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Abstract Using the techniques of homological algebra of semimodules developed in
our previous papers, we introduce new cohomology monoids of an arbitrary monoid M
with coeffcients in semimodules over M , that is, with coeffcients in abelian monoids
on which M acts. The construction is similar to the construction of the Eilenberg-
Mac Lane cohomology groups of monoids. In particular, we use an M-semimodule
analog of the classical normalized bar resolution. An explicit computation of these
cohomology monoids in the case where M is a finite cyclic group is given.
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1 Introduction

In [7,8], in order to give a cohomological description of the Schreier extensions of
semimodules by monoids, we introduced cohomology monoids of an arbitrary monoid
M with coefficients in semimodules over M . Later, in [5], developing the basic idea
of Sweedler’s two-cocycles of [13], Haile, Larson and Sweedler introduced the same
cohomology monoids (in the case where M is a group) as a generalization of the usual
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240 A. Patchkoria

Amitsur and Galois cohomology groups. Transferring the developed theory to topo-
logical spaces leads to inadequate cohomology theories in the sense that the resulting
cohomology monoids of topological spaces do not satisfy the homotopy axiom (see
Remark 3.6). Thus arose the problem of finding such a modification of the cohomology
monoids, which would become a homotopy invariant of topological spaces. This has
been done in [9], where a version of homological algebra for semimodules was given,
which enables one to construct cohomology and homology monoids of topological
spaces with coefficients in abelian monoids so that the homotopy axiom holds (see
Example 3.5). The machinery of homological algebra introduced in [9] (and further
developed in [10,11]) gives rise to new cohomology monoids of an arbitrary monoid
M with coefficients in semimodules over M . In the present paper, we define these
cohomology monoids and show that they are more adequate for actual computation.
In particular, we calculate them in the case where M is a finite cyclic group by using
the technique of free resolutions. A connection of the new cohomology monoids with
monoid extension theory will be discussed in a subsequent paper.

2 Preliminaries

A semiring � = (�,+ , 0, · , 1) is an algebraic structure in which (�,+ , 0) is an
abelian monoid, (�, · , 1) a monoid, and

λ · (λ′ + λ′′) = λ · λ′ + λ · λ′′,
(λ′ + λ′′) · λ = λ′ · λ + λ′′ · λ,

λ · 0 = 0 · λ = 0

for all λ, λ′, λ′′ ∈ � (see e.g. [2]).
Let � be a semiring. An abelian monoid A = (A,+ , 0) together with a map

� × A −→ A, written as (λ, a) �→ λa, is called a left �-semimodule if

λ(a + a′) = λa + λa′,
(λ + λ′)a = λa + λ′a,

(λ · λ′)a = λ(λ′a),

1a = a, 0a = 0

for all λ, λ′ ∈ � and a, a′ ∈ A. It immediately follows that λ0 = 0 for any λ ∈ �.
A right �-semimodule A is defined similarly. In this paper, left �-semimodules are
simply called �-semimodules.

A map f : A −→ B between �-semimodules A and B is called a �-
homomorphism if f (a + a′) = f (a) + f (a′) and f (λa) = λ f (a) for all a, a′ ∈ A
and λ ∈ �. It is obvious that any �-homomorphism carries 0 into 0.

A �-subsemimodule A of a �-semimodule B is a subsemigroup of (B,+) such
that λa ∈ A for all a ∈ A and λ ∈ �. Clearly 0 ∈ A. The quotient �-semimodule
B/A is defined as the quotient �-semimodule of B by the smallest congruence on the
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Cohomology monoids of monoids 241

�-semimodule B some class of which contains A. Denote the congruence class of
b ∈ B by [b]. Then [b1] = [b2] if and only if a1 + b1 = a2 + b2 for some a1, a2 ∈ A.

Let N be the semiring of nonnegative integers. An N-semimodule A is simply an
abelian monoid, and an N-homomorphism f : A −→ B is just a homomorphism of
abelian monoids, and A is an N-subsemimodule of an N-semimodule B if and only if
A is a submonoid of the monoid (B,+ , 0).

Next recall that the group completion of an abelian monoid M can be constructed
in the following way. Define an equivalence relation ∼ on M × M as follows:

(u, v) ∼ (x, y) ⇔ u + y + z = v + x + z for some z ∈ M.

Let [u, v] denote the equivalence class of (u, v). The quotient set (M × M)/ ∼
with the addition [x1, y1] + [x2, y2] = [x1 + x2, y1 + y2] is an abelian group
(0 = [x, x], −[x, y] = [y, x]). This group, denoted by K (M), is the group com-
pletion of M , and kM : M −→ K (M) defined by kM (x) = [x, 0] is the canoni-
cal homomorphism. If M is a semiring, then the multiplication [x1, y1] · [x2, y2] =
[x1x2 + y1 y2, x1 y2 + y1x2] converts K (M) into the ring completion of the semi-
ring M , and kM into the canonical semiring homomorphism. Now assume that A
is a �-semimodule. Then K (A,+, 0) with the multiplication [λ1, λ2][a1, a2] =
[λ1a1 + λ2a2, λ1a2 + λ2a1], λ1, λ2 ∈ �, a1, a2 ∈ A, becomes a K (�)-module.
This K (�)-module, denoted by K (A), is the K (�)-module completion of the �-
semimodule A, and kA = k(A,+,0) is the canonical �-homomorphism. Clearly, K (A)

is in fact an additive functor: for any homomorphism f : A −→ B of �-semimodules,
K ( f ) : K (A) −→ K (B) defined by K ( f )([a1, a2]) = [ f (a1), f (a2)] is a K (�)-
homomorphism.

A �-semimodule A is said to be cancellative if whenever a + a′ = a + a′′,
a, a′a′′ ∈ A, one has a′ = a′′. Obviously, A is cancellative if and only if the canonical
�-homomorphism kA : A −→ K (A) is injective. Consequently, for a cancellative
�-semimodule A, one may assume that A is a �-subsemimodule of K (A), and that
each element b of K (A) is a difference of two elements from A, i.e., b = a1 − a2,
where a1, a2 ∈ A.

A �-semimodule A is called a �-module if (A,+, 0) is an abelian group. One can
easily see that A is a �-module if and only if A is a K (�)-module. Hence, if A is
a �-module, then K (A) = A and kA = 1A. For a �-semimodule A, by U (A) we
denote the maximal �-submodule of A, i.e.,

U (A) = {a ∈ A | a + a′ = 0 for some a′ ∈ A}.

A subset T of a �-semimodule A is a set of �-generators for A if every element
of A can be written as a finite sum

∑
λi ti , where λi ∈ � and ti ∈ T . A is a free

�-semimodule on T , or T is a �-basis of A, if each element a of A has a unique
representation of the form a = ∑

t∈T λt t , called the representation of a by the �-
basis T , where λt ∈ � and all but a finite number of the λt are zero.

Suppose M is an arbitrary, multiplicatively written, monoid. The free abelian
monoid N[M] generated by the elements x ∈ M consists of the finite formal sums
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242 A. Patchkoria

∑
x∈M nx x with coefficients nx ∈ N. The product in M induces a product

∑

x∈M

nx x ·
∑

y∈M

n′
y y =

∑

x,y∈M

(nx n′
y)xy

of two such elements, and makes N[M] a semiring, the monoid semiring of M with
nonnegative integer coefficients. Semimodules over N[M] are called M-semimodules.

3 Cohomology monoids

In order to introduce new cohomology monoids of monoids with coefficients in semi-
modules we need some definitions and facts from [9].

Definition 3.1 ([9]) We say that a sequence of �-semimodules and �-homomor-
phisms

X : · · · ���� Xn+1

∂+
n+1 ��

∂−
n+1

�� Xn

∂+
n ��

∂−
n

�� Xn−1
���� · · · , n ∈ Z,

written X = {Xn, ∂+
n , ∂−

n } for short, is a chain complex if

∂+
n ∂+

n+1 + ∂−
n ∂−

n+1 = ∂+
n ∂−

n+1 + ∂−
n ∂+

n+1

for each integer n. For every chain complex X , we define the �-semimodule

Zn(X) = {
x ∈ Xn|∂+

n (x) = ∂−
n (x)

}
,

the n-cycles, and the n-th homology �-semimodule

Hn(X) = Zn(X)/ρn(X),

where ρn(X) is a congruence on Zn(X) defined as follows:

x ρn(X) y ⇔ x + ∂+
n+1(u) + ∂−

n+1(v) = y + ∂+
n+1(v) + ∂−

n+1(u)

for some u, v in Xn+1.

The �-homomorphisms ∂+
n , ∂−

n are called differentials of the chain complex X .

A chain complex X is nonnegative if Xn = 0 for n < 0.
One can think of an ordinary chain complex of �-semimodules

C : · · · �� Cn+1
∂n+1 �� Cn

∂n �� Cn−1 �� · · · , ∂n∂n+1 = 0, n ∈ Z,
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Cohomology monoids of monoids 243

as a chain complex in the sense of Definition 3.1; namely, we identify C with the chain
complex

· · · �� �� Cn+1
∂n+1 ��

0
�� Cn

∂n ��
0

�� Cn−1
���� · · · .

Defining Hk(C) to be Hk({Cn, ∂n, 0}), one has Hk(C) = Ker(∂k)/∂k+1(Ck+1).

3.2 A sequence G = {Gn, d+
n , d−

n } of �-modules and �-homomorphisms is a chain
complex if and only if

· · · �� Gn
d+

n −d−
n �� Gn−1 �� · · ·

is an ordinary chain complex of �-modules. Obviously, for any chain complex G =
{Gn, d+

n , d−
n } of �-modules, H∗(G) coincides with the usual homology H∗({Gn, d+

n −
d−

n }).

Definition 3.3 ([9]) Let X = {Xn, ∂+
n , ∂−

n } and X ′ = {X ′
n, ∂

′
n
+
, ∂

′
n
−} be chain com-

plexes of �-semimodules. We say that a sequence f = { fn} of �-homomorphisms
fn : Xn −→ X ′

n is a ±-morphism from X to X ′ if

fn−1∂
+
n = ∂

′
n
+

fn and fn−1∂
−
n = ∂

′
n
−

fn for all n.

If f = { fn} : X −→ X ′ is a ±-morphism of chain complexes, then fn(Zn(X)) ⊂
Zn(X ′), and the map

Hn( f ) : Hn(X) −→ Hn(X ′), Hn( f )(cl(x)) = cl( fn(x)),

is a homomorphism of �-semimodules. Thus Hn is a covariant additive functor
from the category of chain complexes and their ±-morphisms to the category of �-
semimodules.

3.4 If X = {Xn, ∂+
n , ∂−

n } is a chain complex of �-semimodules, then

K (X) : · · · �� K (Xn+1)
K (∂+

n+1)−K (∂−
n+1) �� K (Xn)

K (∂+
n )−K (∂−

n ) ��

K (Xn−1) �� · · ·

is an ordinary chain complex of K (�)-modules (i.e., �-modules) (see 3.2). When
each Xn is cancellative, then the converse is also true. Further, for any chain com-
plex X = {Xn, ∂+

n , ∂−
n } of �-semimodules, the canonical ±-morphism kX =

{kXn : Xn −→ K (Xn)} from X to the chain complex {K (Xn), K (∂+
n ), K (∂−

n )}
induces the �-homomorphisms Hn(kX ) : Hn(X) −→ Hn(K (X)), Hn(kX )(cl(x)) =
cl(kXn (x)) = cl[x, 0]. If X is a chain complex of cancellative �-semimodules, then
Hn(kX ) is injective and therefore Hn(X) is a cancellative �-semimodule.
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244 A. Patchkoria

A cochain complex is a sequence of �-semimodules and �-homomorphisms

Y : · · · �� �� Y n−1
δn−1+ ��

δn−1−
�� Y n

δn+ ��

δn−
�� Y n+1 ���� · · ·

with

δn+δn−1+ + δn−δn−1− = δn+δn−1− + δn−δn−1+

for all n. One obviously defines the n-cocycles of Y , the n-th cohomology �-
semimodule Hn(Y ), a ±-morphism g : Y −→ Y ′ of cochain complexes and a �-
homomorphism Hn(g) : Hn(Y ) −→ Hn(Y ′).

For a chain complex X = {Xn, ∂
+
n , ∂−

n } of �-semimodules and a �-semimodule
A, we define a cochain complex Hom�(X, A) = {Hom�(X, A)n, δn+, δn−} of abelian
monoids by

Hom�(X, A)n = Hom�(Xn, A), δn+ = Hom�(∂
(−)n+1

n+1 , A),

δn− = Hom�(∂
(−)n

n+1 , A),

where

(−) j =
{

+ j even

− j odd.

The n-th cohomology monoid of this cochain complex, denoted by Hn(X, A), is called
the n-th cohomology monoid of X with coefficients in the �-semimodule A. Further, let
C be a right �-semimodule. Then the n-th homology monoid of the chain complex X
with coefficients in C , denoted by Hn(X, C), is defined as the n-th homology monoid
of the chain complex C ⊗� X = {C ⊗� Xn, 1 ⊗ ∂+

n , 1 ⊗ ∂−
n }, the tensor product of

C and X . It is clear that Hn(X, A) and Hn(X, C) are functorial in both variables.

Example 3.5 ([9]) Let S be a sequence of �-semimodules S0, S1, S2, ... together with
�-homomorphisms

∂ i
n : Sn −→ Sn−1, 0 ≤ i ≤ n,

satisfying ∂ i
n∂

j
n+1 = ∂

j−1
n ∂ i

n+1 for 0 ≤ i < j ≤ n + 1, i.e., S is a presimplicial
�-semimodule (some authors would say that S is a semisimplicial �-semimodule).
Then

S : · · · ���� Sn

∂+
n ��

∂−
n

�� Sn−1
���� · · · �� �� S2

∂+
2 ��

∂−
2

�� S1

∂+
1 ��

∂−
1

�� S0
���� 0
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Cohomology monoids of monoids 245

where

∂+
n = ∂0

n + ∂2
n + · · · , ∂−

n = ∂1
n + ∂3

n + · · · ,

is a nonnegative chain complex of �-semimodules. We define the n-th homology
�-semimodule of the presimplicial �-semimodule S by Hn(S) = Hn(S), and also
homology and cohomology monoids of S with coefficients as those of the chain com-
plex S. Since any presimplicial map f : S −→ S′ can be clearly regarded as a
±-morphism from S to S′, the functoriality of these constructions is obvious. Further-
more, presimplicially homotopic presimplicial maps induce the same maps on homol-
ogy and cohomology (see [9] for details). These observstions enable one, in particular,
to consruct singular homology and cohomology monoids of topological spaces with
coefficients in abelian monoids so that the homotopy axiom holds. Indeed, if T is
a topological space, we set Hn(T ) = Hn(FS(T )), Hn(T, A) = Hn(FS(T ), A) and
Hn(T, A) = Hn(FS(T ), A), where A is an abelian monoid, S the singular complex
functor, and F the free abelian monoid functor. The homotopy axiom is satisfied since
a topological homotopy between two continuous maps induces a simplicial homotopy
between their images under the functor S.

Remark 3.6 Another construction of homology of a chain complex X = {Xn, ∂+
n , ∂−

n }
comes from [5,8]. Namely, one defines

Hn(X) = Zn(X)/ρ̃n(X), n ∈ Z,

where Zn(X) is as in Definition 3.1, i.e., Zn(X) = {
x ∈ Xn|∂+

n (x) = ∂−
n (x)

}
, and a

congruence ρ̃n(X) on Zn(X) is given by

x ρ̃n(X) y ⇔ x = y + ∂+
n+1(w) − ∂−

n+1(w) for some w in U (Xn+1).

However, it can be easily seen that the n-th singular homology monoid Hn(T ) of a
topological space T defined by Hn(T ) = Hn(FS(T )) is not a homotopy invariant.

Now let us introduce new cohomology monoids of monoids (and, in particular, of
groups) with coefficients in semimodules.

Let M be a monoid and A be a (left) M-semimodule. Define

Fn(M, A) = { f : Mn −→ A| f (x1, . . . , xi−1, 1, xi+1, . . . , xn)= 0, i = 1, 2, . . . , n},
n ≥ 0.

Clearly, Fn(M, A), together with the usual addition of functions, is an abelian monoid.
Next, define monoid homomorphisms dn−, dn+ : Fn(M, A) −→ Fn+1(M, A) as fol-
lows:

(dn± f )(x1, . . . , xn+1) = 0, n ≥ 0, if any xi = 1, i = 1, 2, . . . , (n + 1).
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246 A. Patchkoria

If each xi = 1, i = 1, 2, . . . , (n + 1), then

(d2k+ f )(x1, . . . , x2k+1) =
k∑

i=1

f (x1, . . . , x2i−1x2i , . . . , x2k+1) + f (x1, . . . , x2k),

k ≥ 0,

(d2k− f )(x1, . . . , x2k+1) = x1 f (x2, . . . , x2k+1)+
k∑

i=1

f (x1, . . . , x2i x2i+1, . . . , x2k+1),

k ≥ 0,

(d2k−1+ f )(x1, . . . , x2k) = x1 f (x2, . . . , x2k)

+
k−1∑

i=1

f (x1, . . . , x2i x2i+1, . . . , x2k) + f (x1, . . . , x2k−1), k ≥ 1,

(d2k−1− f )(x1, . . . , x2k) =
k∑

i=1

f (x1, . . . , x2i−1x2i , . . . , x2k), k ≥ 1.

It is immediate from the definitions that the identity

dn+dn−1+ + dn−dn−1− = dn+dn−1− + dn−dn−1+

holds for any n ≥ 1. In other words, the sequence

F(M, A) : 0 ���� F0(M, A)

d0+ ��

d0−
�� F1(M, A)

���� · · · ���� Fn(M, A)

dn+ ��
dn−

��

Fn+1(M, A)
���� · · ·

is a nonnegative cochain complex of abelian monoids. The n-th cohomology monoid
Hn(M, A) of M with coefficients in the M-semimodule A is defined by

Hn(M, A) = Hn(F(M, A)), n ≥ 0.

It is obvious that Hn(M,−) is a covariant additive functor from the category of M-
semimodules to the category of abelian monoids.

In particular, one has

H0(M, A) = {a ∈ A | xa = a for any x ∈ M};
H1(M, A) = { f : M −→ A | f (1) = 0 and x f (y) + f (x) = f (xy), x, y ∈ M}/ρ1,

fρ1 f ′ ⇔ ∃ a1, a2 ∈ A : f (x) + xa1 + a2 = f ′(x) + xa2 + a1, ∀ x ∈ M;
H2(M, A) = { f : M × M −→ A | f (x, 1) = 0 = f (1, y) and

x f (y, z) + f (x, yz) = f (xy, z) + f (x, y), x, y, z ∈ M}/ρ2,
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Cohomology monoids of monoids 247

fρ2 f ′ ⇔ ∃ g1, g2 : M −→ A : g1(1) = 0

= g2(1) and f (x, y) + xg1(y) + g1(x) + g2(xy)

= f ′(x, y) + xg2(y) + g2(x) + g1(xy), ∀ x, y ∈ M.

Remark 3.7 For an M-semimodule A, define

H n(M, A) = {
f ∈ Fn(M, A)|dn+( f ) = dn−( f )

}
/ρ̃ n,

where a congruence ρ̃ n is given by

f ρ̃ n f ′ ⇔ f = f ′ + dn−1+ (g) − dn−1− (g) for some g in U (Fn−1(M, A))

= Fn−1(M, U (A))

(see Remark 3.6). These cohomology monoids were introduced in [7,8] to describe
the Schreier extensions of semimodules by monoids, and in [5] to generalize the usual
Galois and Amitsur cohomology theories. They are adequate for many applications
(see e.g. [1,3–5,7,8]), but difficult to compute in general. Even in the case where M is
a group and A an abelian group with a zero o adjoined, i.e., U (A) = A−{o}, one faces
significant problems when trying to compute them (see e.g. [12]). Also observe that
if U (A) = {0}, then two cocycles f and f ′ are cohomologous if and only if f = f ′.
The cohomology monoid Hn(M, A) is more computable alternative to H n(M, A).
In Sect. 4 it is shown that Hn(M, A), unlike H n(M, A), can be calculated via free
resolutions. (Note that there is a natural surjective homomorphism of H n(M, A) onto
Hn(M, A) given by c̃l( f ) �→ cl( f ).)

Next we present an equivalent construction of Hn(M, A). Consider a sequence of
M-semimodules and M-homomorphisms

(B, ε) : · · · ���� Bn

∂+
n ��

∂−
n

�� Bn−1
���� · · · ���� B2

∂+
2 ��

∂−
2

�� B1

∂+
1 ��

∂−
1

�� B0
ε �� N

(∗)

in which N is regarded as a trivial M-semimodule, B0 = N(M) as a free
M-semimodule on 1, Bn (n > 0) is the free M-semimodule on the set of all symbols
[x1| · · · |xn] with xi ∈ M −{1}, and the M-homomorphisms ε, ∂+

1 , ∂−
1 , ∂+

n , ∂−
n , n > 1,

are defined as follows:

ε(1) = 1, ∂+
1 [x] = x, ∂−

1 [x] = 1, x ∈ M − {1},

and, making the convention that [x1| · · · |xn] = 0 if any x j = 1, we set

∂+
2k[x1| · · · |x2k] = x1[x2| · · · |x2k] +

k−1∑

i=1

[x1| · · · |x2i x2i+1| · · · |x2k] + [x1| · · · |x2k−1],

k ≥ 1,
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∂−
2k[x1| · · · |x2k] =

k∑

i=1

[x1| · · · |x2i−1x2i | · · · |x2k], k ≥ 1,

∂+
2k+1[x1| · · · |x2k+1] = x1[x2| · · · |x2k+1] +

k∑

i=1

[x1| · · · |x2i x2i+1| · · · |x2k+1], k ≥ 1,

∂−
2k+1[x1| · · · |x2k+1] =

k∑

i=1

[x1| · · · |x2i−1x2i | · · · |x2k+1] + [x1| · · · |x2k], k ≥ 1,

xi ∈ M − {1}, i = 1, 2, . . . .

It is easy to see that ∂+
n ∂+

n+1 + ∂−
n ∂−

n+1 = ∂+
n ∂−

n+1 + ∂−
n ∂+

n+1, n ≥ 1, and ε∂+
1 =

ε∂−
1 . In particular,

B : · · · �� �� Bn

∂+
n ��

∂−
n

�� Bn−1
���� · · · �� �� B2

∂+
2 ��

∂−
2

�� B1

∂+
1 ��

∂−
1

�� B0
���� 0

is a nonnegative chain complex. The n-th cohomology monoid Hn(B, A) of B with
coefficients in the M-semimodule A is naturally isomorphic to Hn(M, A). Indeed,
the canonical isomorphisms of abelian monoids

ξn : HomN(M)(Bn, A) ∼= Fn(M, A), n ≥ 0,

assemble into a ±-isomorphism of chain complexes

0 ⇒ HomN(M)(B0, A)

δ0+ ��
δ0−

��

ξ0 ∼=

��

HomN(M)(B1, A) ����

ξ1 ∼=

��

· · · ���� HomN(M)(Bn , A)

δn+ ��
δn−

��

ξn ∼=

��

HomN(M)(Bn+1, A) ⇒ · · ·

ξn+1 ∼=

��
0 ⇒ F0(M, A)

d0+ ��
d0−

�� F1(M, A)
���� · · · ���� Fn (M, A)

dn+ ��
dn−

�� Fn+1(M, A) ⇒ · · · ,

δn+ = HomN(M)(∂
(−)n+1

n+1 , A), δn− = HomN(M)(∂
(−)n

n+1 , A), n ≥ 0.

Hence

Hn(B, A) ∼= Hn(M, A), n ≥ 0.

Let A be an M-module, i.e., a module over K (N(M)) = Z(M), the integral monoid
ring of the monoid M . Then the cohomology monoids of F(M, A) are the cohomology
groups of the nonnegative (ordinary) cochain complex {Fn(M, A), dn+ − dn−} of
abelian groups (see 3.2). Hence, Hn(M, A) coincides with the usual n-th cohomology
group of M with coefficients in A. This is also clear from the latter construction of
the cohomology monoids. Indeed, the Z(M)-module completion of (∗) leads to the
normalized bar resolution of the trivial M-module Z
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· · · �� K (Bn)
K (∂+

n )−K (∂−
n ) �� K (Bn−1) �� · · · �� K (B1)

K (∂+
1 )−K (∂−

1 )
��

K (B0)
K (ε) �� Z −→ 0,

and HomZ(M)(K (Bn), A) = HomN(M)(Bn, A) for any M-module A.

4 Cohomology monoids of finite cyclic groups

In this section � always denotes an additively cancellative semiring, and all (left)
�-semimodules are cancellative.

Definition 3.1 ([10]) Let X = {Xn, ∂+
n , ∂−

n } and X ′ = {X ′
n, ∂

′+
n , ∂

′−
n } be chain com-

plexes of �-semimodules. We say that a sequence f = { fn} of �-homomorphisms
fn : Xn −→ X ′

n is a morphism from X to X ′ if

∂
′+
n fn + fn−1∂

−
n = ∂

′−
n fn + fn−1∂

+
n for all n.

A sequence f = { fn : Xn −→ X ′
n} of �-homomorphisms is a morphism from X

to X ′ if and only if K ( f ) = {K ( fn) : K (Xn) −→ K (X ′
n)} is the usual chain map

from K (X) to K (X ′) (see 3.4).
If f = { fn} : X −→ X ′ and g = {gn} : X ′ −→ X ′′ are morphisms, then

g f = {gn fn} : X −→ X ′′ is also a morphism. On the other hand, for every morphism
f = { fn} : X −→ X ′, one has fn(Zn(X)) ⊂ Zn(X ′), and Hn( f ) : Hn(X) −→
Hn(X ′) defined by Hn( f )(cl(x)) = cl( fn(x)) is a �-homomorphism. Therefore Hn

is a covariant additive functor from the category of chain complexes of cancellative
�-semimodules and their morphisms to the category of cancellative �-semimodules
(see 3.4).

Note that any ±-morphism between chain complexes of �-semimodules is a mor-
phism in the sense of 4.1.

Definition 3.2 ([10]) Let f = { fn} and g = {gn} be morphisms from X to X ′. We
say that f is homotopic to g if there exist �-homomorphisms s+

n , s−
n : Xn −→ X ′

n+1
such that

∂
′+
n+1s−

n + ∂
′−
n+1s+

n + s−
n−1∂

+
n + s+

n−1∂
−
n + fn = ∂

′+
n+1s+

n + ∂
′−
n+1s−

n + s+
n−1∂

+
n

+s−
n−1∂

−
n + gn

for all n. The family {s+
n , s−

n } is called a chain homotopy from f to g and we write
(s+, s−) : f ∼ g.

A family {s+
n , s−

n : Xn −→ X ′
n+1} of �-homomorphisms is a chain homotopy

from f to g if and only if {K (s+
n )− K (s−

n ) : K (Xn) −→ K (X ′
n+1)} is the usual chain

homotopy from K ( f ) : K (X) −→ K (X ′) to K (g) : K (X) −→ K (X ′) (see 3.4).
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Proposition 3.3 Let f, g : X −→ X ′ be morphisms between chain complexes of
�-semimodules. If f is homotopic to g, then

Hn( f ) = Hn(g) : Hn(X) −→ Hn(X ′) for all n.

We say that a morphism f : X −→ X ′ is a chain homotopy equivalence if there
exists a morphism g : X ′ −→ X and chain homotopies (s+, s−) :g f ∼ 1X and (t+, t−) :
f g∼ 1X ′ .

Corollary 3.4 If f : X −→ X ′ is a chain homotopy equivalence, then Hn( f ) :
Hn(X)−→ Hn(X ′) is an isomorphism of �-semimodules for each n.

One obviously defines a morphism of cochain complexes, a cochain homotopy, and
a cochain homotopy equivalence. The formulation of the statements dual to 4.3 and
4.4 is also obvious.

If a morphism f : X −→ X ′ is homotopic to a morphism g : X −→ X ′, then
K ( f ) : K (X) −→ K (X ′) is homotopic to K (g) : K (X) −→ K (X ′) in the usual
sense. The converse is not always true. However, the following proposition is valid.

Proposition 3.5 ([10]) Suppose that X = {Xn, ∂+
n , ∂−

n } is a chain complex of free
�-semimodules, X ′ = {X ′

n, ∂
′+
n , ∂

′−
n } a chain complex of �-semimodules and f, g :

X −→ X ′ are morphisms, and let K ( f ) be homotopic to K (g). Then f is homotopic
to g.

Proof Suppose that {sn : K (Xn) −→ K (X ′
n+1)} is a chain homotopy from K ( f ) to

K (g), i.e., K ( fn)−K (gn) = (K (∂ ′+
n+1)−K (∂ ′−

n+1))sn +sn−1(K (∂+
n )−K (∂−

n )). Since
Xn is a free �-semimodule, one has a representation sn = K (s+

n )− K (s−
n ), where s+

n
and s−

n are �-homomorphisms from Xn to X ′
n+1. Indeed, let T be a �-basis of Xn .

For any t ∈ T , sn(t) = x ′
t − y′

t , x ′
t , y′

t ∈ X ′
n+1. Defining s+

n and s−
n by s+

n (t) = x ′
t

and s−
n (t) = y′

t , respectively, we obtain the desired representation. Clearly, the family
{s+

n , s−
n } is a chain homotopy from f to g. ��

Definition 3.6 Let C be a �-semimodule. A sequence

(X, ε) : · · · ���� Xn

∂+
n ��

∂−
n

�� Xn−1
���� · · · ���� X2

∂+
2 ��

∂−
2

�� X1

∂+
1 ��

∂−
1

�� X0
ε �� C

of �-semimodules and �-homomorphisms, shortly denoted by X
ε �� C , is called

an augmented chain complex over C , or simply a complex over C , if

X : · · · ���� Xn

∂+
n ��

∂−
n

�� Xn−1
���� · · · �� �� X2

∂+
2 ��

∂−
2

�� X1

∂+
1 ��

∂−
1

�� X0
���� 0

is a nonnegative chain complex and ε∂+
1 = ε∂−

1 . A morphism from X
ε �� C to

X ′ ε′
�� C ′ is a morphism f = { fn} from X to X ′ together with a�-homomorphism

γ : C −→C ′ satisfying γ ε = ε′ f0. We also say that f is a morphism over γ .
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Definition 3.7 A chain complex

X : · · · �� �� Xn+1

∂+
n+1 ��

∂−
n+1

�� Xn

∂+
n ��

∂−
n

�� Xn−1
���� · · ·

is called K -exact if the ordinary chain complex of K (�)-modules

K (X) : · · · �� K (Xn+1)
K (∂+

n+1)−K (∂−
n+1) �� K (Xn)

K (∂+
n )−K (∂−

n ) �� K (Xn−1) �� · · ·

is an exact sequence. Similarly, an augmented chain complex

· · · �� �� Xn

∂+
n ��

∂−
n

�� Xn−1
���� · · · �� �� X1

∂+
1 ��

∂−
1

�� X0
ε �� C

is said to be K -exact if the ordinary chain complex of K (�)-modules

· · · −→ K (Xn)
K (∂+

n )−K (∂−
n ) �� K (Xn−1) −→ · · · −→ K (X1)

K (∂+
1 )−K (∂−

1 ) ��

K (X0)
K (ε) �� K (C) −→ 0

is exact.

Proposition 3.8 Suppose we are given a diagram

F
ε ��

f
��

g

��

C

γ

��
F ′ ε′

�� C ′

in which F
ε �� C is a complex of free �-semimodules over a �-semimodule C

and F ′ ε′
�� C ′ is a K -exact augmented chain complex of (not necessarily free)

�-semimodules over a �-semimodule C ′, and f, g : F −→ F ′ are morphisms over
a �-homomorphism γ : C −→C ′. Then f is homotopic to g.

Proof From the given diagram we get the diagram

K (F)
K (ε) ��

K ( f )

��
K (g)

��

K (C)

K (γ )

��
K (F ′)

K (ε′) �� K (C ′),
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where K (F)
K (ε) �� K (C) is an ordinary chain complex of free K (�)-modules over

the K (�)-module K (C) and K (F ′)
K (ε′) �� K (C ′) is a resolution of the K (�)-module

K (C ′), and K ( f ), K (g) are chain maps lifting the K (�)-homomorphism K (γ ). By
the Comparison Theorem (see, for example, [6, Theorem III.6.1]), K ( f ) is homotopic
to K (g). Therefore, by Proposition 4.5, f is homotopic to g. ��

Note that if F
ε �� C , F ′ ε′

�� C ′ and γ : C −→ C ′ are as in 4.8, then a
lifting of γ , i.e., a morphism f : F −→ F ′ over γ , may not exist at all.

As an immediate consequence of Proposition 4.8, we have

Corollary 4.9 Let F
ε �� C and F ′ ε′

�� C be K -exact complexes of free �-
semimodules over a �-semimodule C, and assume that f : F −→ F ′ and g : F ′ −→
F are morphisms over 1C : C −→ C. Then g f ∼ 1F and f g∼ 1F ′ .

Finally, we come to the desired calculations of cohomology monoids of finite cyclic
groups.

Let Cm(t) be the multiplicative cyclic group of order m with generator t. Using
four particular elements 0, 1, t and N = 1 + t + · · · + tm−1 in N(Cm(t)), we obtain
a K -exact augmented chain complex of free N(Cm(t))-semimodules over the trivial
N(Cm(t))-semimodule N

(W, ε) : · · · ���� N(Cm(t))
t∗ ��
1

�� N(Cm(t))
N∗ ��
0

�� N(Cm(t))
t∗ ��
1

��

N(Cm(t))
ε �� N,

ε(1) = 1, t∗(u) = tu, N∗(u) = (1 + t + · · · + tm−1)u.

On the other hand, for Cm(t) we have the augmented chain complex (∗) of
free Cm(t)-semimodules over N which is also K -exact and which we denote by

B(Cm(t))
ε �� N . There are morphisms

f = (. . . , fn, . . . , f3, f2, f1, 1) : W −→ B(Cm(t))

and

g = (. . . , gn, . . . , g3, g2, g1, 1) : B(Cm(t)) −→ W

over 1N : N −→ N defined as follows:

f1(1) = [t],

f2k(1) =
m−1∑

i1,i2,...,ik=1

[t i1 |t |t i2 |t | · · · |t ik |t] ∈ B2k(Cm(t)), k ≥ 1,
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f2k+1(1) =
m−1∑

i1,i2,...,ik=1

[t |t i1 |t |t i2 |t | · · · |t ik |t] ∈ B2k+1(Cm(t)), k ≥ 1,

and

g1[t i ] = 1 + t + · · · + t i−1, 0 < i < m,

g2k[t i1 | · · · |t i2k ] =
{

1, if (i1 + i2 ≥ m) & · · · & (i2k−1 + i2k ≥ m),

0, otherwise,

0 < i1, . . . , i2k < m, k ≥ 1,

g2k+1[t i1 | · · · |t i2k+1 ]

=
{

1 + t + · · · t i1−1, if (i2 + i3 ≥ m) & · · · &(i2k + i2k+1 ≥ m),

0, otherwise,

0 < i1, i2, . . . , i2k+1 < m, k ≥ 1.

By Corollary 4.9, g f ∼ 1W and f g∼ 1B(Cm(t)). Let A be a cancellative Cm(t)-
semimodule. The additive (contravariant) functor HomN(Cm(t))(−, A) carries chain
homotopies to cochain homotopies. Besides, one has a natural isomorphism (of abelian
monoids) HomN(Cm(t))(N(Cm(t)), A) ∼= A given by h �→ h(1). Consequently, by
the statement dual to Corollary 3.4, the cohomology monoid Hn(Cm(t), A) (n ≥ 0)

is isomorphic to the n-th cohomology monoid of the cochain complex

0
���� A

1 ��

t∗
�� A

N∗
��

0
�� A

�� ��
1 ��

t∗
�� A

N∗
��

0
�� A

�� �� · · · ,

t∗(a) = ta, N∗(a) = (1 + t + · · · + tm−1)a.

Hence

H0(Cm(t), A) ∼= {a ∈ A | ta = a},
H2k(Cm(t), A) ∼= {a ∈ A | ta = a}/(1 + t + · · · + tm−1)A, k > 0,

H2k+1(Cm(t), A) ∼= {a ∈ A | (1 + t + · · · + tm−1)a = 0}/ρ2k+1,

a ρ2k+1 a′ ⇐⇒ ∃a1, a2 ∈ A : a + a1 + ta2 = a′ + a2 + ta1, k ≥ 0,

for any cancellative Cm(t)-semimodule A.

Further, since A is a cancellative Cm(t)-semimodule, one has the natural injective
homomorphism

{a ∈ A | ta = a}/(1 + t + · · · + tm−1)A
��

{b ∈ K (A) | tb = b}/(1 + t + · · · + tm−1)K (A),

cl(a) �→ cl(a),
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which is in fact an isomorphism. Indeed, suppose b ∈ K (A), i.e., b = a1 −
a2, a1, a2 ∈ A, and assume that tb = b, i.e., ta1 + a2 = ta2 + a1. Consider
a = a1+(t+t2+· · ·+tm−1)a2 ∈ A. Clearly, ta = a and a−b = (1+t+· · ·+tm−1)a2.

Hence cl(a) �→ cl(a) = cl(b). Thus, the correspondence given by cl(a) �→ cl(a) is
an isomorphism. Consequently, H2k(Cm(t), A) ∼= H2k(Cm(t), K (A)) for k > 0.

Next, it is obvious that

{a ∈ A | (1 + t + · · · + tm−1)a = 0} = {a ∈ U (A) | (1 + t + · · · + tm−1)a = 0}

and, for a ∈ U (A),

a ρ2k+1 0 ⇐⇒ a ∈ U (A) ∩ (t − 1)K (A), k = 0, 1, . . . .

Thus, we come to the following result (cf. e.g. [6, Theorem IV.7.1]).

Theorem 4.10 Let Cm(t) be the multiplicative cyclic group of order m on generator
t. If A is a cancellative Cm(t)-semimodule, then

H0(Cm(t), A) ∼= {a ∈ A | ta = a},
H2k(Cm(t), A) ∼= H2k(Cm(t), K (A)), k > 0,

H2k+1(Cm(t), A) ∼= {a ∈ U (A)|(1 + t + · · · + tm−1)a = 0}/U (A) ∩ (t − 1)K (A),

k ≥ 0.

In particular, we see that Hn(Cm(t), A) is an (abelian) group for n > 0.

Remark 4.11 Let M be a monoid and A be a right M-semimodule. The n-th homology
monoid Hn(M, A) of M with coefficients in A is that of the chain complex B, i.e.,

Hn(M, A) = Hn(A ⊗M B), n = 0, 1, . . . .

If A is a cancellative Cm(t)-semimodule, then, by applying A ⊗Cm (t) − to W , we
obtain

H0(Cm(t), A) ∼= A/ρ0, a ρ0 a′ ⇐⇒ ∃a1, a2 ∈ A : a + ta1 + a2 = a′ + ta2 + a1,

H2k(Cm(t), A) ∼= {a ∈ U (A) | (1 + t + · · · + tm−1)a = 0}/U (A) ∩ (t − 1)K (A),

k > 0,

H2k+1(Cm(t), A) ∼= H2k+1(Cm(t), K (A)), k ≥ 0.
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