Mathematics

On Homology Monoids of Simplicial Abelian Monoids

Alex Patchkoria

A. Razmadze Mathematical Institute, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia (Presented by Academy Member Hvedri Inassaridze)

ABSTRACT. The homology semimodules $H_n(S)$ of a presimplicial semimodule S are studied in the case where S is a simplicial abelian monoid. In particular, it is shown that if a simplicial abelian monoid A satisfies the Kan condition and the monoid of path components of A is a group, then the homology monoids $H_n(A)$ are isomorphic to the homotopy groups $f_n(A)$. © 2017 Bull. Georg. Natl. Acad. Sci.

Key words: simplicial abelian monoid, Kan condition, homology monoid, homotopy group

In [1] a version of homological algebra for semimodules and its applications are given (for further developments and applications see [2-4]). In the present paper, the homology semimodules $H_n(S)$ of a presimplicial semimodule S, introduced in [1], are studied in the case where S is a simplicial abelian monoid.

Let us begin with the following two definitions and theorem, the semimodule versions of which are given in [1].

Definition 1. We say that a sequence of abelian monoids and monoid homomorphisms

$$X: \cdots \longrightarrow X_{n+1} \xrightarrow{\stackrel{\hat{\mathcal{O}}_{n+1}^+}{\widehat{\mathcal{O}}_{n+1}^-}} X_n \xrightarrow{\stackrel{\hat{\mathcal{O}}_n^+}{\widehat{\mathcal{O}}_n^-}} X_{n-1} \longrightarrow \cdots, \qquad n \in \mathbb{Z},$$

written $X = \{X_n, \partial_n^+, \partial_n^-\}$ for short, is a *chain complex* if

$$\partial_n^+ \partial_{n+1}^+ + \partial_n^- \partial_{n+1}^- = \partial_n^+ \partial_{n+1}^- + \partial_n^- \partial_{n+1}^+$$

for each integer n. For every chain complex X, we define the monoid

$$Z_n(X) = \left\{ x \in X_n \mid \partial_n^+(x) = \partial_n^-(x) \right\},\,$$

the *n-cycles*, and the *n-th homology* monoid

$$H_n(X) = Z_n(X) / ..._n(X),$$

where $..._n(X)$ is a congruence on $Z_n(X)$ defined as follows:

$$x \dots_n(X) \ y \iff x + \hat{o}_{n+1}^+(u) + \hat{o}_{n+1}^-(v) = y + \hat{o}_{n+1}^+(v) + \hat{o}_{n+1}^-(u) \text{ for some } u, v \text{ in } X_{n+1}$$

The homomorphisms $\partial_n^+, \partial_n^-$ are called *differentials* of the chain complex X.

8 Alex Patchkoria

Definition 2. Let $X = \{X_n, \partial_n^+, \partial_n^-\}$ and $X' = \{X'_n, \partial_n'^+, \partial_n'^-\}$ be chain complexes of abelian monoids. We say that a sequence $f = \{f_n\}$ of monoid homomorphisms $f_n : X_n \to X'_n$ is a \pm -morphism from X to X' if

$$f_{n-1}\partial_n^+ = \partial_n^{'+} f_n$$
 and $f_{n-1}\partial_n^- = \partial_n^{'-} f_n$ for all n .

If $f=\{f_n\}: X \to X'$ is a \pm -morphism of chain complexes, then $f_n(Z_n(X)) \subset Z_n(X')$, and the map $H_n(f): H_n(X) \to H_n(X'), \ \ H_n(f)(cl(x)) = cl(f_n(x)),$

is a homomorphism of monoids. Thus, H_n is a covariant additive functor from the category of chain complexes and their \pm -morphisms to the category of abelian monoids.

Recall that a presimplicial abelian monoid A is a sequence of abelian monoids A_0, A_1, A_2, \ldots together with monoid homomorphisms, called face operators,

$$\partial_n^i: A_n \to A_{n-1}, \quad n \ge 1, \quad 0 \le i \le n,$$

such that

$$\partial_n^i \partial_{n+1}^j = \partial_n^{j-1} \partial_{n+1}^i$$
 if $0 \le i < j \le n+1$.

Suppose $A = \{A_n, \hat{\mathcal{O}}_n^i\}$ and $B = \{B_n, \mathsf{u}_n^i\}$ are presimplicial abelian monoids. A morphism (or a presimplicial map) $f: A \to B$ is a collection of monoid homomorphisms $f_n: A_n \to B_n$ satisfying $f_{n-1}\hat{\mathcal{O}}_n^i = \mathsf{u}_n^i f_n$ for all i and for all n.

If A is a presimplicial abelian monoid, then

$$\underline{A}:\cdots \longrightarrow A_n \xrightarrow[\overline{\partial_n^+}]{\partial_n^+} A_{n-1} \longrightarrow \cdots \longrightarrow A_2 \xrightarrow[\overline{\partial_2^+}]{\partial_2^+} A_1 \xrightarrow[\overline{\partial_1^+}]{\partial_1^+} A_0 \longrightarrow 0,$$

where

$$\partial_n^+ = \partial_n^0 + \partial_n^2 + \cdots, \qquad \partial_n^- = \partial_n^1 + \partial_n^3 + \cdots,$$

is a nonnegative chain complex of abelian monoids. Using the greatest integer function, one can write

$$\partial_n^+ = \sum_{k=0}^{\left[\frac{n}{2}\right]} \partial_n^{2k}, \qquad \partial_n^- = \sum_{k=0}^{\left[\frac{n-1}{2}\right]} \partial_n^{2k+1}.$$

We define the *n-th homology monoid of the presimplicial abelian monoid A* by

$$H_n(A) = H_n(\underline{A}).$$

Clearly, if $f=\{f_n\}$ is a morphism from a presimplicial abelian monoid $A=\{A_n, \widehat{\mathcal{O}}_n^i\}$ to a presimplicial abelian monoid $B=\{B_n, \mathsf{u}_n^i\}$, then $\mathsf{u}_n^+ f_n = f_{n-1}\widehat{\mathcal{O}}_n^+$ and $\mathsf{u}_n^- f_n = f_{n-1}\widehat{\mathcal{O}}_n^-$ for all $n \geq 1$, that is, f can be regarded as a \pm -morphism from \underline{A} to \underline{B} . Consequently, $H_n(A)$ is a covariant additive functor from the category of presimplicial abelian monoids and their morphisms to the category of abelian monoids.

Let $f = \{f_n\}$ and $g = \{g_n\}$ be morphisms from a presimplicial abelian monoid $A = \{A_n, \widehat{o}_n^i\}$ to a presimplicial abelian monoid $B = \{B_n, \mathsf{u}_n^i\}$. One says that f is presimplicially homotopic to g if there is a family h of monoid homomorphisms $h_n^i: A_n \to B_{n+1}, \ 0 \le i \le n, \ n = 0,1,\ldots$, such that

$$\mathsf{u}_{n+1}^{\,0}h_n^0=f_n, \quad \mathsf{u}_{n+1}^{\,n+1}h_n^n=g_n,$$

$$\begin{aligned} & \mathsf{U}_{n+1}^i h_n^j = h_{n-1}^{j-1} \widehat{\mathcal{O}}_n^i & \text{if} & i < j, \\ & \mathsf{U}_{n+1}^{j+1} h_n^{j+1} = \mathsf{U}_{n+1}^{j+1} h_n^j & \text{if} & 0 \le j < n, \\ & \mathsf{U}_{n+1}^i h_n^j = h_{n-1}^j \widehat{\mathcal{O}}_n^{i-1} & \text{if} & i > j+1. \end{aligned}$$

Theorem 3. Suppose that $f: A \to B$ and $g: A \to B$ are morphisms of presimplicial abelian monoids. If f is presimplicially homotopic to g, then

$$H_n(f) = H_n(g) : H_n(A) \rightarrow H_n(B)$$

for all n.

For any presimplicial abelian monoid A, we define the *normalized chain complex* associated to A as follows:

$$N(A): \cdots \longrightarrow N_n(A) \xrightarrow{d_n^+} N_{n-1}(A) \longrightarrow \cdots \longrightarrow N_2(A) \xrightarrow{d_2^+} N_1(A) \xrightarrow{d_1^+} N_0(A) \longrightarrow 0,$$

where

$$\begin{split} N_0(A) &= A_0, \quad N_1(A) = A_1 \cap Ker(\widehat{o}_1^0), \quad N_2(A) = A_2 \cap Ker(\widehat{o}_2^0) \cap Ker(\widehat{o}_2^1), \cdots, \\ N_n(A) &= A_n \cap Ker(\widehat{o}_n^0) \cap \cdots \cap Ker(\widehat{o}_n^{n-1}), \cdots, \\ d_n^+ &= \begin{cases} \widehat{o}_n^n \mid N_n(A) & \text{if n is even,} \\ 0 & \text{if n is odd,} \end{cases} \quad d_n^- = \begin{cases} 0 & \text{if n is even,} \\ \widehat{o}_n^n \mid N_n(A) & \text{if n is odd.} \end{cases} \end{split}$$

It is easy to see that the inclusions of abelian monoids $i_n: N_n(A) \to A_n$, $n \ge 0$, assemble into a \pm -morphism of nonnegative chain complexes

$$N(A): \cdots \longrightarrow N_n(A) \xrightarrow{d_n^+} N_{n-1}(A) \longrightarrow \cdots \longrightarrow N_2(A) \xrightarrow{d_2^+} N_1(A) \xrightarrow{d_1^+} N_0(A) \longrightarrow 0$$

$$\downarrow_{i_A} \downarrow \qquad \downarrow_{i_n} \downarrow \qquad \downarrow_{i_{n-1}} \downarrow \qquad \downarrow_{i_2} \downarrow \qquad \downarrow_{i_1} \downarrow \qquad \downarrow_{i_0} \downarrow$$

$$\underline{A}: \cdots \longrightarrow A_n \xrightarrow{\partial_n^+} A_{n-1} \longrightarrow \cdots \longrightarrow A_2 \xrightarrow{\partial_2^+} A_1 \xrightarrow{\partial_1^+} A_0 \longrightarrow 0.$$

Consequently, for each n, we have a natural homomorphism of abelian monoids

$$H_n(i_A): H_n(N(A)) \to H_n(\underline{A}) = H_n(A), \quad H_n(i_A)(cl(a)) = cl(a).$$

Now recall that a simplicial abelian monoid is a presimplicial abelian monoid A together with degeneracy homomorphisms

$$s_n^i: A_n \to A_{n+1}, \quad 0 \le i \le n,$$

satisfying

$$\hat{\mathcal{O}}_{n+1}^{i} s_{n}^{j} = \begin{cases} s_{n-1}^{j-1} \hat{\mathcal{O}}_{n}^{i}, & i < j, \\ \mathrm{id}, & i = j, \ j+1, \\ s_{n-1}^{j} \hat{\mathcal{O}}_{n}^{i-1}, & i > j+1, \end{cases}$$

and

$$s_{n+1}^i s_n^j = s_{n+1}^{j+1} s_n^i, \quad i \le j.$$

Elements of A_n are called *n*-simplices.

10 Alex Patchkoria

Let A and A' be simplicial abelian monoids. A simplicial map $f: A \to A'$ is a family of homomorphisms $(f_n: A_n \to A'_n)_{n \ge 0}$ which commute with the face and degeneracy operators.

One says that a simplicial abelian monoid A satisfies the Kan condition if for every collection of n+1 n-simplices $a_0, a_1, \ldots, a_{k-1}, a_{k+1}, \ldots, a_{n+1}$ satisfying the compatibility condition $\partial_n^i(a_j) = \partial_n^{j-1}(a_i)$, i < j, $i \neq k$, $j \neq k$, there exists an (n+1)-simplex a such that $\partial_{n+1}^i(a) = a_i$ for $i \neq k$.

Let A be a Kan simplicial abelian monoid. The abelian monoid $f_0(A)$, the monoid of path components of A, and the abelian group $f_n(A)$, $n \ge 1$, the n-th homotopy group of A, are defined as follows:

$$f_0(A) = A_0 / ..._0, \quad f_n(A) = \{a \in A_n \mid \partial_n^i(a) = 0, \ 0 \le i \le n\} / ..._n, \quad n \ge 1,$$

where $..._n$, $n \ge 0$, is a congruence given by

$$a \dots_n b \iff \text{there is } c \in A_{n+1} \text{ with } \partial_{n+1}^n(c) = a,$$

$$\partial_{n+1}^{n+1}(c) = b$$
, and $\partial_{n+1}^{i}(c) = 0$ for $0 \le i < n$.

(See e.g. [5] for details.)

Theorem 4. Let A be a Kan simplicial abelian monoid. Then the monoid $H_n(N(A))$, $n \ge 1$, is a group, and coincides with the group $f_n(A)$. If, in addition, $f_0(A)$ is a group, then $H_0(N(A))$ is also a group, and coincides with $f_0(A)$.

Before we continue, we recall that the group completion of an abelian monoid S can be constructed in the following way. Define an equivalence relation \sim on $S \times S$ as follows:

$$(u,v) \sim (x,y) \Leftrightarrow u+y+z=v+x+z$$
 for some $z \in S$.

Let [u,v] denote the equivalence class of (u,v). The quotient set $(S \times S)/\sim$ with the addition $[x_1,y_1]+[x_2,y_2]=[x_1+x_2,y_1+y_2]$ is an abelian group (0=[x,x],-[x,y]=[y,x]). This group, denoted by K(S), is the group completion of S. The canonical homomorphism $k_S:S\to K(S)$ sends x to [x,0].

Proposition 5. Suppose that A is a simplicial abelian monoid, K(A) its group completion and $k_A: A \to K(A)$ the canonical simplicial map. Then the induced homomorphism

$$H_n(k_A): H_n(A) \to H_n(K(A)), \quad H_n(k_A)(cl(a)) = cl([a,0]),$$

is an injection for each n.

This proposition, Theorem 4 and Theorem 1.7 of [6] lead to

Theorem 6. Let A be a Kan simplicial abelian monoid such that $f_0(A)$ is a group. Then the map

$$H_n(i_A): H_n(N(A)) \rightarrow H_n(A), \quad H_n(i_A)(cl(a)) = cl(a),$$

is an isomorphism for all n.

Combining Theorems 4 and 6, we have

Corollary 7. For any Kan simplicial abelian monoid A with $f_0(A)$ a group, $H_n(A)$ is isomorphic to $f_n(A)$ for all n.

Note that all the results stated here for simplicial abelian monoids admit straightforward generalizations to the case of simplicial semimodules.

Acknowledgement. This work was supported by Shota Rustaveli National Science Foundation Grant DI/ 18/5-113/13.

მათემატიკა

სიმპლიციალური აბელის მონოიდების ჰომოლოგიის მონოიდების შესახებ

ა. პაჭკორია

ივანე ჯავახიშვილის სახელობის თბილისის სახელმწიფო უნივერსიტეტი, ა. რაზმაძის მათემატიკის ინსტიტუტი, თბილისი, საქართველო

(წარმოდგენილია აკადემიის წევრის ხ. ინასარიძის მიერ)

პრესიმპლიციალური S ნახევრადმოდულის ჰომოლოგიის $H_{\mathbf{n}}(S)$ ნახევრადმოდულები შესწავლილია იმ შემთხვევაში, როცა S არის სიმპლიციალური აბელის მონოიდი. კერძოდ, დადგენილია, რომ თუ სიმპლიციალური აბელის მონოიდი A აკმაყოფილებს კანის პირობას და $f_{\mathbf{n}}(A)$ ჯგუფია, მაშინ $H_{\mathbf{n}}(A)$ მონოიდი $f_{\mathbf{n}}(A)$ ჯგუფის იზომორფულია ($n \ge 0$).

REFERENCES

- 1. Patchkoria A. (2000) Homology and cohomology monoids of presimplicial semimodules. *Bull. Georg. Acad. Sci.*, **162**, 1: 9-12.
- 2. Patchkoria A. (2000) Chain complexes of cancellative semimodules. Bull. Georg. Acad. Sci., 162, 2: 206-208.
- 3. Patchkoria A. (2006) On exactness of long sequences of homology semimodules. *Journal of Homotopy and Related Structures*, 1, 1: 229-243.
- 4. Patchkoria A. (2014) Cohomology monoids of monoids with coefficients in semimodules I. *Journal of Homotopy and Related Structures*, **9**, 1: 239-255.
- 5. May J. P. (1967) Simplicial objects in algebraic topology. Van Nostrand, Princeton.
- 6. Puppe D. (1959) A theorem on semi-simplicial monoid complexes. Ann. of Math., 70, 2: 379-394.

Received March, 2017