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1. Introduction
This paper deals with the existence of solutians C%(R) of the nonlinear differential
equation
uw = ft,u,u) (1.1
satisfying the conditions

lim u(t) =0, Iim u(t)=1, 0<u@) <1l forteR, 1.2
t—>—00 t——+00

wheref :R3 — R is continuous and such that

f(,0,00=0, f(t,1,0=0 forteR. (1.3)
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Due to (1.3), every solution of (1.1), (1.2) connects the stationary stagtes= 0 and
u1(t) = 1 and lies between them. For this reason it is called a transitional solution.
Problems of the type (1.1), (1.2) originate from the investigation of traveling wave
solutions of reaction—diffusion equations which model several biological phenomena
(see [10]). Indeed recall tha traveling wave solutiom has a constant profile, that is
such thaw(z, x) = u(x — ct) and satisfies the equation

u’ — (C+h(u))u/+g(u) =0, (1.4)

wheretr := x — ¢t is the wave coordinate,(«) is the nonlinear reaction term which van-
ishes at 0 and 1 andis a convective effect. The wave speeis a further unknown of the
problem.

A very wide literature is devoted to the study of the existence, uniqueness and stability
of traveling wave solutions; we only quothe recent monograph [2] for quite general
results and the large bibliography there contained. However, most of the results concerns
dynamics without convective effects, i.e., foir) = 0. In [6] the existence of a unique (up
to space-shifts) monotone solution of (1.4), (1.2) is proven, whand/ are continuous
with 0 < g(u) < L2u for all u € 10, 1] andc is greater or equal than a certain threshold
value.

Problems of the type (1.1), (1.2) also appear in the study of some physical processes
when the variable transits from an unstable equilibrium state into a stable one. The contri-
bution by Klokov [5] fits into this context and deals with the case when Eq. (1.1) has the
form

u" = g1(u, u'yu' — go(u). (1.5)

In particular, in [5, Theorem 21] the unique solvability (up to space-shifts) of problem
(1.5), (1.2) is proven when the functiopgs andg, are continuous ofD, 1] and satisfy the
conditions

g2(0)=g2(1)=0, gi(u,u’) > go(u) >0,

1 u
0<gm< Zgo(u)/go(S) ds (1.6)
0

forall 0 <u < 1,u’ > 0 and some nonnegative continuous funcggn

The general case when (1.1) is autonomous, that is whenf (u, u’), was recently
investigated by the first two authors. In [7, Theorem 4.3] the existence of a monotone
solution of problem (1.1), (1.2) is proven when assuming (1.3) and

fu,0) <0, FQu,u')>2Lu' — L%u (1.7)
or the symmetric conditions
fu,0)>0, fu,u')<—=2Lu'y + L*(1 —u) (1.7)

forall 0 <u < 1,u’ > 0 and some constaiit > 0. This result also deals with the unique-
ness and the nonexistence problems in the autonomous case. As it is easy to see, it includes
the quoted one in [5] only in the case whenis constant.
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The nonautonomous problem was first extensively investigated by Volpert and Suhov
[13] for equations having the structure

uw —cu' +gt,u)=0 (1.8)

with g_(u) < g(t,u) <g+(w)forallO<u <1,t eR, g+(0) = g+(1) =0 andg_(u) >0
for 0 <u < 1. The problem arises when studying stationary nonconstant solutions of a
semi-linear parabolic equation describing a chemical reaction. Under additional strong
regularity conditions on alt+ andg, the existence of infinitely many solutions satisfy-
ing (1.8), (1.2) is showed in [13, Theorem 3.3], for all sufficiently lagg@/e also mention
the contribution by Sanchez [12] concernigrin problem (1.8), (1.2) in the case when
has a product-type structure, thagig, u) = a(t)g(u).

The same multiplicity result given in [13] was then obtained in [7, Theorem 5.1] for the
general problem (1.1), (1.2) when assuming

2Lu' — L%u < or(u,u’) < f(t u,u) < po(u,u'), 2(u,0) <0 (1.9)

whenever O< u < 1, u’ > 0, for some constant. > 0, and continuous functiong;:
R2 — R (i = 1, 2) satisfyingy; (0,0) = ¢;(1,0) =0 (i = 1, 2).

The problem to find positive bounded solutions of a second order dynamics with as-
signed conditions at infinity also arises in atlkentexts and recent contributions appeared,
dealing with different situations. We refer, imgicular to [3,8,9] andhe references there
contained as well as to the books by Agarwal et al. [1] and by O’'Regan [11].

The aim of this paper is to give new existence results for (1.1), (1.2) (see Theorems 2.1
and 21’) which generalize and unify all the previous quoted discussion concerning this
problem. Precisely, they include the results in [5] and [7] (see Remark 2.1); moreover,
in the nonautonomous case Theorems 2.1 afidaso allow to treat some cases when
f(,u,u’) is unbounded ifR or vanishes when— +o0, which were never investigated
in any previous quoted discussion (see Remark 2.2).

Theorems 2.1 and.? differ for symmetric sign conditions on the right-hand sjtlef
(1.1). Instead, Theorem 2.4 provides an existence result for (1.1), (1.2) which is based on
a different type of growth and sign conditions on the functfarifogether with the other
ones, it can be considered as a further achievement in the theory of boundary value prob-
lems on infinite domains which is, in our opinion, far from being completely investigated.

The main technique for proving all these results derives from the comparison-type the-
ory introduced by Kiguradze and Shekhter [4] for studying the existence of solutions of
(1.1) such that

yi(®) Su(t) <y2(t) forreR, (1.10)
wherey; :R — R (i = 1, 2) are prescribed continuous functions satisfying the inequality
yi(t) < ya(t) forteR. (1.11)

In Remark 2.3 we discuss the conditions assumed in our results and show that, in all
cases, they are optimal in a certain sense.

All our theorems allow us to obtain expressive sufficient conditions for the solvability
of problem (1.1), (1.2) for differential equations having one of the following structures:



L. Malaguti et al. / J. Math. Anal. Appl. 303 (2005) 258-273 261

u" = p1()u’ + pa(u(l —u), (1.12)
" = p1(0) fr(u, u'u' + pa(t) fa(u, u'), (1.13)
u" = fr(t, W’ + fa(t, u). (1.14)

This discussion is contained in Corollaries 2.2, 2.3, 2.5 and 2.6.

The paper is organized as follows. In Senti® we state all the main results together
with the connected remarks. Their proofs are given in Section 4. Section 3 is devoted to
some auxiliary lemmas.

2. Statement of the main results

Ouir first existence result extends and unifies the quoted results in [5] and [7].
Theorem 2.1. Let there exist a real number, continuous functiong :R — [0, +o0],
8:10, 1/2[ — 10, +o0[ and aC1-functionw : ]—o0, a] x [0, 1] — [0, 4+o0[ such that, along

with (1.3) the following conditions are satisfied, whefé(z, x) := maxX f(¢,s, y): x <
s<1—x,0<y<éM)}):

ft,x,y) > —h(t)1+y? forreR, 0<x<1, y>=0, (2.1)
f*@t,x) <0 forreR, 0<x<%, (2.2)
+00
/sf*(s,x)ds:—oo forO<x < % (2.3)
0
a
w(z.0) =0, / w(s. x) ds = +oo. 8’”;:“ >0
—00
fort<a, O<x <1, (2.4)

ow(t, x Jw(t,
(#, %) " (¢, x)
0x

Then problem(1.1), (1.2) has at least one solution such that

f(t,x, w(t, x)) > w(t, x) fort<a, 0<x <1 (2.5)

u'(t) >0 wheneveO < u(t) < 1. (2.6)
As in [7], the above result has a symmetric statement.

Theorem 2.1’. Suppose there exist a real number continuous functions::R —
[0, 400, §:10,1/2[ — 10, +o0[, and a C*-function w:[a, +o0[ x [0, 1] — [0, +00[
such that, along with(1.3) the following conditions are fulfilled, wherg, (¢, x) :=
min{f(z,s,y): x<s<1l—x, 0<y<s(x)}:

ft,x,y) <h@)L1+y? forreR, 0<x<1, y>0, (2.1)

1
f«(t,x)>0 forteR, O<x<§, (2.2)
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0

/ sfe(s,x)ds =—00 forO<x < %, (2.3)
—00
+00
w(t,1) =0, / w(s, x)ds = +00, 8w{§;,x) <0
a
fort >a, 0<x <1, (2.4)

f(r,x,w, x) < w(t’x)aw;t,x) n dw(t, x)
x

Then problem(1.1), (1.2) has at least one solution satisfying conditi@®6).

fort >a, 0<x <1l (2.5)

As applications of the previous results, we now provide some simple sufficient condi-
tions for the solvability of problem (1.1), (1.2) when the right-hand sfdeas one of the
structures (1.12), (1.13).

Corollary 2.2. Let us consider Eq1.13) with p1, p2 € C(R) and f1, f2 € C([0, 1] x R)
given functions such that

f2(0,0)= f2(1,00=0, fo(x,00>0 forO<x<1 2.7)
and

X
filx,y) = fo(x) >0, fa(x,y) < fo(X)/fo(S)ds forxe€]0,1[, y>0, (2.8)
0
for some nonnegative functigg € C([0, 1]). Moreover, suppose that constante R and

a > 0 exist in such a way that conditions
+00

/ sp1(s)ds = 400, p1(t) >0, p2(t) <—api(t) forteR, (2.9)
0
pre CH(l—o0,al), pi(H)<0 fort<a (2.10)
are satisfied together with
1 1
p2(t) sgnr < pr(t) - %pi(t) forr <a, (2.11)

whereg := su fo(x): 0 < x < 1}. Then problem(1.13), (1.2) admits solutions satisfy-
ing condition(2.6). The same assertion holds when replaci@g), (2.9), and (2.10),
respectively with the following conditions

1
fi(x,y) 2 fo(x) >0, fa(x,y) < folx) / fo(s)ds

forO<x <1, y=>0, (2.8)
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0

/ sp1(s)ds = +o0, p1(t) <0, p2(t) > a|p1(t)| forreR, (2.9)
—00
p1e Clla, +ool), pi(t)<0 forr>a (2.10)

and(2.11) is satisfied for > a.

Corollary 2.3. Let us consider Eq(1.12) with p1, p2 € C(R) given functions. Suppose
that constanta € R anda > 0 exist in such a way thaR.9), (2.10) or (2.9'), (2.10) are
satisfied. Moreover, assume that
1 2 1 /
p2(t) sgnr < Zpl(t) - Epl(t) for|f] > a. (2.12)
Then problen(1.12), (1.2) is solvable and each solutianis such that
O<u(t) <1, u'(@)>0 forteR.

If instead of(2.12) we have in]—oo, a] or in [a, +oo[ (according to what of the pair of
conditions(2.9), (2.10) or (2.9), (2.10) is satisfied

1+¢ 1+¢
PO ——— o (2.13)

for somes > 0, then problen(1.12), (1.2) has no solution.

p2(t) sgnt >

Remark 2.1 If pi(t) = 2, p2(t) = -1, fa(x,y) = 3g1(x,y), fa(x,y) = ga2(x), and
conditions (1.6) are fulfilled, then the functions and f; (i = 1,2) satisfy condi-
tions (2.7)—(2.11). Moreover, ip1(1) = 2L, pa(t) = —L? (p1(t) = —2L, p(t) = L?),
filx,y)=1andfo(x,y) =2L"1y — L72g(x, y) (f2(x,y) = L~ %g(x, y) — 2L~ 1y), and
conditions (1.7) (conditions (T')) are fulfilled, then the functiong; and f; (i =1, 2) sat-

isfy conditions (2.7)—(2.11) (conditions (2.7),82, (2.9), (2.10) and (2.11)). Therefore,
Corollary 2.2 generalizes the results of [5] and [7] concerning the existence of solutions
respectively of (1.5) and” = f(u, u") which satisfies (1.2). As for [7, Theorem 5.1], it
follows from Theorem 2.1 since inequalities (1.9) guarantee the fulfillment of (1.3), (2.1)—
(2.5) withh (1) = L?2 4+ 2L, w(t, x) = Lx.

Remark 2.2. Suppose conditions (2.7)—(2.10) ar¢isfzed and inequality (2.11) holds in
some interval—oo, a]. Moreover, either

sup{| p2()|: t € R} = +o0, (2.14)
or

fo(x,y)>0 forO<x <1, y>0, and inﬂpl(t): te R} =0. (2.15)

Then, by virtue of Corollary 2.2, problem (1.13), (1.2) is solvable. On the other hand,
this problem cannot be studied by [7, Theorem 5.1] since the funcfighx, y) =

p1(t) f1(x, y)y + p2(t) f2(x, y) does not satisfy condition (1.9). Indeed, otherwise for
somel > 0 we would havepy(r) fi(x, y)y + p2(t) f2(x, y) > 2ty — £%x for 0 < x < 1,
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y = 0. Thus|p2(1)| < 2f2(+2/20) for t € R, andp1(t) fi(x, £x)€x > €%x + | pa(t)| fo(x, €x)
for t e R, x € ]0, 1[. However, the first of these last two inequalities contradicts condi-
tion (2.14), and the second one contradicts condition (2.15).

As an example, consider Eq. (1.12), where eithelr) = 1, p2(t) = —%(1+ exp(t))
for 1 € R, or pi(t) =1 fort <0, pa(r) = 3 for 1 >0, andpa(r) = —§ for r e R. Ac-
cording to what just observed, in these cases problem (1.12), (1.2) is solvable, although
[7, Theorem 5.1] does not give an answer on the solvability of that problem.

The next existence result is based on different growth and sign conditions on the right-
hand sidef and allows us to treat also differential equations having structures not included
in the previous ones, such as (1.14).

Theorem 2.4. Let there exist a positive numbeya continuous functioh : R — [0, +o0[
and C1-functionswy : ]—o0, —a] x [0, 1] = [0, +oo[, w2 [a, +o0o[ x [0, 1] — [0, +o0[
such that along with(1.3) the following conditions are fulfilled

ft,x,y)>—h(t)(1+y?) forreR, 0<x<1, yeR, (2.16)
—a
w1(r,0) =0, / w1 (s, x)ds = +00, W =0
—0o0
fort < —a, x €10,1], (2.17)

Jw1(t, x Jw1(t, x
1( )+ 1(t, x)

f(t, x, wi(t, x)) > wi(t, x)

0x Jat
fort < —a, x €0, 1], (2.18y)
+00
wo(t,1) =0, / wa(s, x)ds = 400, M <0
J 9x
fort >a, x €]0, 1], (2.177)

dwa(t, x Jwo(t, x
f(t’x’WZ(I,x))ﬁwz(t,x) Za(x )+ Za(t )

fort >a, x €[0,1]. (2.18)
Then problen(1.1), (1.2) is solvable.

We now provide applications of the above result to differential equations of the
types (1.12), (1.14).

Corollary 2.5. Let us consider Eq(1.14) with f1, f> continuous functionsfi(-,u) €
CL(R). Assume that

f2(1,0)= f2(1,1) =0 forreR (2.19)
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and there exists a positive numhesuch that

af1(t, x)

o <0 for|t|=>a, O0<x <1, (2.20)

tfi(t,x) <0,

and for anyx € [0, 1],

1 xa t
/fl(’s)ds fort < —a, (2.21y)

1 X
folt, ) > =5 falt, ) / f a3 [P
0

0

ds fort>a. (2.21y)

1
1 / afi(t,s)

1
Sfa(t, x) < %fl(t,X)/fl(t,s) ds — > Py

X

Then problem(1.14), (1.2) has at least one solution.

Corollary 2.6. Let us consider Eq(1.12) with p; € C1(R) and p» € C(R). Assume that
there exists a positive numbeisuch that(2.12) holds together with

tp1(r) <0, pi(r) <0 for|t| >a. (2.22)

Then problem(1.12), (1.2) is solvable, and its arbitrary solution satisfied < u(z) <1
for r € R. Moreover, whenever in the interviloo, —a] or in the intervalla, +oo[ condi-
tion (2.13) holds for some > 0, then problem(1.12), (1.2) has no solution.

Remark 2.3. According to Corollary 2.3, conton (2.5) in Theorem 2.1 and condi-
tion (25') in Theorem 21’ cannot be improved in the sense that they cannot be replaced
respectively by the conditions

ow(t, x) n dw(t, x)

f(t,x,w(t,x))2(1—8)|:w(t,x) i| fort<a, 0<x <1,

ax at
Jw(t, Jw(t,
f(t,x,w(t,x))<(1+8)[w(t,x) wa( x)+ w;tx)} fort>a, 0<x <1,
X

no matter how smal > 0 would be.
Similarly, according to Corollary 2.6, conditions.{8;) and (218;) in Theorem 2.4
cannot be improved in the sense thatthannot be replaceay the inequalities

a , 9 ,
f(t,x, wl(t,x)) >1- 8)|:w1(t,x) wla(; X) n wla(tt x)i|

fort <—a, 0<x <1,

dwa(t, dwa(r,
f(r,x,wza,x))<<1+e)[wz(r,x> walt, %), o x)}
ax Jat
fort >a, 0<x <1,

no matter how sma# > 0 would be.
Analogously, conditions (21;) and (221;) in Corollary 2.5 cannot be replaced by the
inequalities
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1+e¢ /x afi(t,s)
2 Jt

fot.) > =21 S ) [ Acsyds + ds
0

0
fort <—a, 0<x <1,

1
1+¢ / Afa(t, s)
2 dt

1
1
ot < T i) [ fatrosyds ds

X
fort >a, 0<x <L

Remark 2.4. Regarding the possible existence of s#ional solutions that reach the sta-
ble equilibrium or leave the unstable one in a finite time, observe that if there exists a
continuous functiod : R — ]0, +o0o[ such that

|f(t,x, )| <@ (x@—x)+1y]) forreR, 0<x <1, |y[<1, (2.23)
then every solution of problem (1.1), (1.2) satisfies the condition
O<u(t)<1l forteR. (2.24)
Indeed, if this would be the case, an interjual 2] could be found such that
O<u()<l, |u'@®)|<1l forn<t<t (2.25)
and
either u(r1) =0, u'(t1))=0, or u() =1 u'(t)=0. (2.26)

On the other hand, according to (2.23) we haw&r)| < £(2) (u(t)(1 — u(t)) + |u’(r)]) for
1 <t < 1. Hence, taking into account (2.26) and applying the Gronwall-Bellman lemma,
we find that either () =0 forr, <t <1, oru(r) =1 forrp <r < t2. But this contradicts
condition (2.25).

Instead, if (2.23) is not valid and all the assumptions of Theorem 2.4 are fulfilled, prob-
lem (1.1), (1.2) may have a solution not satisfying condition (2.24). Indeed, if

32 fort <O
hi(t) := ’
10 {0 fort >0,
| 6ltja—expr®) Y3 forr <O,
ho(t) :=
20) { 6 forr >0,
(1—exp(r3)1/3 for0< x <exptd), r <0,
ot,x):={ 1-x)1/3 for exp(r3) <x <1, 1 <0,
(1—x)13 forO<x <1, r>0,

then the differential equation
W' =hi(u' — ho(Duw(t, u)
has the solution

exp(t3) fort <O,

u(t):{l fort >0,
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which satisfies conditions (1.2), but not condition (2.24). On the other hand, the function
ft,x,y)=h1@®)y — ha(t)xw(t, x) satisfies conditions (1.3), (2.16), (2;1and (2.18)

(i =1,2) with h(r) = h1(r) + ha(1), @ = 0, wi(t, x) = 3r%x, wa(r, x) = [+ s(1—5)/3ds,

but (2.23) is not valid.

3. Auxiliary statements
Following [4] let us give the definitionfa lower (an upper) function of Eq. (1.1).

Definition 3.1. A functiony : R — R is said to be a lower (an upper) function of Eq. (1.1)
if it is continuous and there exists a detC R, containing at most a finite number of points,
such thaty € C2(R\ 1),

flt.y@®.y®O)<y"'® (f(t.y@).y'®)=y" 1) forteR\I,

and at everyrg € I the left and the right limitsy/’(10—), y’(to+) satisfyingy’(fo—) <
y'(to+) (v'(to—) = y'(to+)) exist.
For Eq. (1.1) let us consider also the following problems:

u(ag) =c, y1(t) <u(t) <y2t) fort>ao, (3.1)

u(ag) =c, y1(t) <u(t) <y2(t) fore<ao. (3.2)
Theorems 5.1 and.3; from [4] immediately implies the following two lemmas.

Lemma 3.1. Let y1 and y» be a lower and an upper function of E¢l.1) satisfying in-

equality (1.11). Let, moreover, there exist a continuous functiorR — [0, +oo[ such
that either

@, x,y)sgne = —h()(1+y%) forteR, yi(t) <x <ya(h), yeR, (3.3)
or

of (t.x,y)sgny > —h(t)(1+y%) forteR, yi(t) <x <y2(0), y R, (3.4)
with o € {—1, 1}. Then problen(1.1), (1.10) is solvable.
Lemma3.2. Lety; andy» be alower and an upper function of Hd-1) satisfying inequal-
ity (1.11). Let, moreover, conditioi3.4) hold, whereh :R — [0, +o0o[ is a continuous
functionandr = 1 (6 = —1). Then for anyig € R andc € [y1(ap), y2(ao)] problem(1.1),
(3.1) (problem(1.1), (3.2)) is solvable.

Now for Eq. (1.1) we consider the following two auxiliary problems:
u(ag) =c, 0<u@) <1 fort>ao, (3.5)
u(ag) =c, 0<u@®) <1 forr<ag, (3.9)

whereap € R andc € 10, 1] are arbitrarily fixed numbers.
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Lemma 3.3. Let conditiong1.3), (2.1)—(2.3) hold and
f@,x,y)=f(t,x,00 forteR, 0<x <1, y<O0. (3.6)
Then problem(1.1), (3.5) is solvable and each arbitrary solution satisfies the conditions

W' (t)>0 fortels>ao uls) <1}, (3.7)
t_lirpoou(t) =1 (3.8)

In order to prove the above lemma, we need Lemmas 3.4 and 3.5 below.

Lemma 3.4. Let conditions(2.2) and (3.6) hold, wheres : 10, 1/2[ — 10, +o0[ is a con-
tinuous function. Let, moreover; [1o, t1] — R be a solution of1.1) such that

w'(tg) <8(x), x<u@®)<l—x forr<r <, (3.9
for somex €10,1/2[. Then
w'(t) <u'(to), u’ ()< f*(t,x) foreg<t <. (3.10)

Proof. In view of (3.9) we can set* = sufr € Jro, 11]: u/(s) < §(x) for s € [to, t]}. Then
due to conditions (2.2) and (3.6) we hav&(r) < f*(z,x) < 0 for 1o < ¢ < t*, and con-
sequentlyu’ (t*) < u'(tp) < 8(x). Hence by the definition of* it follows thats* =, and
inequalities (3.10) hold. O

Lemma 3.5. If conditions(2.2) and(3.6) hold, then every solution of proble¢h.1), (3.5)
satisfies inequality3.7).

Proof. Assume by contradiction that (3.7) does not hold. Then there existsig such
that O< u(zp) < 1 andu’(r9) < 0. Therefore, we can find> 1y satisfying O< u(r) < 1 for

to <t < t. On account of conditions (2.2)3.6), by Lemma 3.4 we obtain© u(z) < 1,
u'(t) <0,u”(t) <0 fori <t <t. Buton the other hand, by (3.5) the above inequalities
hold in the intervallzg, +o00[. Therefore, we find G u(¢) < u(t) +u'(t)(t — 1) <1 —
lu'(11)|(t — 1) for t > 11, wheret; > fg, a contradiction. O

Proof of Lemma 3.3. Takey1(t) =0 andy2(t) = 1. Then, according to conditions (1.3),
(2.1), (2.2) and (3.6)y1 andy, are a lower and an upper function of Eq. (1.1), and inequal-
ity (3.4) holds witho = 1. Hence by Lemma 3.2 we have the solvability of problem (1.1),
(3.5).

Let u be an arbitrary solution of that problem. Then by Lemma 3.5 inequality (3.7)
is satisfied. Consequently, there exists the limt-oo) := lim;_, ;o u(t). Let us show
thatu(+o00) = 1. Indeed, otherwise there existe 10, 1/2[ and g € ]ag, +oo[ such that
u'(tg) < 8(x) andx < u(r) < 1—xfort > ry. Hence due to Lemma 3.4 and condition (3.7)
we get O< u/(¢) < §(x) andu”(r) < f*(z, x) for r > ro. If we multiply the last inequality
by ¢ and then integrate, we obtain

'
tu' (t) — u(t) — tou' (to) + u(tg) < /sf*(s, x)ds fort>1,

fo
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and consequently,”

ity (2.3). D

®sf*(s,x)ds > —1 — tou'(19) > —oo. But this contradicts equal-

The lemma below can be proved in an analogous way as Lemma 3.3.

Lemma 3.3. Suppose conditiond..3), (2.1)—(2.3'), and (3.6) are fulfilled. Then prob-
lem(1.1), (2.5) is solvable and each arbitrary solution satisfies the conditigiis) > 0
fort e {s <ag: u(s) >0} andlim,— _ u(?) =0.

Lemma 3.6. Suppose conditiond..3), (2.1)—(2.3), (3.6) are fulfilled, andu is a solution
of problem(1.1), (3.5) defined on its maximal existence interval. Then eithiera solution
of problem(1.1), (1.2), or there existgy < ag such that

u(t) =0, u'(tg) >0, 0<u@®) <1 fortogt<+oo,tlirp u®)=1. (3.11)
—> 100

Proof. Let ]z, +oo[ be the interval whera is defined. Then, by virtue of Lemma 3.3,
conditions (3.7), (3.8) are satisfied and, moreover, either

uW'(@#)>0, O<u(t)<1 fort, <t <ao, (3.12)

or there existsg € ]t., aol such that the restriction of to [fg, +-o0o[ is a solution of (1.1),
(3.11).
Assume inequalities3(12). Then on account of (2.1) we deduce

1+u'(t) __70 du'(s)

ag
71—1—14’((10) = 714_”/(” <h (t)/(1+u (s)) ds

t
= h*(t)(ao — t + u(ag) — u(t)) < (I4+ag — )h*(t) fort, <t <ao,

whereh*(r) = maxh(s): t <s < ap}. Consequently, & u'(¢t) < (1 + u'(ag)) exp((1 +

ao — Hh*(t)) for 1, <t < ag. Hence due to the definition of the intervial, +oo[ it is
clear thatt, = —oo. Let us show that in this caseis a solution of problem (1.1), (1.2),
i.e., lim,— _s u(¢) = 0. Assume the contrary. Then there exists |0, 1/2[ such thatt <

u(t) <1 —x for t <ag. On the other hand, since liminf_~, u'(t) = 0, there exists a
decreasing sequence of poifitg satisfyings, — —oo andu’(z,) — 0 asn — +o00. Thus

for sufficiently largen we haveu’(s,) < ¢, whereg is an arbitrarily small positive number
satisfyinge < 8(x), ands is the function appearing in (2.2). Then by Lemma 3.4 we get
u'(t) < u'(t,) < e fort, <t <aop. Hence, in view of the arbitrariness of we deduce

u’ () < 0 forr < ao, in contradiction with the first inequality in (3.12).0

The following lemma can be proved analogously.

Lemma 3.6’. Let conditions(1.3), (2.1)—(2.3), (3.6) hold, and letu be a solution of
problem(1.1), (2.5") defined on its maximal existence interval. Then eithira solution
of problem(1.1), (1.2), or there existgg € Jag, +o0o[ such thatu(rg) =1, 0 < u(z) < 1for
t <o, lim;_ _ou(t) =0.
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We conclude this section with two lemmas concerning initial problems for the first order
differential equation

= w0, (3.13)

Lemma3.7. Letw € C(]—o0, a] x [0, 1]) be a nonnegative functiomy(z, -) € C1([0, 1)),
and conditions(2.4) hold. Then the differential equatio8.13) has a unique solution,
defined orj—oo, a], such that

u@ =1, O<u(@) <1 fort<a, . lim u()=0. (3.14)
——00

Proof. Let us extend the functiom to ]—oo,a] x R by defining w(z, x) = w(z, 0)

for x <0 andw(t, x) = w(t,1) for x > 1. Then Eq. (3.13) has a unique solution, de-
fined on]—o0, a], such thatu(a) =1. On the other hand, in view of (2.4) we have
W' (1) 20, 0< u(r) <1 for r < a. Moreover, [“_ w(s,x)ds < [*._w(s,u(s))ds =
1—u(—o00) <1, wherex =lim;_, _» u(z). From the last inequality it follows that=0
since[foo w(s, x)ds = +oo for x > 0. Therefore conditions (3.14) are satisfiedi

Lemma3.7". Letw € C([a, +oo[ x [0, 1]) be a nonnegative functiom(z, -) € C1([0, 1)),
and conditions(2.4') hold. Then the differential equatiof3.13) has a unique solution,
defined orfa, +oo[, such thati(a) =0,0 < u(t) < 1fort > a, lim;— ;oo u@@) = 1.

The proof of this lemma is similar to that of Lemma 3.7.

4. Proof of the main results

Proof of Theorem 2.1. Without loss of generality since we are searching for monotone
solutions, we will assume below that the functigrsatisfies condition (3.6).

First let us note that if problem (1.1), (3. solvable, according to Lemma 3.5 it is
easy to see that every solution of that problem satisfies condition (2.6).

Taking into account (1.3), (2.1)—(2.3) a(®16), by Lemma 3.3 weatuce the solvability
of problem (1.1), (3.5). Denote hy; the solution of that problem withg =0, ¢ = 1/2.
We will assume thati1 is maximally extended to the left as a solution of Eq. (1.1). By
Lemma 3.6 eithes is a solution of problem (1.1), (1.2), or there exigt& ]—oo, O[ such
thatui(to) =0, 0< u1(r) < 1 fort > 1o, and lim_, 4o u1(t) = 1. Obviously, it remains
to consider the second case. Moreover, without loss of generality it can be assumed that
a < 1g.

Due to Lemma 3.7, conditions (2.4) guarantee the existence of a soluicof
Eq. (3.13), defined in the intervdloo,a] and satisfying the conditionsz(a) =1,
O<up(t)<1fort <a,andlim_ _su2()=0. Set

a(t) = {O fort <o, v () :{uz(t) fort <a,

ui(t) fort > 1, 1 fort >a.
Of course 1 andy2: R — R are continuous functions such that
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0<y1(t) <y2(t) <1 forreR,
lim y;(t) =0, Iim @) =1 (i=12). (4.2)
t——00 t——+400
On the other hand, by virtue of conditions (1.3), (2.5) and (31 andy, are respectively

a lower and an upper function of Eq. (1.1), and inequality (3.3) holds. Then by Lemma 3.1
problem (1.1), (1.10) has a solutianwhich in view of (4.1) satisfies conditions (1.2)0

The proof of Theorem 2’ is similar to that of Theorem 2.1. The only difference is that
instead of Lemmas 3.3, 3.6 and 3.7, Lemma, 3.6’ and 37’ have to be used.

Proof of Theorem 2.4. By virtue of Lemma 3.7 and conditiori.17;) (Lemma 37’ and
conditions(2.17)), the differential equation

du — Wit 1) du — Wyt 1)
T 7
has a solutiom; (a solutioru?), defined in the intervgl-oo, —a] (in the intervala, +oo[)
and satisfies the conditions
ui(—a)=1, O<ui(t) <1l fort<—a, lim u1()=0
1——00

(uz(a) =0, O<ux(®)<1 fort>a, lim u2@®) = 1).
t——+00

Set

0 forr <a, . fui(@) fort< —a,
us(t) fort>a, va(t) ’_{1 fort > —a.

no=| (4.2)

Of coursey; :R — [0, 1] (i =1, 2) are continuous functions satisfying (1.11). Moreover,
y1 € C2(R\{a}), y2 € C*(R\ {—a}) andy](a—) < y1(a+), y3(—a—) = ys(—a+). lf now

we take into account conditions (1.82.18;), (2.18;) and Definition 3.1, then it becomes
clear thaty; andy, are a lower and an upper function of Eq. (1.1). On the other hand,
inequality (2.16) yields inequality (3.3By Lemma 3.1 the above-mentioned conditions
guarantee the solvability of problem (1.1), (1.10). However, by virtue of equalities (4.2),
inequalities (1.10) imply conditions (1.2). O

Proof of Corollary 2.5. Put

[ x,y) = fut, x)y + fa(t, %),
h(t) :=max{| fi(t,x)| + | fo(t, x)|: 0<x <1},

X 1
1 1
wi(t, x) :=§/f1(t,S)ds, wa(t, x) :=—§/f1(t,S)ds.
0 X

Obviously, f satisfies inequality (2.16). Moreover, equalities (2.19) yield equalities (1.3),
and conditions (2.20) imply condition8.17;) (i = 1, 2). Further, due t@2.21;) we find
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1 X
[t x,wi(t, %)) = Efl(t,X)/fl(t,S)ds + fa(t. x)
0

X

1 p T |
> Zfl(t,x)/fl(t,s)ds+§/ fl;tt s) s
0 0

dw1 (¢ dw1(t
=wi(t, x) wilt, ) + wilt, ) fort < —a, 0<x <1,
ax at
i.e., condition(2.18;). Analogously, in view 0f(2.21y), we can show that2.18y) holds.

The assertion follows by applying Theorem 2.43

Proof of Corollary 2.6. Equation (1.12) is derived from Eq. (1.14) in the case where
f1(t, x) = p1(¢) and f2(t, x) = p2(t)x (1 — x). In that case inequalities (2.22) and (2.12)
imply inequalities (2.20) and2.21;) (i =1, 2). Therefore, all the conditions of Corol-
lary 2.5 are fulfilled, which guarantee the solvability of problem (1.12), (1.2). On the
other hand, according to Renka?.4, an arbitrary solution of problem (1.12), (1.2) satis-
fies (2.24).

Now let us show that if along with (2.22) condition (2.13) holds in the intefwal-ool,
then problem (1.12), (1.2) has no solution. Assume by contradiction the existence of a
solutionu of this problem. Clearlyu satisfies (2.24). On the other hand, by virtue of
inequality (2.13) without loss of generality we can assume that

1 1,

p2(u(t) > (4_1 + 80) pf(t) — Epl(t) fort > a, (4.3)

wheregy is a sufficiently small positive number. Put
1 t
v(t) = (1 - u(t)) exp(—é / p1(s) ds). (4.4)
a

Thenv is a solution of the equation

V' + p(t)v =0, (4.5)

where p(t) = p2(u(t) — p3(t) + 3py(1). Moreover, in view of conditions (2.22)
and (4.3) we findp(1) > eop2(1) > eop2(a) for 1 > a. Therefore,[ ™™ p(s)ds = 400,
and so all solutions of Eq. (4.5) have sequences of zeros tendifgxtoOn the other
hand, (2.24) and (4.4) imply that¢) > O for ¢ > a, a contradiction.

Analogously it can be proved that this problem has no solution also in the case where
inequality (2.13) holds in the interviboco, —a]. O

Proof of Corollary 2.2. We limit ourselves to consider only the case where conditions
(2.8)—(2.11) are fulfilled; the other one being analogous.

Put (¢, x,y) = p1(®) fi(x, y)y + p2(@) f2(x, y). Evidently, f satisfies condition (2.1),
where h(r) = max{|p2(t)|f0(x)f6‘ fo(s)ds: 0 < x < 1}. Further, by virtue of condi-
tions (2.7) and (2.8)equalities (1.3) are satisfied and there exists a continuous function
80:10, 1/2[ — 10, +o0[ such that
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1
fo(s,y) >0 forx <s<1l-—x, 0<x<§, 0< y <dolx),
Sfa(s,y) .
=l x
fils,y)

Suppos (x) := min{24X 50(x)}, p(x) := min{ 2L <5 <1 x}. Thenin view
of (2.8) and (2.9) we find

f(t,s,9) < p1(®) fils, )y — ap1(®) f2(s, y) < p1(0) fa(s, ) (y — ad1(x))
<—px)pr(t) forx<s<1l—x, 0<y <d(x),

. 1
81(x):=m|n{ gsgl—x,ogygéo(x)}>0 f0r0<x<§.

and consequently, conditions (2.2) and (2.3) are satisfied.

Putw(, x) := %pl(t) f(f fo(s)ds. Then assumptions (2.8), (2.9) and (2.11) yield con-
ditions (2.4) and (2.5). Now if we apply Theorem 2.1, we conclude that problem (1.13),
(1.2) has at least one solution satisfying condition (2.6).

The case where conditiori2.8")—(2.10) hold can be proved analogously but applying
Theorem 21 instead of Theorem 2.1.0

The proof of Corollary 2.3 is analogous to that of Corollary 2.6. The only difference is
that Corollary 2.2 is used instead of Corollary 2.5.
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