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ABSTRACT. Thehomology semimodules H, (S) of a presimplicial semimodule Sare studied in the

casewhere Sisasmplicial abelian monoid. In particular, it isshown that if asimplicial abelian monoid
A satisfiesthe Kan condition and the monoid of path components of A isa group, then the homology

monoids H,(A) areisomorphictothe homotopy groups p,(A). © 2017 Bull. Georg. Natl. Acad. ci.
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In[1] aversion of homological algebrafor semimodules and its applications are given (for further devel-
opmentsand applications see[2-4]). Inthe present paper, thehomology semimodules H , (S) of apresmplicia
semimodule S, introduced in[1], are studied in the case where Sisasimplicia abelian monoid.

L et us begin with the following two definitions and theorem, the semimodule versions of which are given
in [1].

Definition 1. We say that a sequence of abelian monoids and monoid homomorphisms

Ont o
n+l - s Xn $ Xn—l

0 o~
Ons On

Xieee 3 X g+,  NeZ,

written X ={X,,0;,,0,} for short, isachain complex if
a; 6;+1+a; Onsa1 :a; Ons1+0 6;+1
for each integer n. For every chain complex X, we define the monoid
Z,(0) ={ xe X, 18509 = 6,09},
the n-cycles, and the n-th homol ogy monoid
H,(X)=Z,(X)/r,(X),
where r ,(X) isacongruenceon Z,(X) defined asfollows:
Xra(X)y < X+05,1(U)+0,,1(V) = y+05,1(V) + 05,4 (u) forsome u,v in X,

The homomorphisms 6}, 0,, arecalled differentials of the chain complex X.
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Definition 2. Let X ={X,,,0;,05} and X' ={X},,0;,8,} bechaincomplexesof abelian monoids. We
say that asequence f ={f,} of monoid homomorphisms f,: X,, = X/ isa + - morphismfrom Xto X' if
fo0n=0+f, ad f,,0,=0,f, fordl n.

If f={f}:X — X" isazx-morphismof chaincomplexes, then f,(Z,(X)) < Z,(X"), and themap

Hy () 1 H, (X) > HL (X, Hp(F)(c (X)) = el (f,(x)),

is a homomorphism of monoids. Thus, H,, isacovariant additive functor from the category of chain com-
plexes and their + -morphismsto the category of abelian monoids.

Recall that apresimplicial abelian monoid Aisasequence of abelianmonoids Ay, A, A,,... together with
monoid homomorphisms, called face operators,

oA > A, nxl 0<i<n,

such that

ool =0l if O0<i<j<n+l

Suppose A:{Aj,ain} and B:{Bn,d,i]} arepresimplicial abelian monoids. A morphism (or apresimplicial

map) f : A— B isacollection of monoid homomorphisms f, : A, — B, satisfying f, ;8! =d! f. foralli
andforall n.
If Aisapresimplicial abelian monoid, then

A ITAT AL T T IAT_3A

pe
Cﬂ

where
Oh=00+32 4, O, =0+ 4+,

is a nonnegative chain complex of abelian monoids. Using the greatest integer function, one can write

n n-1
[51 [7]

oh =Y 0%, O0n =D 05,
k=0 k=0

We define the n-th homology monoid of the presimplicial abelian monoid A by
Ho(A) =H,(A).

Clearly, if f ={f,} isamorphismfromapresimplicial abelian monoid A={Ah,ain} toapresimplicia
abelianmonoid B={B,,d}} ,thend, f = f .0 andd  f, = f ,0, foral n>1,thatis, fcanberegarded
asa + -morphismfrom A to B . Consequently, H,(A) isacovariant additive functor from the category of
presimplicial abelian monoids and their morphisms to the category of abelian monoids.

Let f={f,} and g={g,} be morphisms from a presimplicial abelian monoid A={Ah,ain} to a
presimplicial abelian monoid B:{Bn,d,i]} .Onesaysthat f ispresimplicialy homotopic to g if thereisa

family h of monoid homomorphisms ), : A, — B,,;, 0<i<n, n=0,1,..., suchthat

dr?+l S = fn* dr?rllhrrm1 = 0On»
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dhahl =m0, if i<,

IR T S AR B I :
d, i hy"=dhy if 0<j<n,

dahf =hont i P> j+L
Theorem 3. Supposethat f: A— B and g: A— B are morphismsof presimplicial abelian monoids.
If f ispresimplicially homotopic to g, then
H,(f)=H.(9):H,(A) - H,(B)
for all n.

For any presimplicial abelian monoid A, we define the normalized chain complex associated to A as
follows:

N =N (AN, L (A =3 3N, (A =3 N (A =3 N, (A =30,
where
No(A) = Ay, Ny(A)=A nKer(d)), Ny(A)=A, nKer(89) NKer (d3), -,
N, (A) = A, "Ker(@2)n---nKer (00,

n ’ ’

dy =

n

OnINy(A) if niseven, 0 if niseven,
0 if nisodd, " |87 N, (A if nisodd.

Itiseasy to seethat theinclusions of abelian monoids i, : N,(A) - A,, n>0, assembleintoa + -morphism
of nonnegative chain complexes

d;

NA): - =N (AN, (A =+ =N (A 3 N (A= 3Ny (A) =30

" ol il S W

AL =3 A =3 A, A =3 A =3 A —30

%2 01

Consequently, for each n, we have a natural homomorphism of abelian monoids
Ha(ia): Ha(N(A) = Ho(A) = Ho(A), H,(ia)(d () = ¢l (a).
Now recall that asimplicia abelian monoid isapresimplicial abelian monoid A together with degeneracy
homomorphisms

S :A —>A., 0<i<n,

satisfying
SiJI:::II:all"I' I < j!
OhyaSh = 1id, i=j j+1
Siflair;lv i>j+1
and

Sas =%, <]
Elementsof A, arecalled n-simplices.
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LetAand A" besimplicial abelianmonoids. A simplicial map f : A— A’ isafamily of homomorphisms
(' A, = Al)nso Which commute with the face and degeneracy operators.
One says that a simplicial abelian monoid A satisfies the Kan condition if for every collection of n+1

n-simplices ay,8,...,8_1,8y.1,.--, 84, Saisfying the compatibility condition ain(aj) =8rj,’1(a1-), i<j,

i #k, j#Kk, thereexistsan (n+1) -smplex a such that aiml(a) =g fori=k
Let AbeaKansimplicial abelian monoid. Theabelian monoid p,(A) , themonoid of path components of
A, and the abelian group p,(A), n>1, the n-th homotopy group of A, are defined as follows:
Po(A=Alrg, pa(A={acA |0 (a)=0 0<i<n/r, n>1
where r ,, N> 0, isacongruence given by
ar,b < thereis ce A, with op,,(c)=a,
o"c)=h, and &' ,,(c)=0 for O<i<n.
(Seeeg.[5] for details.)

Theorem 4. Let A be a Kan simplicial abelian monoid. Then the monoid H, (N(A)),n>1, isagroup,
and coincideswith thegroup p,,(A) . If, inaddition, p,(A) isagroup, then Hy(N(A)) isalsoagroup, and
coincides with p,(A) .

Before we continue, we recall that the group completion of an abelian monoid Scan be constructed inthe
following way. Define an equivalencerelation ~on Sx S asfollows:

uv)~(Xy)ou+y+z=v+x+z forsome zeS
Let [u,v] denote the equivalence class of (u,v). The quotient set (SxS)/~ with the addition
[%, Vil + 1%, Yol =[% + %o, ¥y + Y,] isanabeliangroup (0=[x, X], —[X, y] =[Y, X]) . Thisgroup, denoted by
K(S) , isthegroup completion of S The canonical homomorphism kg : S — K(S) sendsxto [x,0].

Proposition 5. Suppose that A is a simplicial abelian monoid, K(A) its group completion and
ks : A— K(A) the canonical simplicial map. Then the induced homomor phism

Ho(ka) : Ho(A) > Ho(K(A),  H,(ky)(l(2) =d ([a,0)),

isan injection for each n.
Thisproposition, Theorem 4 and Theorem 1.7 of [6] lead to

Theorem 6. Let A be a Kan simplicial abelian monoid such that py(A) isa group. Then the map
Hy(ia) i Hy(N(A) = H, (A),  H(ia)(d (@) =cl(a),
isan isomorphismfor all n.
Combining Theorems4 and 6, we have

Corollary 7. For any Kan simplicial abelian monoid A with p,(A) agroup, H,(A) isisomorphic to
p,(A) forall n.

Notethat all the results stated herefor smplicial abelian monoids admit straightforward generalizationsto
the case of simplicial semimodules.
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18/5-113/13.
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