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1 Introduction

In the present paper we consider the first order NDE with the almost constant coefficient

fyl==y'(t) —py'(t = 1) + Q)y(t —0) =0, t > to, (1)

where o > 0, p = const, and

lim Q() = ¢ (2)
Its “limiting” equation is
() —pr'(t—1)+qz(t—0) =0, t >0. (3)

Eq.(1) some times (in the critical situations) does not inherit the oscillation properties of
Eq.(3). For example, in the case {p = 0; ¢ = %} these properties depend on the character of
the convergence (2) (see [5, Corollary 4.5] and [7]; compare also with the results in [2] and [3]).

The situation {p = 1; ¢ = 0} is the same. It was considered in Theorem 3.2.4 and Corollary
3.2.2 in [8] and in [1] as well. However, the case {p = +1; ¢ = 0} is special: the solutions’
behavior for Eq.(1) in this situation is rather like the second order ordinary differential equations
(see [1]). Other critical situations for Eq.(1) have not been studied at all.

It is to be emphasized that this is the first paper dealing with this problem in the general
form.

2 The main result and some preliminary remarks

Let 1
-0
_ for 0 < 2
e(2—o0) orisoss (4)
p be arbitrary for o > 2

p >



Then the equality
1—s0
—e %7 5
P=C 1 5o —-1) 5)

defines the unique real number s,

1
—1—<s<1 for 0<o <1
-0
—0<s<1 for 1<o<2 . (6)

1
—0o<s< —— for o>2
oc—1

Denote hlo;s] = o(0 — 1)s> + (1 — 20)s + 2,
. e hfo;s] e "
K[U,S] = m and q = m

It is easy to check that h[o;s] > 0 in domains (6).
The following statement can be called as “Kneser-like Theorem” for the first order neutral
differential equation.

Theorem 1 Let p and s < 1 be defined by (4) and (5)—(6). Assume
.. 2 _ _ .
htrglorgft [Q(t) q] C > Klo; s]. (8)

Then:
19) all solutions of Eq.(1) are oscillatory;
2°) any solution of Eq.(1) has at least one zero on each interval (T — 1;T exp L) for suffi-
ciently large T and
c
< — — 1. 9
<z )
Remark 1 This result is sharp in the sence that the strict inequality in (8) cannot be replaced
by the non-strict one. Indeed, define

- _s l—s0o pyo(t—1) —yo(®)
— ) st — s — 0 0
yo(t) _\/Z € Y p € 1_8(0'—1) Y Q(t) yO(t_O_) .
One can easily check that
—s0 2
.9 e -5 _ _
tlgglot [Q(t) 1—s(oc— 1)] Ko s). (10)

On the other hand, Eq.(1) has a non-oscillatory solution yo(t).

Remark 2 Consider two important particular cases:
1.{p=1;0 >0}. Then s =0, ¢ =0, K[o;0] = i, and the first statement of Theorem 1
turns to the known result from [1] for the equation

'(t) —2'(t— 1)+ Q(t)z(t — o) = 0.

The second statement of Theorem 1 is new even for this particular case;
2.{p=0;0>0}. Then s =1 ¢g=-"L K[o;1] = Z, and Theorem 1 turns to the known
result from [7] for the equation

z'(t) + Qt)z(t — o) = 0.



3 Critical states of the autonomous first order NDE

In this section we present for the first time the complete description of the critical states of
Eq.(3) with respect to its oscillation properties.

Definition 1 We say that NDE (3) is in the critical state with respect to its oscillation prop-
erties if there exists at least one eventually positive solution of Eq.(3), while the equation

2'(t) —p2'(t—1)+ (g+e)z(t—0) =0, t >t
has oscillatory solutions only Ve > 0. The pair {p; ¢} will be called a critical pair.

It is well-known (see, for example, [9]) that all solutions of Eq.(3) are oscillatory if and only
if its characteristic equation

F(s):= F({p; q}, s) = —s5+spe’ +qe®” =0 (11)

has no real roots.
This fact gives us the possibility to discern all critical pairs for Eq.(3). Indeed, in case the
pair {p;q} is critical,
35€ (—o00,00): F(5)=0, F'(5)=0. (12)

Remark 3 The inverse statement is not true. The pair {p; ¢} will be critical if F({p; q+¢};s) >
0 Vs € (—o00,00) and Ve > 0 only. Therefore, among a few pairs {p; ¢}, i = 1,2,...,m given
rise to the solvable system (12), the pair [{p;q}: 7 = max¢;] only will be critical.

(3

Remark 4 Note that the pair {p;q}, ¢ < 0 can not be critical because F(0) = ¢ < 0 and
lim F(s) = +oo. Therefore, we suppose ¢ > 0 in (2)—(3) from the beginning.
§——00

Let the system (12) be solvable with the solution s (maybe, not unique!). Then

p=e* 1—-so
F(s) = —s+ spe’ + qe*” =0 1—s(oc—1)
{ F'(s) = =14+ p(1 + s)e® + goe®? =0 e §2 (13)
g=e " ——————
1—s(c—1)

The system (13) can be considered as the parametric representation of all pairs {p; ¢} so that
the system (12) is solvable. In view of Remark 4 we must restrict the interval of the parameters
in (13) by

<s for 0<o<1

1-o0
l1-s(c—1)>0<=< —o0o<s<oo for o=1 . (14)
1
s<—1 for 0 >1

Therefore the possible cases of all critical pairs {p; ¢} of Eq.(3) look as follows:
a) Case o = 0. There exists a critical pair (13) for p > 0. No critical pairs for p < 0. All
points of the curve (13) present a critical pair;

b) Case 0 < o < 1. There exists a critical pair (13) for p > p(so) = ﬁe‘“,
where

Sp =

4
20 =1+ /1+40(1—0)



is the smallest root of the equation
hlo;s] = 0. (15)
No critical pairs for p < p(sg). The piece of the curve (13) coresponding to s > so does not

present any critical pair. The point {p(so),q(so)} is an inflection point of the curve (13);
c) Case o = 1. The analogous situation with sy =2 and p > —e%.
d) Case 1 < 0 < (14 v2). The set (AB) U (CD) of the critical pairs {p;q} is not

connected! There exists a critical pair for any p. The number s; is a second root of Eq.(15).
The points B and C are the inflection points of the curve (13).

s ﬁé S:SUB“ q §—>—®
E ! A
c y
pisy)

e) The case ¢ > 1 (1 4+ v/2). There exists a critical pair for any p. The set of all critical
pairs is connected again.

4 Auxiliary results from Sturmian Comparison method
for NDE

Further investigations are based on our approach elaborated in [4] and [6]. Below we state two
basic results from [6] in an easier and convenient form (see Lemma 1 together with Theorem 2
from [6] for Theorem A and Lemma 2 together with Theorem 2 from [6] for Theorem B).
Theorem A (for the case o # 1) Let ¢(t) > 0 and k(t) be continuous functions such that
for sufficiently large t,

0 t+p

[e@dc =00, [p@rde<F. pimmaxitio -1}, (16)
t+1

t
—p(t) ctg / p(€)dE < k(1) < p(t) ctg | p(€)de for 0< o <1
i+

t—

~—

g

t+p
k(t) < @(t) ctg / p(&) d¢ for o0 >1

o~

Define Q(t) by

t+o—1 t—14o0

Q(t + o — 1) := cosec / w(§) d¢ - exp ( - / k(&) d£) X

t t—1



—

x{ga(t—l)cos [ 9=kt —1sin [ o6 de — pott)ex

t—1 t—

k() d&} (18)

[u

t

and define S(t) by

t+o—1 t+o—1
S(t—o+1):= (§) d§ - exp ( — k(€) dg
o sec t/ %) e p( t/l ) X

x{so(t—n sin / () dE + E(t — 1) cos / (6 dE — ph(t) exp / K©) da] (19)

t t—1 t
Assume B
Q(t) >0 (20)
and _
Qt) > S(t) for t >T. (21)
Then if _
Q) > Q(t), t>T, (22)

all solutions of Eq.(1) are oscillatory and, what is more, any solution has at least one zero on
b
each interval (a — p,b+1) for a > T, where T is a sufficiently large number and [ p(£) d¢ = =.

a
Theorem B (for the case o = 1) Let ¢(t) > 0 be defined as in Theorem A, k(t) be a
continuous solution of the equation

t t t
L(t) = cp(t)cos/go(f de — k(t — 1) sm/cp d§—pg0(t)exp/k(§)d§:0, EST (23)
-1 1 1

t t— t—

such that the condition
t+1

k(1) < (1) cig / o(€) de (24)

holds. Define @(t) by the equality

Qt) = —ph(t) + exp ( ~

—

k(&) d [ (t—-1 sm/tcp &) dE + k( t—l)cos/tap(f)df]. (25)

t— t—

[u

If
Q(t) >Q(t) >0, t>T, (26)

then the statement of Theorem A holds.



5 Proof of the main result

The proof of Theorem 1 in case o # 1 is based on Theorem A where we define

k) =s+—=+ . (27)
The number s < 1 is defined by (4), (5), (6), the numbers v > 0 and z will be chosen later.

Notation f(t) = g(t) means f(t) = g(t) + o(t2) as t — oo.
We write down some needed asymptotics:

¢
t 11 v? )
_ _ o . ~1_ 2.
Lolt-D =14 g+ cos [ p©de=1- 2
t=1
t—1+4o0
2 _12
cos / cp(f)df%l—iy (02t2 ) ;

V2

t

t
t 1 2—
L de=14— 422,
Dsin [ p@de= 14 o+

t . - o—1 (0—-12%2-v?)
v(ioc—1) - / PO dE=1+ 2t ot? '
t

t—14o0
cos / p()dé =1 —

t—1

v2o?

2t2

t—140

. oc—2 20%—60+6—0%0>
—sin / p(&)dE =1 — o7 + o2 ;
ve > (28)

t+o—1 Vo 1)
sec / p(§)dE = 1+T;

e G V)
o— o— v? —
cosec / p§)de =21+ 57 + 122 ;

1 1422
kt—1)= — ;
(t=D=s+ 5+ 2p

t—1+0

o 20—0%+40z
k(g)dSZSU-F?-FT;

v(ic —1)

t

-1
tt—l-i—a 4 9 3
~ SO o o—0° +30z )
exp / k(€) dE = e (1+2—t+—8t2 )
t—1
t—1+4o0

O e e
t—1

In view of (6) it is easy to see that the conditions (16)—(17) hold for sufficiently small v > 0
and for sufficiently large ¢.



We omit all intermediate calculations and state the final asymptotics for @(t) defined by

(18) and for S(t) defined by (19):

Qt+o—1) §q+tl2{8/C[a;s]-ﬁ+B(s;a)-(1+4l/2)},
S(t+a—1)Eq+tl21C[o;s]-(1+4l/2),

where ¢ is defined in (7).
In view of C' > K > 0 one can define » > 0 and z such that C > K(1 + 4v?) and

K(1+40%) < 8K - % + B(s;0) - (1+40%) < C.

(The exact form of the expression B(s; o) is not essential).
Due to (31) we obtain

Q) > Q(t) > S(t) >0

and therefore Theorem 1 is proved based on Theorem A.
The proof of Theorem 1 in case 0 =1 is based on Theorem B and on the following

Lemma 1 Consider on the half-axis (to,00) the following non-linear integral equation

t+1

u(t) = B(t) [1 —exp / u(é) dg] FA(®) = (Bu)(8),
where
B <O, Jim B#H)=b>0

and
lim t™A(t) =0 for some m > 0.
t— o0

Then Eq.(33) has at least one solution ug(t) such that

lim thO(t) =0.

t—00

(36)

Proof We define the operator ® on the Banach space € = C(tp,00) with the norm ||u|| =

sup [u(t)|.
t>to

Consider M := {u € C: —d; < u(t) < ds}, d1, ds > 0. The bounded set M is convex

because
U, ug EM = %u; + (1 —HNuzs e M, 0 <9 <1.

Choose dy, ds such that
dM C M.

Suppose u € M and v = ®u. Then

t+1

o(t) = At) + BO)[1 —exp / u(€) de] < A®W) + B)(1 — =),
v(t) > A(t) + B(t)(1 — e?2).



For v € M it should be

At)+B(t)[1 —e "] < dy
{ + B[l —e®] > —d;

— AW+ BM)[l—e ] <dy<In|l+ =2 .
() + BOL-e "] <ds <In[1+ o5+ 205
We choose d; and d» as follows: suppose d; > 0 is sufficiently large such that b < In(1 + dTl)
and b(1 —e %) < In(1 + d—bl) Then we can define ds by ,

b(l—e %) <dy <ln (1+ %) (39)

Thus, in view of (34) and (35), the inequality (38) holds for sufficiently large to. Therefore,
M C M.
Now we define
Mo = {Vu e M: lim t"u(t) =0 uniformly}.
t—o0

That is Ve > 0 3T, > to such that for all u € My, |u(t)| < e for t > T..
Evidently, My is closed in €. Indeed, all previous reasons are valid. On the other hand, if
u € My, then tli)rn t"(Pu)(t) =0,
[ee]

t+1
Jim tm[exp / u(€) de — 1] —0,

t
and so, My C My. Show, in addition, that the set {®M;} is compact in C(tp, 00). We have

N
to check whether there exists a finite partition of the axis (to, 00) = |JI; such that
1

Ve >0 and Vi, to € Ij : |v(t1) —v(t2)|] < e for all v € PM,.

for ¢ > T. and for any

According to the definition of My, let T. be such that |v(¢ )| < —C
v € ®Mo. Suppose I; := [to + (j — 1),t0 + j6], j = N — 1, § := Le=lo 4 = max{d,d>},
and Iy := (T¢, 00).

In view of the equality e®t — e*> = e?*1+(1-0)22(3 _ 2)) 0 < # < 1 and the notation

t+1

z(t) == Zf u(€) d¢, we have

7

t1+1 ta+1
et — ex(t2)] < e2|2(1)) — 2(ts)| = > u(§) d§ — u(§) dé‘ =
J o= |
to t2+ ta+1
= e /u(g)dg— d{‘ < e /|u )| dé + / |u(& |d§‘

t1 t1+1 t1+1
< 2de* 0ty — ta] < 2Cde*ds

Vtq, t2 E[j,jZI,N—l.



Suppose N is sufficiently large, such that 2dCe??§ < £, and Vi1, t2 € (to,T%), |t1 — t2| < 6,
the following inequalities hold:

€

19

= IB(t) = B(t2)| <

Then Vtq, t2 € I;; j=1,N -1, we obtain

t1+1
[v(t1) — v(t2)] < [A(t1) — A(t2)| + [B(t1) — B(t2)] + ‘B(tl)exp / u() d§ —
ta+1 t1+1

~Ble)e [ w@de] < 5+ 1B - B+ B - Blew [ w@de +
h to+1 t1+1 "
+|B(t2)|| exp / w(€) dE — exp / ") d{‘ < % + ﬁ (1 + e?) + 02de6 < e
to ty
For t1, to € In (t1, ta > T.) we obtain
t14+1 to+1
o) —ole)| 4| [ i@l + [ lu@lde] <soz ==

t1 ta

And so, the set ® My C €y is compact.

Thus the continuous operator ® transforms the convex bounded set Mo C € into its compact
subset. Therefore, according to Schauder’s Fixed Point Theorem, Eq.(33) has a solution ug(#)
such that (36) holds. Lemma 1 is proved. O

Proof of Theorem 1 for case 0 = 1. We consider now the NDE

y'(t) —py'(t— 1)+ Qt)y(t —1) =0, t>to, (40)
where p > 0 and
Jim Q(t) =g, (41)

Let s < 1 be the (unique) root of the equation e *(1—s) = p and the pair {p; ¢} be critical (that
is ¢ = s? - e %). Define p(t) := £ in Theorem B and consider Eq.(23), in which we introduce

¢
the new variable u(t) by

1
k(t) =5+ 5 + t% Fult) == ko(t) + u(t) (42)
and z will be chosen later.

Using the suitable asymptotics from (28) we find (see (23))

(3 —s5)(1+ 4v?)

Lo(t) := Llko(t)] = _t% (2—s)z+ 24

+o(t™3).



Choose z 1= — =202 Thay we get L (t) = o(t™3). Substituting (42) into Eq.(23) we
: 24(2—s) ° g 0 . g q- w

obtain the equation relative to the variable u(¢):

sia [ p(©)de - ult 1) = L(t) - pe(t)exp [ ka(©)de [exp [ u(e)de ~1].

t t t
The equation obtained is Eq.(33) with

t+1

A(t) := cosec / P(€)dE - Lot +1) = o(t2),

t
t+1 t+1

B(t) := pp(t + 1) - cosec / p(€) d€ exp / ko (&) dE, tll>r1é1o B(t)=1-5>0.
t

t

Then, according to Lemma 1, Eq.(23) has a (exact) solution of the form (42), where u(t) =
o(t~?) and, in view of s < 1, (24) holds. Substituting (42) into (25) and omitting all intermediate
calculation, we find

—s _ . 2
@(t) — e 5. 82 + € (2 58)t2(1 +4v )

1
=q+K[1;s]- (1 +407%)- 7] +o(t™%).

+o(t™?) =

So, it is possible to choose v > 0 such that C' > K[1;s] - (1 4+ 4v?), and therefore Theorem 1 for
the case 0 = 1 is proved.
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