THE WEIGHTED RIGHT FOCAL BOUNDARY VALUE PROBLEM FOR SECOND ORDER SINGULAR IN THE TIME VARIABLE FUNCTIONAL DIFFERENTIAL EQUATIONS

N. PARTSVANIA

Abstract. Sufficient conditions are found for the solvability of the boundary value problem

$$u''(t) = f(t, u(\tau(t))),$$

$$\lim_{t \to a} \frac{u(t)}{(t-a)^{\alpha}} = 0, \quad \lim_{t \to b} u'(t) = 0$$

in the case where the function f has singularities of arbitrary order in the time variable at the point t = a as well as at the points of the interval [a, b].

On a finite open interval [a, b[, we consider the differential equation

$$u''(t) = f(t, u(\tau(t))) \tag{1}$$

with the boundary conditions

$$\lim_{t \to a} \frac{u(t)}{(t-a)^{\alpha}} = 0, \quad \lim_{t \to b} u'(t) = 0,$$
(2)

where $f: I \times \mathbb{R} \to \mathbb{R}$ is a measurable in the first argument and continuous in the second argument function,

$$I \subset]a, b[, \text{ mes } I = b - a,$$

and $\alpha \in [0,1]$.

Suppose

$$f^*(t,r) = \max\{|f(t,x)|: |x| \le r\} \text{ for } t \in I, r \ge 0.$$

If

$$\int_{a}^{b} f^{*}(t, r)dt < +\infty \quad \text{for } r > 0,$$

then problem (1), (2) is said to be regular. If

$$\int_{a}^{b} f^{*}(t, r)dt = +\infty \text{ for some } r > 0,$$
(3)

then this problem is said to be singular in the time variable.

Unimprovable sufficient conditions for the solvability and unique solvability of problem (1),(2) in the case, where $\alpha = 0$, $\tau(t) \equiv t$, and the function f has a singularity of arbitrary order in the time variable at the point t = a, are contained in [1,3-8].

For $\alpha = 0$ and $\tau(t) \not\equiv t$, the singular problem (1), (2) is also studied under the assumption that the function f has a non-integrable singularity in the time variable only at the point t = a (see, [2,9–12]). Therefore, the papers [2,9–12] concern only the case where along with (3) the condition

$$\int_{t}^{b} f^{*}(s, r)ds < +\infty \text{ for } a < t < b, r \ge 0$$

$$\tag{4}$$

 $^{2010\} Mathematics\ Subject\ Classification.\ 34B16.$

Key words and phrases. Right focal; Weighted; Singular; Boundary value problem; Functional differential equation.

is satisfied.

In contrast to the results of [2,9–12], theorems proven by us on the solvability and unique solvability of problem (1), (2) cover the case where condition (4) is violated, i.e., the case where the function f has a non-integrable singularity in the time variable at the points of the interval]a, b]. In particular, it is assumed that there exist points $t_i \in]a, b[$ (i = 1, ..., n) such that for an arbitrarily small $\varepsilon > 0$ and for any $x \neq 0$ and $\lambda > 0$, the conditions

$$\int_{t_i-\varepsilon}^{t_i+\varepsilon} |t-t_i|^{\lambda} |f(t,x)| dt = +\infty \quad (i=1,\ldots,n), \quad \int_{b-\varepsilon}^{b} (b-t)^{\lambda} |f(t,x)| dt = +\infty$$
 (5)

hold.

Introduce the function

$$\chi(t) = \begin{cases} 1 & \text{if } t = \tau(t), \\ 0 & \text{if } t \neq \tau(t). \end{cases}$$

We investigate the solvability of problem (1),(2) in the case where

$$\int_{t}^{b} f^* \left(s, (\tau(s) - a)^{\alpha} r \right) ds < +\infty \text{ for } a < t < b, \ r \ge 0,$$

$$\tag{6}$$

and on the set $I \times \mathbb{R}$ the inequality

$$\chi(t)f(t,x)\,\mathrm{sgn}(x) - (1-\chi(t))|f(t,x)| \ge -g(t)|x| - h(t) \tag{7}$$

is satisfied, where q and $h: I \to [0, +\infty[$ are measurable functions.

When investigating the uniqueness of a solution of problem (1), (2), we assume that the function f on the set $I \times \mathbb{R}$ instead of condition (7) satisfies the one-sided Lipschitz condition

$$\chi(t)[f(t,x) - f(t,y)] \operatorname{sgn}(x-y) - (1-\chi(t))|f(t,x) - f(t,y)| \ge -g(t)|x-y|. \tag{8}$$

Theorem 1. If along with (6) and (7) the conditions

$$\int_{a}^{b} (t-a)^{1-\alpha} (\tau(t)-a)^{\alpha} g(t)dt < 1$$

$$\tag{9}$$

and

$$\int_{a}^{b} (t-a)^{1-\alpha}h(t)dt < +\infty \tag{10}$$

hold, then problem (1), (2) has at least one solution.

Theorem 2. If along with (6) and (8) conditions (9) and (10) are satisfied, where h(t) = |f(t,0)|, then problem (1), (2) has one and only one solution.

Remark 1. Inequality (9) in Theorems 1 and 2 cannot be replaced by the inequality

$$\int_{a}^{b} (t-a)^{1-\alpha} (\tau(t)-a)^{\alpha} g(t) dt \le 1 + \varepsilon,$$

no matter how small $\varepsilon > 0$ would be. However, the question of whether it is possible to replace (9) by the nonstrict inequality

$$\int_{a}^{b} (t-a)^{1-\alpha} (\tau(t)-a)^{\alpha} g(t) dt \le 1$$

remains open.

Example 1. Suppose $\alpha \in]0,1[$, $a < a_0 < b$, m and n are natural numbers, $t_i \in]a,b[$ $(i=1,\ldots,n)$, $t_{n+1}=b$,

$$\tau(t) = t, \quad f(t,x) = \exp\left(\frac{1+|x|}{t-a}\right)x^{2m-1} + q(t) \quad \text{for } t \in]a, a_0[, \ x \in \mathbb{R},$$

$$\tau(t) = a + (b-a)\exp\left(-\sum_{i=1}^{n+1} \frac{1}{|t-t_i|}\right), \quad f(t,x) = \ell(t-a)^{\alpha-1}(\tau(t)-a)^{-\alpha}, \quad 0 < \ell(b-a) < 1$$

$$\text{for } t \in]a_0, b[\setminus \{t_1, \dots, t_n\}, \ x \in \mathbb{R},$$

 $q:]a,b[\to \mathbb{R}$ is a measurable function such that

$$\int_{a}^{b} (t-a)^{1-\alpha} |q(t)| dt < +\infty. \tag{11}$$

Then by Theorem 2, problem (1), (2) has one and only one solution. On the other hand, in this case the function f satisfies conditions (5) for an arbitrarily small $\varepsilon > 0$ and for any $x \neq 0$ and $\lambda > 0$. It is also evident that the function f has a singularity of arbitrary order in the time variable at the point t = a as well.

The particular case of equation (1) is the linear differential equation

$$u''(t) = p(t)u(\tau(t)) + q(t), \tag{12}$$

where p and $q:]a,b[\to \mathbb{R}$ are measurable functions.

Put

$$p_{-}(t) = \frac{|p(t)| - p(t)}{2}.$$

From Theorem 2 we have the following statement.

Corollary 1. If

$$\int_{a}^{b} \chi(t)(t-a)p_{-}(t)dt + \int_{a}^{b} (1-\chi(t))(t-a)^{1-\alpha}(\tau(t)-a)^{\alpha}|p(t)|dt < 1,$$

and the function q satisfies condition (11), then problem (12), (2) has one and only one solution.

It is easy to see that under the conditions of Corollary 1 the function p may have singularities of arbitrary order at the points of the interval [a, b].

References

- 1. R. P. Agarwal, I. Kiguradze, Two-point boundary value problems for higher-order linear differential equations with strong singularities. *Bound. Value Probl.* **2006**, Art. ID 83910, 32 pp.
- 2. N. V. Azbelev, M. J. Alves, E. I. Bravyi, On singular boundary value problems for linear functional differential equations of second order. (Russian) *Izv. Vyssh. Uchebn. Zaved. Mat.* 2 (1996), 3–11.
- 3. I. Kiguradze, Some optimal conditions for the solvability of two-point singular boundary value problems. Funct. Differ. Equ. 10 (2003), no. 1-2, 259–281.
- 4. I. Kiguradze, Two-point boundary value problems for second order essentially singular linear differential equations. (Russian) *Differ. Uravneniya* **55** (2019), no. 5, 607–624.
- 5. I. Kiguradze, Two-point boundary value problems for second order essentially singular nonlinear differential equations. (Russian) *Differ. Uravneniya* **55** (2019), no. 6, 792–802.
- I. T. Kiguradze, B. L. Shekhter, Singular boundary value problems for second order ordinary differential equations. (Russian) *Itogi Nauki Tekh.*, Ser. Sovrem. Probl. Mat., Novejshie Dostizh. 30 (1987), 105–201; English transl.: J. Sov. Math. 43 (1988), no. 2, 2340–2417.
- 7. I. Kiguradze, T. Kiguradze, Conditions for the well-posedness of nonlocal problems for second-order linear differential equations. (Russian) *Differ. Uravneniya* **47** (2011), no. 10, 1400–1411; English transl.: *Differ. Equ.* **47** (2011), no. 10, 1414–1425.
- 8. T. Kiguradze, On solvability and unique solvability of two-point singular boundary value problems. *Nonlinear Anal.* **71** (2009), 789–798.
- 9. S. Mukhigulashvili, Two-point boundary value problems for second order functional differential equations. *Mem. Differential Equations Math. Phys.* **20** (2000), 1–112.

- 10. S. Mukhigulashvili, N. Partsvania, Two-point boundary value problems for strongly singular higher-order linear differential equations with deviating arguments. $E.\ J.\ Qualitative\ Theory\ of\ Diff.\ Equ.\ 2012,\ no.\ 38,\ 1–34.$
- 11. S. Mukhigulashvili, N. Partsvania, On one estimate for solutions of two-point boundary value problems for higher-order strongly singular linear differential equations. *Mem. Differential Equations Math. Phys.* **58** (2013), 65–77.
- 12. S. Mukhigulashvili, B. Puža, The focal boundary value problem for strongly singular higher-order nonlinear functional-differential equations. *Bound. Value Probl.* **2015**, Paper No. 17, 21 pp.
- A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., Tbilisi 0177, Georgia

International Black Sea University, 2 David Agmashenebeli Alley 13km, Tbilisi 0131, Georgia $E\text{-}mail\ address$: nino.partsvania@tsu.ge