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ABSTRACT. For singular in phase variables two-dimensional differential systems, optimal in a certain
sense conditions guaranteeing the existence of positive solutions of boundary value problems on an
infinite interval are found. © 2075 Bull. Georg. Natl. Acad. Sci.
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Let g >0, R_=]-,0], R, =[0,+00[ ,and R;, =]0,+oo[ . On apositive semi-axis R, , we consider the
differential system

du,
—L = fi(t,u,u i=12
" fi(tuuy) ( ) )
with one of the following two types boundary conditions:
lim u,(t)=¢, (i=1,2) @
t—>+w©
and
I¢7(u1 (s))do(s)=c,, lim uy(t)=c. 3)
t—>+0

0
Below everywhere, unless the contrary is stated, it is assumed that ¢, is a positive constant, ¢ and c,
(1=1,2) are nonnegative constants, f; :R0+><R0+2 — R (i=1,2) are continuous functions, and

@:R, — R, is a continuous nondecreasing function such that

lim ¢(x) =+
X—>+0 :

As for o:[0,a] > R, , it is a nondecreasing function satisfying the equality
o(a)-oc(0)=1.
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A continuously differentiable vector function (u,u,): Ry, = R, +2 , satisfying system (1) in R, , is said
to be a positive solution of that system.

If the component u; of a positive solution (u,,u,) at the point 0 has the right-hand limit
w;(0+)= lim u,(?)
t>0,t—0 4

then we put u,;(0) =u,;(0+) .

A positive solution (u,,u,) of system (1) is said to be a positive solution of problem (1),(2) (of problem
(1),(3)) if it satisfies conditions (2) (there exists u,(0+) and equalities (3) are satisfied).

If ¢, =¢, =0, then a positive solution of problem (1),(2) is said to be a vanishing at infinity positive
solution of system (1).

If

.fl(tax’y)z_ys fz(f,an/)E_f(f,X,—Y),
and ¢ =c, =0, then the differential system (1) is equivalent to the differential equation

u"= f(t,u,u'), @
and conditions (2) and (3) are equivalent to the conditions
Jim 0= ®
and
j(p(u(s))da(s) =q ©)
0

respectively. Consequently, problem (1),(2) (problem (1),(3)) has a positive solution if and only if problem
(4),(5) (problem (4),(6)) has a so-called Kneser solution, i.e. a solution satisfying the inequalities
u(t)>0, u'(t)y<0 for teR,.

Problem (1),(3), as problem (4),(6), is said to be the nonlinear Kneser problem. These problems are inves-
tigated in detail in the case where the functions f; (i=1,2) and f have no singularities in phase variables
(see, e.g., [1]-[9], and the references therein).

In[10], for the singular in a phase variable equation (4), sufficient conditions for the existence of a Kneser
solution satisfying one of conditions (5) and (6) are established. In the present paper, these results are
generalized for system (1), having the singularities in phase variables. More precisely, sufficient conditions
for the existence of at least one positive solution for the singular problem (1),(2), as well as for the singular
problem (1),(3), are established.

Throughout the paper, it is assumed that the functions f; (i=1,2) on the set R), xR, +2 admit the
estimates

A —
g0 <—x"y " fi(6x. ) < (1),
A y
gZO(t)S_x Zyllsz(t:xay)SgZ(t):
where A; and #; (i =1,2) are nonnegative constants, and g, : Ry, > Ry,, & Ry, &> Ry, (i=12) are

continuous functions. Moreover, we use the following notations.

7
Vo = L v=1+A;+ 4,
1+, '

If 4; >0 for some i € {1,2}, then
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lim f;(¢,x,y) =+ for t>0, y>0.
x—0

And if 4, >0, then

lim f,(t,x,y)=+o for t>0, x>0.
y—0

Consequently, in both cases system (1) has the singularity in at least one phase variable.
First we consider problem (1),(2). The following theorem is valid.
Theorem 1. If
+o0
I g.(s)ds<+oo for 1>0 (i=12),
t

then for any ¢, >0 and c, 20, problem (1),(2) has at least one positive solution.
Theorem 2. If

+00
¢ >0, v[glo(s)ds =+o00

™
)
where ¢, > 0, then the condition
+o0 +o0 +o0 Yo
¢y =0, J' @20 (5)ds <+o0, j 210(0) j 20 (s)ds | dt <+ ®
ty ty t
is necessary, and the condition
+o0 +o0 +o0 Vo
¢, =0, J'gz(s)ds<+oo, J.gl(s) J'gz(r)dr ds <+ o0
ty ty s
is sufficient for the existence of at least one positive solution of problem (1),(2).
Corollary 1. Let along with (7) the following condition
. t
limsup 8() <+ )
t—>+0 ol

hold. Then for the existence of at least one positive solution of problem (1),(2) it is necessary and sufficient
condition (8) to be fulfilled .
Theorem 3. If

+00 +00 +00 Vo
jgzo(s)ds <+, wy(t)= jglo(s){jgzo(f)dT} ds <+ for >0,
t t s

and

+00 Ay +00
w(t) = J' Wy ¥ (5)gy(s)ds <+ oo, J' g ()W (s)ds <+oo for 50,
t t
then system (1) has at least one vanishing at infinity positive solution.
Theorems 2 and 3 imply the following statement.
Corollary 2. Let
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.. 1-a . 1-a

h,rﬁif.},f(t glo(t)) >0, htniizp(t Jed) (t)) <Aoo (10)

liminf(tﬂ gzo(t)) >0, lim sup(tﬂ 2 (t)) < o0 1
>+ t—>+w0 > ( )

where a and [ are nonnegative constants. Then for the existence of at least one vanishing at infinity

positive solution of system (1) it is necessary and sufficient that

1+
p> at a+l
Hy ’

Consider now problem (1),(3).
If

+00

j g.(s)ds <+o (i=1,2) 12)

0

then on the set R, xR,, xR, we put

1

Vo v

+00 +00
wo(t,x,y) = xv+VJ.g10(5) xlzyl+u2+(1+ﬂz)jgzo(f)d7 ds| ,
t S

1

1+ t -4 e
wtxy) =| ¥+ @) [y B s g s |
t
" +o 1+4,
wi(ty) =| A 1 2) [ W (s (s)ds
t
And if
+o0 o0 +o0 Yo
[ gas)ds <+eo for 150, J‘gl(S)[J.gz(r)er ds <+, (13)
t 0 s

then on the set R, xR, we put

+00 +00 Vo v
vo(t,x) =| x" +v(1+ p,)" J‘glo(s)[".gzo(r)dr] ds| ,
t s
1

+© 1+4,
W () = [x“' (14 [V (50 (s)ds} ,
t

where

1

i I+u,
V(6 = [(l cu) [ v (598, (s)ds} for 10, x>0.
t
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Theorem 4. [f along with (12) the condition

inf{j(o(wl(s,x,c))da(s) x> O} <¢
0

is satisfied, then problem (1),(3) has at least one positive solution.
Theorem 5. Let either

+00
c>0, J.glo(s)ds=+oo for t>0,
t

or % +00 +00 Yo
c20, Igzo(s)ds <HO for 50, Iglo(s){jgzo(r)dr] ds <4
and t 0 N

a

j 0(vy(5,0))do(s) > ¢
0

Then problem (1),(3) has no solution.
Theorem 6. Let ¢ =0, and let along with (13) the condition

inf{j(p(v1 (s,x))do(s): x> 0} <
0

be satisfied. Then problem (1),(3) has at least one positive solution.
Theorems 5 and 6 yield the following propositions.
Corollary 3. Let

+00
[ () =20

ly
where t, > 0. Then for the existence of at least one positive solution of problem (1),(3) for every sufficiently

large c,, it is necessary and sufficient that

+o0 +o0 +o0 Vo
c=0, J-gzo(s)ds <+ for >0, J.glo(s){_[ gzo(r)dr} ds <+o.
t 0 K

Corollary 4. Let conditions (10) and (11) hold, where a and 8 are nonnegative constants. Then for the
existence of at least one positive solution of problem (1),(3) for every sufficiently large ¢, , it is necessary
and sufficient that

1+u

Hy

2
a+l.

c=0, >
Finally we note that the proofs of the above formulated theorems are based on the results of [11].
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