie—Rinehart algebra homomorphism.
Moreoveri is an A-linear map and the following identities hold:

[i(m),i(n)] =0,
[im), X'] = (2(x)) om),

wherem,n € M and X’ € £'. An abelian extension is called A-splitif has an A-linear
section.

We also need the notion of crossed modules for Lie—Rinehart algebras introduced in [4].
The following definition is equivalent to the one given in [4].

Definition 2.7. A crossed modul® : R — L of Lie—Rinehart algebras over A consists of
a Lie—Rinehart algebré and a Lie—Rinehart modulR over £ together with an A-linear
homomorphisnd : R — £ such that for alk, s € R, X € L, a € A the following identities
hold:

(1) o(X(r) =1[X,0(r)],
(2) @) () +(a(s)(r) =0,
(3) 9(r)(a) =0.

It follows from this definition thatR is a Lie A-algebra under the brackpt s] =
(3(r))(s) anda is a homomorphism of Li& -algebras. Moreovam(d) is simultaneously
alie K-ideal of £ and an A-submodule, therefoBeker(d) is a Lie—Rinehart algebra. Fur-
thermoreker(9) is an abelian A-ideal oR and the action of on R yields a Lie—Rinehart
module structure ofoker(d) onKer(d).

Let P be a Lie—-Rinehart algebra and 1#f be a Lie—Rinehart module ové?. We
consider the categoi@ross(P, M), whose objects are the exact sequences

0—>M—>R—3>£—U>77—>0
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whered: R — L is a crossed module of Lie—Rinehart algebras over A and the canon-
ical mapsCoker(d) — P and M — Ker(d) are isomorphisms of Lie—Rinehart algebras
and modules respectively. The morphisms in the cateGoogs(P, M) are commutative
diagrams

il

0 M R L P 0
|, b
Pl
O M R/ E/ 7)/ 0

whereg is a homomorphism of Lie—Rinehart algebrass a morphism of Lie A-algebras
and for anyr € R, X € L we have

a(X (1) = (BCO)(@®).

Furthermore, we leCrossa-spi(P, M) be the subcategory @ross(P, M) whose ob-
jects and morphisms split in the category of A-modules, in other words, we require that the
epimorphismsf — P, R — Im(3), L' — P', R’ — Im(3)’, L — Im(B), L — Coker(p),
R — Im(a), R’ — Coker(x) have A-linear sections.

2.4. Main properties of Rinehart cohomologies
Theorem 2.8.
(i) If £ is projective as amh-module, then
Hgin(L, M) Z EXt(z p)-mod (A, M).

(i) f0— My — M — M, — Ois an exact sequence in the categofy A)-mod, then
we have a long exact sequence on cohomology

oo = Hpio(L, M1) — HR (L, M) — HEin (L, M2) — -+

provided0 — M1 — M — M> — 0 splits in the category oA-modules orL is pro-
jective as amA-module.
(i) The cohomology{éin(c, M) classifies the abelian extensions

O->M—->L—->L—>0

of £ by M in the category of Lie—Rinehart algebras which split in the category of
A-modules.

(iv) For any Lie—Rinehart algebr&® which is projective as a-module and any Lie—
Rinehart moduleM there exists a natural bijection between the classes of the con-
nected components of the categ@mssa-spi(P, M) and Hgm(P, M).
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Proof. For the isomorphism of the part (i) see [14, Section 4]. The part (ii) is trivial and
for part (iii) see [7, Theorem 2.6]. Finally the part (iv), which is in the same spirit as the
classical result for group and Lie algebra cohomology (see [8,9]), was proved ing4].

Let g be a Lie algebra ovek and letM be ag-module. Then we have the Chevalley—
Eilenberg cochain compleX’, (g, M), which computes the Lie algebra cohomology (see

[3]):
Clie(g, M) = Hom (A" (g), M).
Here A* denotes the exterior algebra defined oker

Lemma 2.9.Letg be a LieK-algebra acting on a commutative algebfaby derivations
and let£ be the transformation Lie—Rinehart algebra(gf A) (see Exampl&.2). Then for

any Lie—Rinehar.-moduleM we have the canonical isomorphism of cochain complexes
CA(L, M) = Clio (g, M) and in particular the isomorphism

Proof. Since £ = A ® g we have HOm (AR £, M) = Hom(A"g, M) and lemma fol-
lows. O

3. The main construction

Thanks to Theorem 2.8 the cohomology thedk¥:, (£, —) has good properties only if
L is projective as an A-module. In this section we introduce the bicomptéxA, £, M),
whose cohomology is a good replacement of the Rinehart cohomdiggy L, —) for
generall. The idea of the construction is very simple. We first observe that the transfor-
mation Lie—Rinehart algebras (see Example 2.2) are always free as A-modules, therefore
the Rinehart cohomology of such algebras gives the correct answer. Secondly, for any Lie—
Rinehart algebraC the two-sided bar constructiaB, (A, A, £) gives rise to a simplicial
resolution ofZ in the category of Lie—Rinehart algebras. Since each term of this resolution
is a transformation Lie—Rinehart algebra we can mix the Chevalley—Eilenberg complexes
with the bar resolution to get our bicomplex.

3.1. A bicomplex for Lie—Rinehart algebras

Let £ be a Lie—Rinehart algebra and et be a Lie—Rinehart module ovér. We have
two cochain complexes: the Rinehart compleX(L, M) and the Chevalley—Eilenberg
complexCyi. (£, M). If one forgets the A-module structure @h we get a LieK -algebra
acting on A via derivations, thus the construction of Example 2.2 gives a Lie—Rinehart
algebra structure on @L. We can iterate this construction to conclude th&'& L is
also a Lie—Rinehart algebra for any> 0. The A-module structure comes from the first
factor, while the bracket is a bit more complicated, for examplefer2, we have
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[a1®a2@ X, b1 @Db2 QY] :=a1b1 ®axb2 @ [X, Y] +a1b1 ® a2 X (b2) ® Y
+a1a2X(b1) b2 @Y —aib1 @ baY (a2) ® X
—biboY(a1) ® a2 ® X.

Let us also recall that the two-sided bar constructBagA, A, £) is a simplicial object,
which is A®"+1 @ £ in the dimensiom, while the face maps are given by

di(ap® - - ®a,®X)=a0® - ®aiai+1Q - Qa, ® X,

if i <nand
dp(a0® - ®a, ®X)=ao® - Qap-1® anX,

if i =n. The degeneracy maps are given by

5i(@® - Qe ®X)=a0® - ®a; V1Y - - Qa, ®X.
In fact B.(A, A, £) is an augmented simplicial object in the category of Lie—Rinehart
algebras, the augmentatidp(A, A, £) = A ® L — L is given by(a, X) — aX. We can
apply the functoCx (—, M) on B, (A, A, £) to get a cosimplicial object in the category of
cochain complexes

[n]+— Cx(A®" @ L, M).

Finally we letC**(A, L, M) be the bicomplex associated to this cosimplicial cochain com-
plex. We letH*(A, L, M) be the cohomology of the corresponding total complex. The
augmentatiorB, (A, A, £) — L yields the homomorphism

o* Ho (L, M) — H*(A, L, M).

The bicomplexC**(A, £, M) has the following alternative description. According to
Lemma 2.9 we have the isomorphism of complexes:

CP*(A, L, M) = Clio (A®P @ L, M),
whereM is considered as a module ovePA® L by
@®---®ap @ X)m:=(ar---apX)m.
To define the horizontal cochain complex structure we observe that elemafit§ afin
be identified with functions : A®P? @ £®4 — M, which are alternative with appropriate

blocks of variables. Then the corresponding linear map

d(f):A®P+De @ r®a 5 pp
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is given by

df(ao1, ...,a0q,a11, ..., A1, ..., Apl, ..., Apg, X1, ..., Xy)

=aop1---aog f(ai1,...,a1g, ..., ap1, ..., Apg, X1, ..., Xy)
+ Z (—1)i+1f(a01, ey A0gs s Qi1 Ty oy QigQitdgs -+ Apls - -5 Apg,s
0<i<p
X1,...,Xy)
+ (—1)p+1f(a01, ey A0gs s Ap—11s -y Ap—1,q,Ap1X1, ..., ApgXq).
Theorem 3.1.

(i) The homomorphism
o' Hgin(L, M) — H"(A, L, M)

is an isomorphism for = 0, 1. The homomorphise? is a monomorphism. Moreover
« is an isomorphism for alt > 0 provided/. is projective ovelA.

(i) f0— My — M — M — Ois an exact sequence in the categofy A)-mod, then
we have a long exact sequence on cohomology

(iii) The cohomologyi2(A, £, M) classifies all abelian extensions
O-M—->L —>L—-0

of £ by M in the category of Lie—Rinehart algebras.

(iv) For any Lie—Rinehart algebral and any Lie—Rinehart modulg/ there exists a
natural bijection between the classes of the connected components of the category
Cross(L, M) and H3(A, L, M).

Proof. (i) The statement is obvious for = 0,1. Forn = 2 it follows from part (iii)
below and Theorem 2.8(iii). It remains to prove the last assertion. It is well known
that the augmentatio®, (A, A, £) — L is a homotopy equivalence in the category of
simplicial vector spaces, thanks to the existence of the extra degeneracy map given by
s(ap® - ®a, X)=1®ay® --- ® a, ® X. Howevers is not A-linear and there-
fore in generaB. (A, A, £) — L is only a weak equivalence in the category of simplicial
A-modules. Assume now is projective as an A-module, thé®.(A, A, L) — L is a ho-
motopy equivalence in the category of simplicial A-modules and therefore, forkeadh

the induced mapﬁ’;(B*(A, A L) — Aﬁ\(ﬁ) is a homotopy equivalence in the category
of simplicial A-modules, which implies that the same is true after applying the functor
Homa (—, M). Thus for eachk > 0 the induced map?};(ﬁ, M) — C,’f\(B*(A, A L)) is
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a weak equivalence of cosimplicial objects and the comparison theorem for bicomplexes
yields the result.

(i) Since Hom and exterior powers involved i@[",. (g, M) are taken oveK it follows
that for eactp andg the functorC{;, (A” ® £, —) is exact and the result follows.

(i) Thanks to a well-known fact from topology we can use the normalized (in the
simplicial direction) cochains to computé*(A, £, M). Having this in mind we have
H2(A, £, M) = Z?/B2, where Z2 consists of pairg f, g) such thatf : A2(L) — M is
a Lie 2-cocycle ang: A ® £L — M is a linear map such thgt(1, X) =0,

ag(b, X) — g(ab, X) + g(a,bX) =0
and

abf(X,Y) — f(aX,bY)
=aXg(b,Y)—bYg(a, X) — g(ab,[X,Y]) —g(aX (b), Y) + g(bY (a), X).

Here a,b € A and X,Y € L. Moreover (f, g) belongs toB? iff there exists a lin-
ear maph:L — M such thatf(X,Y) = Xh(Y) — h([X,Y]) — Yh(X) and g(a, X) =
ah(X) — h(aX). Starting with(f, g) € Z2 we construct an abelian extension 6fby
M by putting? = M & L as a vector space. An A-module structure@ris given by
a(m,X) = (am + g(a, X),aX), while a Lie bracket o is given by[(m, X), (n,Y)] =
(X(n) —Y(m) + f(X,Y),[X,Y]). Conversely, given an abelian extensigR) and a
K-linear sectiom: £ — P we put f(X,Y) :=[h(X),h(Y)] — h([X,Y]) andg(a, X) :=
h(aX) —ah(X). Itis easily checked thatf, g) € Z2 and we get (iii).

(iv) Similarly, we haveH3(A, £, M) = Z3/B3. Here Z2 consists of tripleq f, g, h)
such thatf : A3(£) — M is a Lie 3-cocycleg: A2(A® L) - M andh :AQAQL — M
are linear maps and the following relations hold:
f@X,bY,cZ)—abcf(X,Y, Z)

=aXgb,c,Y,Z)—bYg(a,c,X,Z)+cZg(a,b,X,Y) — g(ab, ¢, [X,Y], Z)

+ g(aX(b), c,Y, Z) — g(bY(a), c, X, Z) + g(ac, b,[X,Y], Y) — g(aX(c), b, 7, Y)

+g(cZ(a),b, X, Y) — g(bc,a, 1Y, Z1, X) + g(bY (¢),a, Z, X) — g(cZ(b),a, Y, X)
and
abXh(c,d,Y) —cdYh(a,b,X) — h(ac,bd,[X,Y]) — h(ac,bX (d), Y)

— h(abX(c),d,Y) + h(ac,dY (b), X) — h(cdY (a), b, X)
=abg(c,d,X,Y)—g(ac,bd, X, Y)+ g(a,b,cX,dY).

Moreover(f, g, h) belongs toB? iff there exist linear maps:: A2(£) — M andn : A ®
L — M such that
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-m([Y, Z], X),
gla,b,X,Y)=abm(X,Y) —m(aX,bY) —aXn(b,Y) +bYn(a, X) +n(ab,[X, Y])

+n(aX(®),Y)+n(bY(a), X)

and
h(a,b,X)=an(b, X) —n(ab, X) +n(a,bX).
Let
0> M—>R-S PLS L0

be a crossed extension. We pgut= Im(9) and consideK -linear sectiong : £ — P and
qg:V—>Rofr:P— Landd: R — V respectively. Now we define: L ® L — R and
SIA® L— R by t(X,Y) :=q([p(X), p(¥)] — p([X,Y]) ands(a, X) := g(ap(X) —

p(aX)). Finally we define three functions as follows. The functipn A3(£) — M is
given by

F(X,Y,2) = p(X)g(Y, Z) — p(V)g(X, Z) + p(Z)g(X,Y) — g (X, Y1, Z)
+¢(1X, Z1,Y) — g(1Y. Z1. X).

The functiong : A2(A ® £) — M is given by

g@a,b,X,Y):=paX)sb,Y)— p®Y)s(a, X) — p(ab, [X, Y]) — p(aX(b), Y)

+ p(bY(a), X) —t(aX,bY) +abt(X,Y),
while the functiomh:A ® A ® L — M is given by

h(a,b,X):=as(b,X)—s(ab, X) +s(a,bX).
Then (f, g, h) € Z% and the corresponding class Hi(A, £, M) depends only on the
connected component of a given crossed extension. Thus we obtain a well-defined map
Cross(L, M) — H3(A, £, M) and a standard argument (see [8]) shows that it is an iso-
morphism. O

4. Sridharan representations of Lie—Rinehart algebras

In this section we extend the definition of Lie—Rinehart module in the spirit of the
classical work of Sridharan [15].
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Let £ be a Lie—Rinehart A-algebraand It L® £ — Aandg:A ® L — A be linear
maps. ASridharan modulés an A-moduleM together with aK -linear map

LOM—>M, (X,m)— X(m),
such that the following identities hold:

() [X,Y1m) + f(X,Y)m =X (Y (m)) — Y (X (m)),
(i) X(am)+ g(a, X)m =aX(m)+ X (a)(m),
(i) (@X)(m) =a(X(m)).

The proof of the following lemma is a straightforward and simple computation similar
to [15, Proposition 1.2] and therefore we omit it.

Lemma 4.1.1f M is a Sridharan module such that is faithful as anA-module, then
(f, g) defines a normalize®-cocycle in the total complex of the bicompteX* (A, L, A).
Thusf: A%(L) — A is a Lie 2-cocycle and the following identities hold

g(1,X)=0,
ag(b, X) — g(ab, X) + g(a,bX) =0,
abf(X,Y)— f(aX,bY)=aXgb,Y)—bYg(a, X)— g(ab, [X, Y])
—g(aX®),Y)+g(bY (@), X).

In what follows we will assume that the pa&iy, g) is a normalized 2-cocycle in the
total complex of the bicomplex**(A, £, A). There is aK-algebraV (A, L, f, g) with
properties such that the categoryWwtA, L, f, g)-modules is isomorphic to the category
of Sridharan representations. Actually this algebra fee & andg = 0 was constructed
in [15], while for arbitrary A butf = 0= g it appears in [14]. We define the algebra

V(A, L, f, g) interms of generators and relations. We have genergigysor eachX € £
and; (a) for eacha € A. These generators must satisfy the following relations:

J =1 jab)=j(a)jb),
i(aX) = j(a)i(X),
((X)i(Y) —i()i(X)=i(IX, Y1)+ j(f(X, 1)),
i((X)j(a) = j(@i(X)+ j(X(a) — g(a, X)).

The first relations show that: A — V (A, L, f, g) is an algebra homomorphism. We let
V, be the A-submodule spanned on all produ¢t&) - - -i (Xy), wherek < n. Then
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defines an algebra filtration dn(A, L, f, g). Itis clear thatV (A, L, f, g) = Un>o V,. It
follows from the third relation that the associated graded olyje¢d ) is a commutative
A-algebra. In other word¥ (A, L, f, g) is an almost commutative algebra in the following
sense.

An almost commutative algebis an associativ -algebraC together with a filtration

0CA=CocCic--CcCc--cC=|]C,
n>0

such thatC,,C,,, c C,+,, and such that the associated graded object

o (C) =D Cn/Cua

n>0

is a commutative A-algebra. It is well known thatdfis an almost commutative algebra,
then there is a well-defined bracket

[_s _] . grn(c) ® grm(c) — grn+m—l(c)

which is given as follows. Let € gr,,(C) andb € gr,,(C) anda € C, andb e C,, rep-
resentinga and b respectively. Sinceyr, (C) is a commutative algebra it follows that
ab — ba € Cpym-1 and the corresponding class dn,,,_1(C) is [a, b]. It is also well
known that in this way we obtain a Poisson algebra structurgrq€’). Since the bracket
is of degreg—1) it follows from Example 2.3 that = gr{(C) is a Lie—Rinehart algebra
over A= gro(C). Moreover the exact sequence

O-A—-C1—=L—-0
is an abelian extension of Lie—Rinehart algebras and therefor& dimear section of the
projectionC; — L defines a 2-cocycléf, g) of C**(A, L, A) and the homomorphism of
associative algebras
VAL, f,g)— C.
Using a similar argument as in [15] we prove that this map is an isomorphism progided
is free as an A-module and the natural n&gg£) — gr, (C) is an isomorphism. Herg*
denotes the symmetric algebra.
5. Triple cohomology of Lie—Rinehart algebras
In this section we prove that the cohomology theory developed in the previous section is

canonically isomorphic to the triple cohomology of Barr—Beck [1] applied to Lie—Rinehart
algebras.
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5.1. Cotriples and cotriple resolutions

The general notions of (co)triples (or (co)monads, or (co)standard construction) and
(co)triple resolutions are due to Godement [5] and further developed in [1{ beta cat-
egory. Acotriple onC is an endofunctof” : C — C together with natural transformations
e:T — 1o ands: T — T2 satisfying the counit and the coassociativity properties. Here
T?=T o T and a similar meaning hag" for all n > 0. For example, assumé:C — B
is a functor which has a left adjoint functét: B — C. Then there is a cotriple structure
onT = FU : C — C such that is the counit of the adjunction. Given a cotrifffleand an
objectC, a simplicial object,C in the category’, known asGodement or cotriple resolu-
tion of C, can be associated. Let us recall tig€ = T7"1C and the face and degeneracy
operators are given respectively By= T'eT"~" ands; = T'§T"~. To explain why it
is called resolution, consider the case wifes= FU is associated to the pair of adjoint
functors. Then firstly yields a morphisnT,C — C from the simplicial object,.C to the
constant simplicial objeof and secondly the induced morphigi(7,C) — U(C) is a
homotopy equivalence in the category of simplicial object8.iThe cotriple cohomology
is now defined as follows. Le¥f be an abelian group object in the categ6/\C of arrows
X — C then Hong,c(T.C, M) is a cosimplicial abelian group, which can also be seen
as a cochain complex. Thug*(Homg, ¢ (T.C, M)) are meaningful and they are denoted
by H}(C, M). Of special interest is the case, whEn= FU is associated to the pair of
adjoint functors and the functd@r :C — B is tripleable[1]. In this case the categoryis
completely determined by the triple = UF: B — B. Because of this fact, in this case
HY(C, M) are known agriple cohomology of” with coefficients in\/.

5.2. Free Lie—Rinehart algebras

We wish to apply these general constructions to Lie—Rinehart algebras. We have the
functor

U:LR(A) — Vect/ Der(A)

which assigns : £ — Der(A) to a Lie—Rinehart algebrd. Here Vect Der(A) is the cat-
egory of K -linear maps) : V — Der(A), whereV is a vector space ovef. A morphism
¥ — Y1 in Vect/ Der(A) is a K-linear mapf :V — Vi such thaty = ¢1 o f. Now we
construct the functor

F :Vect/ Der(A) — LR(A)

as follows. Letys : V — Der(A) be aK -linear map. We leL (V) be the free LieK -algebra
generated by . Then we have the unique Lié-algebra homomorphisin(V) — Der(A)
which extends the mag, which is still denoted byr. Now we can apply the construction
from Example 2.2 to get a Lie—Rinehart algebra structure anlA(V). We let F () be
this particular Lie—Rinehart algebra and we call it fire= Lie—Rinehart algebra generated
by 1. In this way we obtain the functadr, which is the left adjoint td/.
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Lemma 5.1.Let £ be a free Lie—Rinehart algebra generatedypyV — Der(A) and let
M be any Lie—Rinehart module ovér Then

Hhin(L, M) =0, i>1

Proof. By our constructiorC is a transformation Lie—Rinehart algebrab{ V), A). Thus
we can apply Lemma 2.9 to get an isomorphisih (£, M) = H.(L(V), M) and then
we can use the well-known vanishing result for free Lie algebras.

5.3. The cohomologf's (L, M)

Since we have a pair of adjoint functors we can take the composite

T =FU:LR(A) » LR(A)

which is a cotriple. Thus for any Lie—Rinehart algelfrave can take the cotriple resolution
T (L) — L. It follows from the construction of the cotriple resolution that each component
of T, (L) is a free Lie—Rinehart algebra. Moreover according to the general properties of
the cotriple resolutions the natural augmentafip) — L is a homotopy equivalence in
the category of simplicial vector spaces. It follows tfatL) — £ is a weak homotopy
equivalence in the category of A-modules.

Let M be anZ-module. ThenM is also a module oveF, (L) for anyn > 0 thanks to
the augmentation morphist# (L) — £. Thus we can form the following bicomplex

Ca(Ti(L), M)

which is formed by the degreewise applying the Rinehart cochain complex. The cohomol-
ogy of the total complex of the bicomplex, (7 (L), M) is denoted byH s (L, M).

Lemma 5.2.For any Lie—Rinehart algebrd and any Lie—Rinehart moduld we have a
natural isomorphism

H*(A, L, M) = Hin(L, M).

Proof. We denote byC*(A, £, M) the total complex associated to the bicomplex
C*(A, L, M). Recall that it comes with a natural cochain map

Ci(L, M) — C*(A, L, M)

which is a quasi-isomorphism provide@ is projective as an A-module. Let us apply
C*(A, —, M) on T, (L) degreewise. Then we obtain the morphism of bicomplex

Ca(Ti(L), M) — C*(A, T.(L), M)
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which is a quasi-isomorphism because e@gt’) is free as an A-module. It remains to
show that the augmentatidi (£) — £ yields the quasi-isomorphism

C*(A, L, M) — C*(A, T.(L), M).

To this end, we observe thdi.(£) — L is a quasi-isomorphism thanks to the general
properties of cotriple resolutions and therefore is a homotopy equivalence in the category
of simplicial vector spaces. Thus the same is trueA6(7, (L)) — A" (L) and therefore
C"(A,L,M)— C"(A, T.(L), M) is also a homotopy-equivalence for eaclnd the re-

sult follows from the comparison theorem of bicomplexes

5.4. Triple cohomology anéi's (£, M)

According to the Beck’s tripleability criterion the functér: LR(A) — Vect/ Der(A)
is tripleable, so we also have the triple cohomology theory for Lie—Rinehart algebras. Let
be a Lie—Rinehart algebra. There is an equivalence from the category of Lie—Rinehart mod-
ules overL to the category of abelian group objectsd® (A)/ L, which assigns the pro-
jectionL x M — Lto M e (£, A)-mod. Having this equivalence in mind, Lemma 2.5 says
that for any objec — L of LR(A)/L the homomorphisms frol® -~ Lo L x M — L
in the category of abelian group objectsd®R (A)/L is nothing but Det (P, M). There-
fore the triple cohomology?; (L, M) is the same a&l? (Dera (T (L), M)).

Theorem 5.3.For any Lie—Rinehart algebr& and any£-moduleM there is a natural
isomorphism

HY L, M) = HI(L, M), ¢ > 0.

In other words the cotriple cohomology 6fwith coefficients inM is isomorphic to the
cohomologyH|'s (£, M) up to shift in the dimension.

Proof. As usual with bicomplex we have a spectral sequence

Efq= H{r(L. M)
WhereESq is obtained in two steps: We first take¢h homology in eaclC*(T, (L), M),
g > 0 and then we take thgth homology. ButC* (7, (£), M) is just the Rinehart complex
of T,(L). SinceT, (L) is free we can use Lemma 5.1 to conclude tﬁég =0 for all
p = 2. According to the exact sequence (1) we also have an exact sequence

0— E%q - M — DerA(Tq(L), M) — E%q — 0.

We observe thaEé* andM are constant cosimplicial vector spaces and there‘f@ge: 0
forall ¢ > 0. Thus we get

HIFH L, M) = E2, = HY(De (T.(L), M), ¢>0. O
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6. The canonical class of associative algebras

Let S be an associative algebra ovér We let A be the center of. As an application
of our results we construct a canonical clags) € H3(A, H(S, S), A), whereH*(S, S)
denotes the Hochschild conomology$f

Let us first recall the definitions of the zeroth and the first dimensional Hochschild co-
homology involved in this construction. L&tbe an associativk -algebra. AK -derivation
D:S — SisakK-linear map, such thad(ab) = D(a)b + aD(b). We let Der() be the set
of all K-derivations. It has a natural Li€-algebra structure, where the bracket is defined
via the commutatofD, D1] = DD1 — D1 D. There is a canonical -linear map

ad:S — Der(S)

given by ads)(x) = sx —xs, s, x € S. Then the zeroth and the first dimensional Hochschild
cohomology groups are defined via the exact sequence:

0— HO(S, S) — 5 22 Der(s) — HY(S. S) — 0. )

It follows that A= HO(S, S) is the center ofs. We claim that DefS) is a Lie-Rinehart
algebra over A. Indeed, the action of A is definedby)(s) = aD(s), D € Der(S), s € S,
a € A, while the homomorphisrnx : Der(S) — Der(A) is just the restriction. To see that
is well defined, it suffices to show th&t(A) C A for any D € Der(S). To this end, let us
observe that for any € S anda € A we have

D(a)s —sD(a) = (D(as) — aD(s)) — (D(sa) - D(s)a) =0

and thereforeD(a) € A. On the other hand the commutatpr, 1] = st — ts defines a

Lie A-algebra structure oi§ and adS — Der(S) is a Lie K-algebra homomorphism.
Actually more is true: ad is a crossed module of Lie—Rinehart algebras over A, where
the action of the Lie—Rinehart algebra D&y on S is given by (D, s) — D(s). It fol-

lows thatH1(S, S) = Coker(ad:S — Der(S)) is also a Lie—Rinehart algebra over A and

A = Ker(ad:S — Der(S)) is a Lie—Rinehart module oveH1(S, S). In particular the
groupsH*(A, H1(S, S), A) are well defined. According to Theorem 3.1 the vector space
H3(A, HL(S, 5), A) classifies the crossed extensionft(S, ) by A. By our construc-

tion the exact sequence (2) is one of such extension and therefore it defines a canonical
classo(S) € H3(A, HY(S, $), A). Since for a commutative algebra A the clagd) van-
ishes, one can think on it as a measure of noncommutativisy of

Lemma 6.1.0(S) is a Morita invariant.

Proof. Let R be theK-algebra ofn x n matrices. We have to prove thatS) = o(R).
Let D be a derivation ofs. We letg(D) be the derivation ok which is componentwise
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extension ofD. Furthermore, for an elementke S we let f (s) be the diagonal matrix with
s on diagonals. Then we have the following commutative diagram

d
s —2%. Ders)

1)

R —L Derr)

in the categornCR(A) and the result follows from the fact that Hochschild cohomology is
a Morita invariant. O

Let us observe that if is a smooth commutative algebra, then=AS and H3(A,
HY(S, S),A) is isomorphic to the de Rham cohomologyHfof courseo(S) = 0 in this
case). So, in general we can consider the graip@\, H1(S, S), A) as a sort of noncom-
mutative de Rham cohomology.

By forgetting the A-module structure, we obtain an element

0'(S) € H3(H(S, ), A).

These groups and probably the corresponding elements can be computed in many cases

using the results of Strametz [16].
Remark 6.2.

(i) For any associative algebfathere is a multiplicative version of the clas&S), which
corresponds to the crossed extension of groups

0— U(A) = U(S) > Aut(S) — out(S) — O.

Here as above A is the center §f while U(S) is the group of invertible elements
of §. MoreoverAut(S) is the group of algebra automorphismsSénda is given by
a(t)(s) =t 1st, s € S, 1 € U(S). Thanks to [10] this extension defines an element in
H3(0ut(S), U(A)). Here H* denotes the cohomology of groups.

(i) For any Poisson algebr& there is a similar class(P), which corresponds to the
following crossed extension of Lie—Rinehart algebras (ﬂ,@&ss(P, P):

0— HS, . (P, P)— P S Derpoisd P) — Hiyed P. P) =0
wheread is given byad(a) = [a, —] andH,%oiss(P, P) is just the cokernel odd. Since
ad : P — Derpgisd P) is a crossed module of Lie—Rinehart algebras dvggiSS(P, P)
it follows that H3 (P, P) is also a Lie-Rinehart algebra ovB ;( P, P) and we
get that the class(P) lies in H3(A, H3 (P, P), A), where A= HO . (P, P).
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