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Abstract. The sufficient conditions are established for the existence and uniqueness of
an ω-periodic solution of the functional differential equation

u′′(t) = f(u)(t),

where f is a continuous operator acting from the space of continuously differentiable ω-
periodic functions to the space of ω-periodic and Lebesgue integrable on [0, ω] functions.

1. Statement of the main results

1.1. Main notation and definitions

In the present paper, for linear and nonlinear functional differential equations

(1.1) u′′(t) = p0(u)(t) + p1(u
′)(t) + q(t)

and

(1.2) u′′(t) = f(u)(t)

we investigate the problem of the existence and uniqueness of a periodic solution
with a preassigned period ω > 0. Here pi : Cω → Lω (i = 1, 2) are linear bounded
operators, q ∈ Lω and f : C′ω → Lω is a nonlinear continuous operator. In the case
if pi(y)(t) ≡ p0i(t)y(t) (i = 1, 2) and f(u)(t) ≡ f0(t, u(t), u′(t)), i.e. if equations
(1.1) and (1.2) have respectively the forms

(1.1′) u′′(t) = p01(t)u(t) + p02(t)u
′(t) + q(t)

1Supported by a Fellowship from the INTAS YS 2001-2/80 as visiting professor at University
of Udine, Italy.
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and

(1.2′) u′′(t) = f0(t, u(t), u′(t)),

to the above-mentioned problem is devoted an ample literature (see, for example,
[1]–[10], [12]–[16], [18]–[20], [22]–[28] and references therein) and this problem is
studied with sufficient thoroughness. The problem in a general case remains still
little investigated. It is just this case we will consider in the present paper. More
exactly, for equations (1.1) and (1.2) we have established nonimprovable sufficient
conditions of the existence and uniqueness of an ω-periodic solution. The obtained
results are new for equations (1.1′) and (1.2′) as well.

Throughout the paper we use the following notation.
IR is the set of real numbers, IR+ = [0, +∞[, IRn is the n-dimensional real

Euclidean space.
If x ∈ IR, then

[x]+ = (|x|+ x)/2, [x]− = (|x| − x)/2.

Cω is the space of ω-periodic continuous functions x : IR → IR with the norm

‖x‖Cω = max {|x(t)| : 0 ≤ t ≤ ω} .

C′ω is the space of ω-periodic continuously differentiable functions x : IR → IR
with the norm

‖x‖C′
ω

= max {|x(t)|+ |x′(t)| : 0 ≤ t ≤ ω} .

C̃′ω is the space of ω-periodic and absolutely continuous together with their
first derivative functions x : IR → IR.

Lω is the space of ω-periodic and Lebesgue integrable on [0, ω] functions
y : IR → IR with the norm

‖y‖Lω =

∫ ω

0

|y(t)| dt.

The linear operator p : Cω → Lω is said to be non-negative (non-positive) if
for any non-negative function x ∈ Cω almost everywhere on IR the inequality

p(x)(t) ≥ 0 (p(x)(t) ≤ 0)

is satisfied.
The linear operator p : Cω → Lω is said to be monotone if it is either positive

or negative.
Under an ω-periodic solution of equation (1.1) (equation (1.2)) is understood

the function u ∈ C̃′ω which almost everywhere on IR satisfies this equation.
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1.2. Periodic solutions of linear equations

Theorem 1.1. Let for the operator p1 : Cω → Lω the representation

(1.3) p1(x)(t) = p+
1 (x)(t)− p−1 (x)(t) for x ∈ Cω, t ∈ IR

be valid, where p+
1 , p−1 : Cω → Lω are non-negative linear operators. Moreover, let

p0 : Cω → Lω be the monotone operator,

(1.4)

∫ ω

0

p0(1)(s) ds 6= 0

and

(1.5)

∫ ω

0

|p0(1)(s)| ds ≤ 16

ω

(
1−

∫ ω

0

[p+
1 (1)(s) + p−1 (1)(s)] ds

)
.

Then equation (1.1) has one and only one ω-periodic solution.

For p1(x)(t) ≡ 0, from Theorem 1.1 follows Theorem 1 given in [21] without
proof.

Example 1.1. An example below shows that condition (1.5) in Theorem 1.1 is
optimal and it cannot be replaced by the condition

(1.5ε)

∫ ω

0

|p0(1)(s)| ds ≤ 16 + ε

ω

(
1−

∫ ω

0

[p+
1 (1)(s) + p−1 (1)(s)] ds

)
,

no matter how small ε ∈]0, 1] is. Let α, β, u0 and τ be the numbers and functions
given by the equalities

α =
ε

16(16 + ε)
, β =

πα

π − 2
,

u0(t) =



4t for t ∈
[
0,

1

4
− β

[
1− 4β +

8β

π
sin

(
π

2β

(
β + t− 1

4

))
for t ∈

[
1

4
− β,

1

4
+ β

]
2− 4t for t ∈

]
1

4
+ β,

3

4
− β

[
4β − 1− 8β

π
sin

(
π

2β

(
β + t− 3

4

))
for t ∈

[
3

4
− β,

3

4
+ β

]
4(t− 1) for t ∈

]
3

4
+ β, 1

]
,

u0(t) = u0(t + 1) for t ∈ IR
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and

τ(t) =

{
1/4 for u′′0(t) ≥ 0

3/4 for u′′0(t) < 0.

Let ω = 1. For any y ∈ Cω we put

(1.6) p0(y)(t) = |u′′0(t)| y(τ(t)), p1(y)(t) = α u′′0(t) y(0).

It is evident that p0 : Cω → Lω and p1 : Cω → Lω are the linear bounded operators
satisfying all the requirements of Theorem 1.1, except (1.5). On the other hand,∫ ω

0

|p0(1)(s)| ds =

∫ 1

0

|u′′0(s)| ds = 16

and

1−
∫ ω

0

[p+
1 (1)(s) + p−1 (1)(s)] ds = 1− α

∫ 1

0

|u′′0(s)| ds = 1− 16α =
16

16 + ε
·

Thus instead of (1.5) inequality (1.5ε) with ω = 1 is fulfilled.
Note that the easily verifiable equalities

u′0(0) = 4,

1− u0(τ(t)) sign u′′0(t) = 4α for t ∈ IR

result in

u′′0(t)− |u′′0(t)|u0(τ(t)) = u′′0(t)(1− u0(τ(t)) sign u′′0(t))

= α u′′0(t) u′0(0) for t ∈ IR.

Taking into account (1.6), the above equality implies that u0 is a nontrivial ω = 1
periodic solution of the homogeneous equation

u′′(t) = p0(u)(t) + p1(u
′)(t).

Consider now the equation with deviating arguments

(1.7) u′′(t) =
m∑

i=1

p0i(t) u(τ0i(t)) +
n∑

j=1

p1j(t) u′(τ1j(t)) + q(t),

where q, p0i, p1j ∈ Lω and τoi, τ1j : IR → IR are measurable functions such that

τ0i(t + ω) = ν0i(t)ω + τ0i(t), τ1j(t + ω) = ν1j(t)ω + τ1j(t) for t ∈ IR

if the functions ν0i and ν1j take only integral values.

Corollary 1.1. Let there exist σ ∈ {−1, 1} such that

(1.8) σ p0i(t) ≥ 0 (i = 1, . . . , n) for t ∈ IR.



on periodic solutions of second order functional... 5

Moreover, let

(1.9)

∫ ω

0

p0i(s) ds 6= 0 (i = 1, . . . , n)

and

(1.10)
m∑

i=1

∫ ω

0

|p0i(s)| ds ≤ 16

ω

(
1−

n∑
j=1

∫ ω

0

|p1j(s)| ds

)
.

Then equation (1.7) has one and only one ω-periodic solution.

For equation (1.1′), where p0i ∈ Lω (i = 1, 2) and q ∈ Lω, Corollary 1.1
results in

Corollary 1.1′. Let
p01(t) ≤ 0 for t ∈ IR

and

0 <

∫ ω

0

|p01(s)|ds ≤ 16

ω

(
1−

∫ ω

0

|p02(s)|ds

)
.

Then equation (1.1′) has one and only one ω-periodic solution.

For p02(t) ≡ 0, this corollary coincides with the well-known result of Lasota-
Opial.

Remark. It is clear that if p01 ∈ Lω is non-negative, then (1.1′) has one and only
one solution, no matter whatever p02 ∈ Lω and q ∈ Lω are. As we can see from
Example 1.1, the similar statement is invalid for equation (1.7), i.e. the fact that
the functions p0i (i = 1, . . . , n) are non-negative does not guarantee the existence
of the unique ω-periodic solution of equation (1.7). Moreover, condition (1.10) in
Corollary 1.1 is unimprovable even in the case in which

p0i(x) ≥ 0 for t ∈ IR (i = 1, . . . , n).

1.3. Periodic solutions of nonlinear equations

Below, along with the differential equation (1.1) we have to consider the differential
inequality

(1.11) |v′′(t)− g0(v)(t)| ≤ h1(|v|)(t) + h2(|v′|)(t),

where g0, h1, h2 : Cω → Lω are linear operators.

Definition 1.1. The inclusion

(h01, h02, h1, h2) ∈ Oω

denotes that:
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(i) h0i, hi : Cω → Lω (i = 1, 2) are linear non-negative operators;

(ii) the differential inequality (1.11) has no non-trivial solution if only
g0 : Cω → Lω is a linear monotone operator such that

(1.12) |h01(x)(t)| ≤ |g0(x)(t)| ≤ h02(|x|)(t) for x ∈ Cω, t ∈ IR.

Definition 1.2. We say that the function δ : IR× IR+ → IR+ belongs to the set
Mω if

(1.13) δ(· , ρ) ∈ Lω for ρ ∈ IR,

δ(t, ·) : IR+ → IR+ is a non-decreasing function for almost all t ∈ IR, and

(1.14) lim
ρ→+∞

1

ρ

∫ ω

0

δ(s, ρ) ds = 0.

Theorem 1.2. Let

(1.15) |f(x)(t)− g(x, x)(t)| ≤ h1(|x|)(t) + h2(|x′|)(t) + δ(t, ‖x‖C′
ω
)

for x ∈ C′ω, t ∈ IR,

(1.16) |h01(y)(t)| ≤ |g(x, y)(t)| ≤ h02(|y|)(t) for x ∈ C′ω, y ∈ Cω, t ∈ IR,

where

(1.17) (h01, h02, h1, h2) ∈ Oω,

δ ∈ Mω and g : C′ω×C′ω → Lω is a continuous operator such that g(x, ·) : C′ω → Lω

is a linear monotone operator for an arbitrary x ∈ C′ω. Then equation (1.2) has
at least one ω-periodic solution.

Corollary 1.2. Let conditions (1.15), (1.16) be satisfied, where δ ∈ Mω, h0i, hi :
Cω → Lω are linear non-negative operators and g : C′ω×C′ω → Lω is a continuous
operator such that g(x, ·) : C′ω → Lω is a linear monotone operator for an arbitrary
x ∈ C′ω. Moreover, let

(1.18)

∫ ω

0

(h02(1)(s) + 4h1(1)(s))ds ≤ 16

ω

(
1−

∫ ω

0

h2(1)(s) ds

)
and

(1.10) h1 (|y|) (t) ≤ h01 (|y|) (t) for y ∈ Cω, t ∈ IR,

(1.19′) mes {t ∈ [0, ω] : h1(1)(t) < h01(1)(t)} > 0.

Then equation (1.2) has at least one ω-periodic solution.
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Consider now the case, where equation (1.2) has the form

(1.20) u′′(t) = f0(t, u(τ1(t)), u
′(τ2(t))) for t ∈ IR.

Here f0 : IR3 → IR belongs to the Carathéodory class, τ1, τ2 : IR → IR are
measurable functions such that

τi(t + ω) = νi(t)ω + τi(t) (i = 1, 2) for t ∈ IR

if the functions νi (i = 1, 2) take only integral values, and

(1.21) f0(t + ω, x, y) = f0(t, x, y) for (t, x, y) ∈ IR3.

Then the following corollary is valid.

Corollary 1.3. Let

(1.22) |f0(t, x1, x2)− g0(t, x1, x2)x1| ≤ p1(t)|x1|+ p2(t)|x2|+ δ(t, |x1|+ |x2|)
for (t, x1, x2) ∈ IR3,

(1.23) p01(t) ≤ σg0(t, x1, x2) ≤ p02(t) for (t, x1, x2) ∈ IR3,

where σ ∈ {−1, 1}, δ ∈ Mω, the functions p0i, pi ∈ Lω (i = 1, 2) are non-
negative, and g0 : IR3 → IR is ω-periodic in the first argument and belongs to
the Carathéodory class. Moreover, let

(1.24)

∫ ω

0

(p02(s) + 4p1(s)) ds ≤ 16

ω

(
1−

∫ ω

0

p2(s) ds

)
and

(1.25) mes {t ∈ [0, ω] : p1(t) < p01(t)} > 0, p1(t) ≤ p01(t) for t ∈ IR.

Then equation (1.20) has at least one ω-periodic solution.

Theorem 1.3. Let

(1.26) |f(x)(t)− f(x)(t)− g(x, x, x− x)(t)| ≤ h1(|x− x|)(t) + h2(|x′ − x ′|)(t)
for x, x ∈ C′ω, t ∈ IR,

(1.27) |h01(y)(t)| ≤ |g(x, x, y)(t)| ≤ h02(|y|)(t) for x, x ∈ C′ω, y ∈ Cω, t ∈ IR,

where
(h01, h02, h1, h2) ∈ Oω,

and g : C′ω×C′ω×Cω → Lω is a continuous operator such that g(x, x, ·) : Cω → Lω

is a linear monotone operator for arbitrary x, x ∈ C′ω. Then equation (1.2) has
one and only one ω-periodic solution.
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Corollary 1.4. Let conditions (1.26) and (1.27) be satisfied, where h0i, hi:Cω→Lω

(i = 1, 2) are the linear non-negative operators and g : C′ω ×C′ω ×Cω → Lω is the
continuous operator such that g(x, x, ·) : Cω → Lω is a linear monotone operator
for arbitrary x, x ∈ C′ω. Moreover, let inequalities (1.18), (1.19) and (1.19′) be
satisfied. Then equation (1.2) has one and only one ω-periodic solution.

Corollary 1.5. Let

(1.28) p01(t) ≤ σ
∂f0(t, x, y)

∂x
≤ p02(t) for (t, x, y) ∈ IR3,

(1.29)

∣∣∣∣∂f0(t, x, y)

∂y

∣∣∣∣ ≤ p2(t) for (t, x, y) ∈ IR3,

where σ ∈ {−1, 1} and p01, p02, p2 ∈ Lω are non-negative functions. Moreover, let

(1.30)

∫ ω

0

p02(s) ds ≤ 16

ω

(
1−

∫ ω

0

p2(s) ds

)
and

(1.31)

∫ ω

0

p01(s) ds > 0.

Then equation (1.20) has one and only one ω-periodic solution.

This corollary is new as well as in the case, where τi(t) ≡ t (i = 1, 2), i.e.
when equation (1.20) coincides with (1.2′).

2. Auxiliary propositions

2.1. On one property of periodic functions

Define the functional ∆ : Cω → IR+ by the equality

∆(x) = max {x(t) : 0 ≤ t ≤ ω} −min {x(t) : 0 ≤ t ≤ ω} for x ∈ Cω

and prove the following proposition.

Lemma 2.1. Let

(2.1) v0 ∈ C′ω, v0(t) 6≡ const.

Then

(2.2) ∆(v0) <
ω

4
∆(v′0).
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Proof. Since the function v0 is ω-periodic, there exist a ∈ [0, ω[ and b ∈]a, a + ω[
such that

v0(a) = max {v0(t) : 0 ≤ t ≤ ω} , v0(b) = min {v0(t) : a ≤ t ≤ a + ω} .

Therefore

∆(v0) = −
∫ b

a

v′0(s) ds, ∆(v0) =

∫ a+ω

b

v′0(s) ds.

From these equations, in view of conditions (2.1) we get respectively the estimates

(2.3)
∆(v0) < −(b− a) min {v′0(t) : 0 ≤ t ≤ ω} ,

∆(v0) < (a + ω − b) max {v′0(t) : 0 ≤ t ≤ ω} ,

where
min {v′0(t) : 0 ≤ t ≤ ω} < 0, max {v′0(t) : 0 ≤ t ≤ ω} > 0.

Multiplying inequalities (2.3) and applying twice the numerical inequality

(2.4) λ1 · λ2 ≤
1

4
(λ1 + λ2)

2 for λ1 ≥ 0, λ2 ≥ 0,

we conclude that the lemma is valid.

2.2. The principle of a priori boundedness

Definition 2.1. We say that an operator g : C′ω × C′ω → Lω belongs to the class
VVω if it is continuous and satisfies the following three conditions:

(i) g(x, ·) : C′ω → Lω is a linear monotone operator for any arbitrarily fixed
x ∈ C′ω;

(ii) There exists a non-decreasing in the second argument function α:IR×IR+→IR+

such that α(· , ρ) ∈ Lω for ρ ∈]0, +∞[, and for any x, y ∈ C′ω and almost all
t ∈ IR the inequality

|g(x, y)(t)| ≤ α(t, ‖x‖C′
ω
)‖y‖C′

ω

holds;

(iii) There exists a positive number ρ1 such that for any x ∈ C′ω and q ∈ Lω an
arbitrary ω-periodic solution v of the differential equation

(2.5) v′′(t) = g(x, v)(t) + q(t)

admits the estimate

(2.6) ‖v‖C′
ω
≤ ρ1‖q‖Lω .
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From Theorem 2.1 of [17] follows

Lemma 2.2. Let there exist a positive number ρ2 and an operator g ∈ VVω such
that for any λ ∈]0, 1[ an arbitrary ω-periodic solution v of the differential equation

(2.7) v′′(t) = (1− λ)g(v, v)(t) + λf(v)(t)

admits the estimate

(2.8) ‖v‖C′
ω
≤ ρ2.

Then equation (1.2) has at least one ω-periodic solution.

2.3. Lemmas on the a priori estimate

Let us consider the differential inequality

(2.9) |v′′(t)− g0(v)(t)| ≤ h1(|v|)(t)− h2(|v′|)(t) + q(t).

Then the following lemma is valid.

Lemma 2.3. Let

(2.10) (h01, h02, h1, h2) ∈ Oω.

Then there exists a constant ρ0 such that for any non-negative function q ∈ Lω

and linear monotone operator g0 : Cω → Lω which satisfies the condition

(2.11) |h01(x)(t)| ≤ |g0(x)(t)| ≤ h02(|x|)(t) for x ∈ Cω, t ∈ IR,

every ω-periodic solution v of inequality (2.9) admits the estimate

(2.12) ‖v‖C′
ω
≤ ρ0‖q‖Lω .

Proof. Assume the contrary that the lemma is invalid. Then for any natural k
there exist the monotone operator gk : Cω → Lω and the function vk ∈ C′ω such
that almost everywhere on IR the inequality

(2.13) |v′′k(t)− gk(vk)(t)| ≤ h1(|vk|)(t) + h2(|v′k|)(t) + q(t)

hold and

(2.14) |h01(x)(t)| ≤ |gk(x)(t)| ≤ h02(|x|)(t) for x ∈ Cω, t ∈ IR,

(2.15) σ gk(x)(t) ≥ 0 for t ∈ IR,
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where σ ∈ {−1, 1} and

(2.16) ‖vk‖C′
ω

> k‖q‖Lω .

Now let us show that from the sequence (gk)
∞
k=1 we can choose a subsequence

of monotone operators (gkk)
∞
k=1 such that

(2.17) lim
k→+∞

∫ t

0

gkk(x)(s)ds =

∫ t

0

g̃0(x)(s)ds uniformly on [0, ω],

where g̃0 : Cω → Lω is the monotone linear operator,

(2.18) |h01(x)(t)| ≤ |g̃0(x)(t)| ≤ h02(|x|)(t) for x ∈ Cω, t ∈ IR

and for some σ ∈ {−1, 1}

(2.19) σ g̃0(1)(t) ≥ 0 for t ∈ IR.

Towards this end, we consider some set {y1, y2, . . .} ∈ Cω which is every-
where dense in Cω. Taking into account inequality (2.14) and the fact that the

operator h02 is monotone, the sequence wk(y1)(t) =

∫ t

0

gk(y1)(s)ds (k = 1, 2, . . .)

will be uniformly bounded and equicontinuous on [0, ω]. According to the Arzela–
Ascoli lemma, we can choose from (gk)

∞
k=1 a subsequence (g1k)

∞
k=1 such that the se-

quence w1k(y1)(t) =

∫ t

0

g1k(y1)(s)ds uniformly converges on [0, ω]. Similarly, from

(g1k)
∞
k=1 one can choose a subsequence (g2k)

∞
k=1 such that w2k(y2)(t)=

∫ t

0

g2k(y2)(s)ds

will uniformly converge on [0, ω]. If we continue this process infinitely, we will
get a system of sequences (gik)

∞
k=1 (i = 1, 2, . . .) such that (gjk)

∞
k=1 is a sub-

sequence of the sequence (gik)
∞
k=1 for any natural i and j > i, the sequence

wjk(yi)(t) =

∫ t

0

gjk(yi)(s)ds uniformly converges on [0, ω] and

(2.20) |h01(x)(t)| ≤ |gkk(x)(t)| ≤ h02(|x|)(t) for x ∈ Cω, t ∈ IR

and

(2.21) |wkk(x)(t)−wkk(x)(s)| ≤ ‖x‖C

∫ t

s

h02(1)(ξ)dξ for x∈Cω, 0≤s<t≤ω.

Therefore by virtue of the Banach-Steinhaus theorem ([11], Ch.VII, §1, Theorem
3), there exists a continuous linear operator w0 acting from Cω to the space of
continuous on [0, ω] functions such that

(2.22) lim
k→∞

wkk(x)(t) = w0(x)(t) uniformly on [0, ω].
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It is clear from (2.21) and (2.22) that w0(x)(0) = 0, |w0(x)(t) − w0(x)(s)| ≤

≤ ‖x‖Cω

∫ t

s

h02(1)(ξ)dξ for 0 ≤ s < t ≤ ω. Hence the function w0(x) : [0, ω] → IR

is absolutely continuous and

(2.23) w0(x)(t) =

∫ t

0

g̃0(x)(s) ds for 0 ≤ t ≤ ω,

where g̃0(x)(t) =
d

dt
[w0(x)(t)], i.e. in view of (2.22) equality (2.17) is satisfied.

Integrating inequality (2.20) from s to t (0 ≤ s < t ≤ ω), dividing it by t − s
and passing to the limit as k → ∞ and then as s → t and taking into account
equalities (2.22) and (2.23), we can see that g̃0 is the linear operator acting from
Cω to the space of functions, Lebesgue summable on [0, ω] and satisfying on [0, ω]
inequality (2.18). Further, extending g̃0 to the entire IR by the equality

g̃0(x)(t + ω) = g̃0(x)(t) for x ∈ Cω, t ∈ IR,

we find that g̃0 is a linear operator acting from Cω to Lω and satisfying inequality
(2.18). From equality (2.17), the fact that the operators gk are monotone and
inequalities (2.15) it becomes clear that g̃0 is a monotone operator and inequality
(2.19) is satisfied.

By equality (2.17), without loss of generality we can suppose that for the
sequence (gk)

∞
k=1 the equality

(2.24) lim
k→∞

∫ t

0

gk(x)(s) ds =

∫ t

0

g̃0(x)(s) ds uniformly on [0, ω]

is satisfied.

Suppose now that zk(t) =
vk(t)

‖vk‖C′
ω

. Then for any k ∈ IN

(2.25) ‖zk‖C′
ω

= 1

and due to inequalities (2.13) and (2.16), we arrive at

(2.26)

∣∣∣∣z′k(t)− z′k(s)−
∫ t

s

gk(zk)(ξ) dξ

∣∣∣∣ ≤ ∫ t

s

(h1(|zk|)(ξ) + h2(|z′k|)(ξ))dξ +
1

k

for 0 ≤ s < t ≤ ω.

It follows from (2.14), (2.25) and (2.26) that for any natural k

‖zk‖Cω ≤ 1, ‖z′k‖Cω ≤ 1

and

|z′k(t)− z′k(s)| ≤
∫ t

s

(h02(1)(ξ) + h1(1)(ξ) + h2(1)(ξ))dξ +
1

k

for 0 ≤ s < t ≤ ω,
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i.e., the sequences (z
(i)
k )∞k=1 (i = 0, 1) are uniformly bounded and equicontinuous

on [0, ω]. Taking into account the Arzela–Ascoli lemma and the fact that the
functions zk (k = 1, 2, . . .) are ω-periodic, we can choose a subsequence (zkm)∞m=1

such that lim
m→∞

z
(i)
km

(t) = z
(i)
0 (t) (i = 0, 1) uniformly on IR. Therefore without loss

of generality we can assume that for the sequence (zk)
∞
k=1 the equality

(2.27) lim
k→+∞

z
(i)
k (t) = z

(i)
0 (t) (i = 0, 1) uniformly on [0, ω]

is satisfied, where z0 ∈ C′ω. Then from (2.14), (2.24), (2.25) and (2.27) we obtain

(2.28) ‖z0‖C′
ω

= 1

and ∣∣∣∣∫ t

s

(gk(zk)(ξ)− g̃0(z0)(ξ)) dξ

∣∣∣∣≤ ∫ t

s

∣∣∣∣ gk(zk − z0)(ξ)

∣∣∣∣ dξ+

+

∫ t

s

|gk(z0)(ξ)− g̃0(z0)(ξ)| dξ ≤
∫ t

s

h02(1)(ξ) dξ ‖zk − z0‖C′
ω
+

+

∫ t

s

|gk(z0)(ξ)− g̃0(z0)(ξ)| dξ for 0 ≤ s < t ≤ ω,

i.e.

(2.29) lim
k→∞

∫ t

s

gk(zk)(ξ) dξ =

∫ t

s

g̃0(z0)(ξ) dξ for 0 ≤ s < t ≤ ω.

Passing in equality (2.26) to the limit as k → ∞ and taking into account (2.27)
and (2.29), we obtain

(2.30)

∣∣∣∣z′0(t)− z′0(s)−
∫ t

s

g̃0(z0)(ξ) dξ

∣∣∣∣ ≤ ∫ t

s

(h1(|z0|)(ξ) + h2(|z′0|)(ξ)) dξ

for 0 ≤ s < t ≤ ω.

It is clear from (2.30) that z0 ∈ C̃′ω. Analogously, if we divide both parts of (2.30)
by t−s and pass to the limit as s → t, we will find that z0 is an ω-periodic solution
of inequality (1.11) for g0 = g̃0. Then due to inclusion (2.10) we have z0(t) ≡ 0,
but this contradicts (2.28). The obtained contradiction proves the lemma.

Lemma 2.4. Let the linear non-negative operators h0i, hi : Cω → Lω (i = 1, 2) be
such that conditions (1.18), (1.19) and (1.19′) are satisfied. Then inclusion (2.10)
is valid.

Proof. To prove the lemma, it suffices to establish that condition (ii) of Definition
1.1 is satisfied.

Assume the contrary that for some monotone operator g0 : Cω → Lω which
satisfies inequality (1.12) the differential inequality (1.11) has a non-trivial ω-
periodic solution v0. Consider first the case v0 ≡ const. From (1.11) it follows
that

|g0(1)(t)| ≤ h1(1)(t) for t ∈ IR,
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which by condition (1.19′) contradicts (1.12). Hence v0 6≡ const, and v′0 is of
alternating signs. In this case we introduce the functional ∆ : Cω → IR+ and
the numbers a ∈ [0, ω[, b ∈]a, a + ω[ as in proving Lemma 2.1. Since v′0 is of
alternating signs, we have the estimate

|v′0(t)| ≤ ∆(v′0) for t ∈ IR,

from which due to the fact that h2 is monotone, we obtain the estimate

(2.31) (−1)kh2(|v′0|)(t) ≤ h2(1)(t) ∆(v′0) (k = 1, 2) for t ∈ IR.

On the other hand, it is clear from (1.11) that

−h2(|v′0|)(t)− h1(|v0|)(t) ≤ v′′0(t)− g0(v0)(t) ≤ h1(|v0|)(t) + h2(|v′0|)(t).

Thus integrating from a to b and from b to a + ω, the above inequality results,
respectively in the following inequalities

(2.32) ∆(v′0) +

∫ b

a

g0(v0)(s) ds ≤
∫ b

a

h1(|v0|)(s) ds +

∫ b

a

h2(|v′0|)(s) ds

and

(2.322) ∆(v′0)−
∫ a+ω

b

g0(v0)(s) ds ≤
∫ a+ω

b

h1(|v0|)(s) ds +

∫ a+ω

b

h2(|v′0|)(s) ds.

For the sake of definiteness, consider the case, where the operator g0 is non-
negative. Assuming that v0 is of constant signs, in case v0(t) ≥ 0 from inequality
(2.321) and in case v0(t) ≤ 0 from inequality (2.322) with regard for (1.12), (1.19)
and (2.31) we get

(2.33) 1 ≤
∫ a+ω

a

h2(1)(s) ds.

On the other hand, owing to (2.19′) and (1.12) and taking into account that the
operator h1 is non-negative, we have

(2.34)

∫ ω

0

h02(1)(s) ds > 0.

In view of this inequalities, from condition (1.18) we conclude that∫ ω

0

h2(1)(s) ds < 1.

By inclusion h2(1) ∈ Lω, the last inequality contradicts (2.33), i.e. v0 is of alter-
nating signs and

(2.35)
min {v0(t) : 0 ≤ t ≤ ω} < 0,

max {v0(t) : 0 ≤ t ≤ ω} > 0.
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From these inequalities, in view of the fact that the operators g0 and h1 are non-
negative, we obtain the estimates

g0(1)(t) min {v0(t) : 0 ≤ t ≤ ω} ≤
≤ g0(v0)(t) ≤ g0(1)(t) max {v0(t) : 0 ≤ t ≤ ω} for t ∈ IR

and
h1(|v0|)(t) ≤ h1(1)(t) ∆(v0) for t ∈ IR.

Taking into account the above estimates and (2.35), from inequalities (2.321) and
(2.322) we find respectively

∆(v′0)

(
1−

∫ a+ω

a

h2(1)(s) ds

)
−∆(v0)

∫ a+ω

a

h1(1)(s) ds ≤

≤ −min {v0(t) : 0 ≤ t ≤ ω} ·
∫ b

a

g0(1)(s) ds

and

∆(v′0)

(
1−

∫ a+ω

a

h2(1)(s) ds

)
−∆(v0)

∫ a+ω

a

h1(1)(s) ds ≤

≤ max {v0(t) : 0 ≤ t ≤ ω} ·
∫ a+ω

b

g0(1)(s) ds.

Multiplying these inequalities by each other, with regard for (2.2) and for inclu-
sions h1(1), h2(1) ∈ Lω we obtain

∆2(v′0)

(
1−

∫ ω

0

h2(1)(s) ds− ω

4

∫ ω

0

h1(1)(s) ds

)2

≤

≤ −min {v0(t) : 0 ≤ t ≤ ω} ·max {v0(t) : 0 ≤ t ≤ ω}×

×
∫ b

a

g0(1)(s) ds

∫ a+ω

b

g0(1)(s) ds.

Applying twice inequality (2.4) to the last estimate (and this is quite possible by
conditions (2.35)) and taking into account the inclusion g0(1) ∈ Lω, we obtain

∆(v′0)

(
1−

∫ ω

0

h2(1)(s) ds− ω

4

∫ ω

0

h1(1)(s) ds

)
≤ ∆(v0)

4

∫ ω

0

g0(1)(s) ds.

This inequality on account of (1.12), (2.2) and (2.34) contradicts condition (1.18).
The obtained contradiction proves that v0 ≡ 0, i.e. condition (ii) is satisfied.
Reasoning analogously, we can see that condition (ii) is valid in the case, where
the operator g0 is non-positive. Thus the lemma is proved.
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3. Proof of the main results

Proof of Theorem 1.1. Since operators p0, p
+
1 , p−1 are monotone, equation (1.1)

has a unique ω-periodic solution if the corresponding homogeneous equation

(3.1) v′′(t) = p0(v)(t) + p1(v
′)(t)

has only the trivial ω-periodic solution.
Since the operator p0 is monotone, there exists a constant σ ∈ {−1, 1} such

that

(3.2) σ p0(1)(t) ≥ 0 for t ∈ IR.

Let the non-negative operators h0i, hi : Cω → Lω (i = 1, 2) be defined by the
equalities

h0i(x)(t) = σ p0(x)(t) (i = 1, 2), h1(x)(t) = 0,

h2(x)(t) = p+
1 (x)(t) + p−1 (x)(t) for x ∈ Cω, t ∈ IR.

Then the inequality

(3.3) |h01(x)(t)| ≤ |p0(x)(t)| ≤ h02(|x|)(t) x ∈ Cω, t ∈ IR

is valid, and conditions (1.4), (1.5) and (3.2) imply that conditions (1.18), (1.19)
and (1.19′) are valid. From Lemma 2.4 it follows that inclusion (2.10) is valid.
This and inequality (3.3) for g0 = p0 imply that (1.11), which in our notation
takes the form

(3.4) |v′′(t)− p0(v)(t)| ≤ p+
1 (|v′|)(t) + p−1 (|v′|)(t),

has only the trivial ω-periodic solution.
It remains to note that by representation (1.3), every solution of equation

(3.1) satisfies inequality (3.4). Hence equation (3.1) has also only the trivial ω-
periodic solution. Thus the theorem is proved.

Proof of Corollary 1.1. Let us introduce the following linear operators:

(3.5)

p0(x)(t) =
m∑

i=1

p0i(t) x(τ0i(t)),

p1(x)(t) =
n∑

j=1

p1j(t) x(τ1j(t)) for t ∈ IR

and

(3.6)

p+
1 (x)(t) =

n∑
j=1

[p1j(t)]+ x(τ1j(t)),

p−1 (x)(t) =
n∑

j=1

[p1j(t)]− x(τ1j(t)) for t ∈ IR.
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From equalities (3.5), (3.6) and from the definition of functions τ0i, τ1j it is
clear that the operators p0, p1, p

−
1 , p+

1 act from the space Cω to Lω. Moreover,
by conditions (1.8) and (1.9), the operator p0 is monotone and inequality (1.4)
is satisfied. The fact that the operators p+

1 , p−1 are non-negative follows from
inequalities [p1j(t)]+ ≥ 0 and [p1j(t)]− ≥ 0. It is not difficult to notice that
condition (1.10) in our notation can be rewritten in the form (1.5). Consequently,
all the requirements of Theorem 1.1 are satisfied and hence equation (1.7) has one
and only one ω-periodic solution. Thus the corollary is proved.

Proof of Theorem 1.2. Let us first prove that the operator g mentioned in the
theorem satisfies the inclusion

(3.7) g ∈ VVω.

Indeed, condition (ii) of Definition 2.1 follows from inequality (1.16), where
α(t, ρ) = h02(1)(t) for t ∈ IR, ρ ∈ IR+. We fix x0 ∈ C′ω arbitrarily and assume
g0(·)(t) = g(x0, ·)(t). Taking into account inequality (1.16) and the fact that the
operator g0(x0, ·) is monotone, g0 : Cω → Lω will be the monotone linear operator
satisfying inequality (2.11). Further, every ω-periodic solution v of equation (2.5)
will be simultaneously the solution of inequality (2.9). Therefore by inclusion
(1.17), from Lemma 2.3 it follows that estimate (2.6) is valid, where ρ1 = ρ0, and
ρ0 does not depend on the choice of the function x0 ∈ C′ω. Thus condition (iii) is
also satisfied and inclusion (3.7) is valid.

Let us now show that every ω-periodic solution of equation (2.7) satisfies
estimate (2.8) for any λ ∈]0, 1[. Indeed, if v is the ω-periodic solution of equation
(2.7), then

|v′′(t)− g(v, v)(t)| = λ|f(v)(t)− g(v, v)(t)|

and by virtue of condition (1.15), v satisfies the inequality

|v′′(t)− g0(v)(t)| ≤ h1(|v|)(t) + h2(|v′|)(t) + δ(t, ‖v‖C′
ω
),

where g0(·)(t) = g(v, ·)(t). Therefore from conditions (1.13), (1.16) and (1.17) it
follows that all the requirements of Lemma 2.3 are fulfilled and hence the estimate

(3.8) ‖v‖C′
ω
≤ ρ0

∫ ω

0

δ(s, ‖v‖C′
ω
) ds

is valid. On the other hand, since δ ∈ Mω, from equation (1.14) follows the
existence of the constant ρ2 ∈ IR+ such that if we assume that ‖v‖C′

ω
> ρ2, then

ρ0

‖v‖C′
ω

∫ ω

0

δ(s, ‖v‖C′
ω
) ds < 1,

which contradicts (3.8), i.e. our assumption is invalid and estimate (2.8) is true.
Consequently, all the requirements of Lemma 2.2 are satisfied and hence the theo-
rem is valid.
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Proof of Corollary 1.2. In this corollary all the conditions of Theorem 1.2 are
immediately required, except inclusion (1.17) whose validity follows directly from
Lemma 2.4 by virtue of conditions (1.18), (1.19) and (1.19′). Consequently, all
the requirements of Theorem 1.2 are satisfied and hence the corollary is valid.

Proof of Corollary 1.3. We define the operators h0i, hi (i = 1, 2) and f, g by
the equalities

(3.9) h0i(x)(t) = p0i(t) x(τ1(t)), hi(x)(t) = pi(t) x(τi(t)) (i = 1, 2) for t ∈ IR

and

(3.10)
f(x)(t) = f0(t, x(τ1(t)), x

′(τ2(t))),

g(x, y)(t) = g0(t, x(τ1(t)), x
′(τ2(t))) y(τ1(t)) for t ∈ IR.

From (3.9) and the fact that p0i, pi (i = 1, 2) are positive and also from the
definition of the functions τ1, τ2 it is clear that h0i and hi are non-negative linear
operators acting from the space Cω to Lω. Analogously, from (3.10) on account
of (1.21) and the definition of the functions g0, τ1, τ2 it is clear that f and g are
the continuous operators acting respectively from the spaces C′ω and C′ω × Cω to
Lω. It remains to note that in our notation from conditions (1.22)–(1.24) and
(1.25) it follows that conditions (1.15), (1.16), (1.18) and (1.19), (1.19′) are valid,
respectively. That is all the requirements of Corollary 1.2 are satisfied and hence
the corollary is valid.

Proof of Theorem 1.3. According to (1.26) and (1.27), the inequalities

|f(x)(t)− g̃(x, x)(t)| ≤ h1(|x|)(t)h2(|x′|)(t) + f(0)(t) for x∈C′ω, t∈ IR

and
|h01(y)(t)|≤|g̃(x, y)(t)|≤h02(|y|)(t) for x∈C′ω, y∈Cω, t∈ IR

are satisfied, where g̃(x, y)(t) = g(x, 0, y)(t). Then from Theorem 1.2 it follows
that equation (1.2) has at least one ω-periodic solution. Let us now prove the
uniqueness of the solution.

Let x and x be ω-periodic solutions of equation (1.2). Assume that y = x−x
and g0(·)(t) = g̃(x, x, ·)(t). Then according to conditions (1.26) and (1.27) we
obtain

|y′(t)− g0(y)(t)| ≤ h1(|y|)(t) + h2(|y′|)(t) for t ∈ IR

and
|h01(z)(t)| ≤ |g0(z)(t)| ≤ h02(|z|)(t) for z ∈ Cω, t ∈ IR.

By virtue of inclusion (1.17) the above inequalities imply that y ≡ 0, i.e.
x(t) ≡ x(t). Thus the theorem is proved.

Proof of Corollary 1.4. By Lemma 2.4, from the non-negativeness of the
operators h0i, hi (i = 1, 2) and also from conditions (1.18), (1.19) and (1.19′) it
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follows that inclusion (1.17) is valid. That is all the requirements of Theorem 1.3
are satisfied and hence the corollary is true.

Proof of Corollary 1.5. According to the theorem on a finite increment, the
equality

f0(t, x, y)− f0(t, x, y) =

=

∫ 1

0

[
∂f0(t, x+(1−s)x, y+(1−s)y)

∂x
(x−x)+

∂f0(t, x+(1−s)x, y+(1−s)y)

∂y
(y−y)

]
ds

for (t, x, x, y, y) ∈ IR5

is valid. If we introduce the notation

g1(t, x, x, y, y) =

∫ 1

0

∂f0(t, x + (1− s)x, y + (1− s)y)

∂x
ds,

then from (3.11) and conditions (1.28) and (1.29) we get

|f0(t, x, y)− f0(t, x, y)− g1(t, x, x, y, y)(x− x)| ≤ p2(t)|y − y|
for (t, x, x, y, y) ∈ IR5,

p01(t) ≤ σ g1(t, x, x, y, y) ≤ p02(t) for (t, x, x, y, y) ∈ IR5.

Now we define the operators h2, h0i : Cω → Lω (i = 1, 2), f : C′ω → Lω by using
equalities (3.9), (3.10) and the operator g : C′ω × C′ω × C → Lω by using the
equality

g(x, x, y)(t) = g1(t, x(τ1(t)), x(τ1(t)), y(τ2(t)), y(τ2(t))) y(t).

Then from inequalities (3.12) and (3.13) it follows that conditions (1.26) and (1.27)
for h1 ≡ 0 are satisfied. In the same manner, in our notation from (1.30) and (1.31)
it follows that conditions (1.18), (1.19) and (1.19′) are valid. Consequently, all
the requirements of Corollary 1.4 are satisfied and hence the corollary is true.
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