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Let q be a measurable function on R
n such that 1 ≤ q ≤ sup

Rn

q < ∞. We

denote by Lq(·)(Rn) the variable exponent Lebesgue space which is the class
of all measurable functions f on R

n such that

Sq(·)(f) :=

∫

Rn

|f(x)|q(x)dx < ∞.

This is a Banach space with respect to the norm

‖f‖Lq(·)(Rn := inf
{

λ > 0 : Sq(·)

(

f/λ
)

≤ 1
}

.

In the sequel we will use the following notation:

p−(E) := inf
x∈E

p(x), p+(E) := sup
x∈E

p(x), p+ := p+(Rn), p− := p−(Rn),

where p is a measurable function on R
n and E is a measurable set in R

n.

Definition 1. We say that a measurable function p on R
n belongs to P

(p ∈ P) if
(i) 1 < p− ≤ p+ < ∞;
(ii) there is a positive constant A such that

|p(x) − p(y)| ≤
A

ln 1
|x−y|

; 0 < |x − y| ≤ 1/2; x, y ∈ R
n;

(iii) p is constant outside some ball B(0, R) := {x ∈ R
n : |x| < R},

R > 0.
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Let

Mf(x) = sup
r>0

1

rn

∫

B(x,r)

|f(y)|dy, x ∈ R
n,

be the Hardy-Littlewood maximal function.
The boundedness of the operator M in Lp(·)(Rn) under the condition

p ∈ P was established in [4].
Further, a kernel k on R

n × R
n, which is a locally integrable complex-

valued function defined off the diagonal, is said to satisfy the standard
estimates if there exist δ > 0 and A > 0, such that for all distinct x, y ∈ R

n

and all z ∈ R
n with |x − z| < 1

2 |x − y| there holds:

(a) |k(x, y)| ≤ A|x − y|−n;

(b) |k(x, y) − k(z, y)| ≤ A|x − z|δ|x − y|−n−δ;

(c) |k(y, x) − k(y, z)| ≤ A|x − z|δ|x − y|−n−δ.

We say that a continuous linear operator K : C∞
0 (Rn) → D

′(Rn), where
D(Rn) is the space of distributions, is associated with a kernel k if

< Kf, g >=

∫

Rn

∫

Rn

k(x, y)f(y)g(x)dxdy,

whenever f, g ∈ C∞
0 (Rn) with supp(f) ∩ supp(g) = ∅. K is said to be a

singular integral operator if K is associated to a standard kernel. If, in
addition, K extends to a bounded, linear operator on L2(Rn), then we call
K a Calderón-Zygmund operator.

Together with M and K we are interested in the Riesz potential operator

Iαf(x) =

∫

Rn

f(y)

|x − y|n−α
dy, x ∈ R

n, 0 < α < n.

Now we formulate the main statements of this note.

Theorem 1. Let p ∈ P and let v and w be positive increasing functions

on R+. Then the two–weight inequality

‖v(| · |)Nf(·)‖Lp(·)(Rn) ≤ c‖w(| · |)f(·)‖Lp(·)(Rn), (1)

where N is M , holds if and only if

sup
t>0

∥

∥

∥

v(| · |)

| · |n
χ{|·|>t}(·)

∥

∥

∥

Lp(·)(Rn)
‖w−1(| · |)χ{|·|<t}(·)‖Lp′(·)(Rn) < ∞. (2)

Theorem 2. Let p ∈ P. Suppose that v and w are positive increasing

functions on R+. Then inequality (1) for N = K holds if condition (2) is

satisfied. Conversely, if (1) holds for N = H, where H is the the Hilbert

transform Hf(x) = p.v.
∫

R

f(t)
(x−t)dt, then condition (2) is satisfied for n = 1.
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Theorem 3. Let p ∈ P. Suppose that v and w are positive decreasing

functions on R+. If

sup
t>0

∥

∥

∥
v(| · |)χ{|·|<t}(·)

∥

∥

∥

Lp(·)(Rn)

∥

∥

∥

w−1(| · |)

| · |n
χ{|·|>t}(·)

∥

∥

∥

Lp′(·)(Rn)
< ∞, (3)

then inequality (1) for N = K holds. Conversely, if we have (1) for N = H,

where H is the Hilbert transform, then (3) is satisfied for n = 1.

For fractional integrals we have the next two statements:

Theorem 4. Let p ∈ P. We set q(x) = np(x)
n−αp(x) , where α is the constant

satisfying the condition 0 < α < n/p+. Let v and w be positive increasing

functions on R+. Then the two–weight inequality

‖v(| · |)Iαf(·)‖Lq(·)(Rn) ≤ c‖w(| · |)f(·)‖Lp(·)(Rn), (4)

holds if and only if

sup
t>0

∥

∥

∥

v(| · |)

| · |n−α
χ{|·|>t}(·)

∥

∥

∥

Lq(·)(Rn)

∥

∥

∥
w−1(| · |)χ{|·|<t}(·)

∥

∥

∥

Lp′(·)(Rn)
< ∞.

Theorem 5. Let p ∈ P. We set q(x) = np(x)
n−αp(x) , where α is the constant

satisfying the condition 0 < α < n/p+. Let v and w be positive decreasing

functions on R+. Then the inequality (4) holds if and only if

sup
t>0

∥

∥

∥
v(| · |)χ{|·|<t}(·)

∥

∥

∥

Lq(·)(Rn)

∥

∥

∥

w−1(| · |)

| · |n−α
χ{|·|>t}(·)

∥

∥

∥

Lp′(·)(Rn)
< ∞.

Weighted inequalities with power–type weights for classical integral oper-
ators were established in the papers [11]–[14], [7], [16], while the two–weight
problem for general weights was studied in [2], [3], [9], [13], [15], [5]. In the
paper [6] a solution of the one–weight problem in terms of Muckenhoupt–
type conditions is given. Sawyer–type two–weight criteria for maximal oper-
ators were presented in [10]. For two–weight estimates regarding potentials
and singular integrals we refer, e.g., to the monographs [8], [1] and references
cited therein.
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