V. Kokilashvili and A. Meskhi

TWO-WEIGHT CRITERIA FOR ONE-SIDED STRONG FRACTIONAL MAXIMAL FUNCTIONS

(Reported on 18.03.09)

In this note we present two–weight criteria for one–sided strong fractional maximal operators, provided that the right –hand side weight is a product of one–dimensional weights. As a corollary we have necessary and sufficient condition governing the trace inequality for these operators. Fefferman–Stein – type inequalities are discussed as well.

Two–weight estimates for two–sided strong fractional maximal operators and potentials with multiple kernels were derived in [6] (see also [5]) in terms of integral–type conditions. Necessary and sufficient conditions on a weight function v governing the boundedness of one–sided potential operators with product kernels from L^p to L^q_v were given in the papers [3] and [4]. For Sawyer– type two–weight conditions regarding the two–sided strong Hardy–Littlewood maximal operator we refer to [7], where the two–weight inequality was established provided that the right –hand side weight is a product of single variable weights or belongs to the Muckenhoupt A_p class.

For two–weight criteria for one–dimensional one–sided operators see the monographs [2], [1] and references cited therein.

We denote by D the set of all dyadic intervals in \mathbb{R} .

Definition 1. A measure μ on \mathbb{R} satisfies the dyadic doubling condition $(\mu \in DC^{(d)}(\mathbb{R}))$ if there exists a constant a > 1 such that

$$\mu(I) \le a\mu(I')$$

for all $I', I \in D$ with $I' \subset I$ and |I| = 2|I'|. Further, μ satisfies the doubling condition on \mathbb{R} ($\mu \in DC(\mathbb{R})$) if there is a constant b > 1 such that

$$\mu(2I) \le b\mu(I)$$

for all intervals $I \subset \mathbb{R}$.

²⁰⁰⁰ Mathematics Subject Classification:42B20, 42B25.

Key words and phrases. Strong maximal functions, fractional integrals, product kernel, two-weight inequality.

¹¹⁸

Definition 2. We say that a measure μ defined on \mathbb{R} satisfies the dyadic reverse doubling condition $(\mu \in RD^{(d)}(\mathbb{R}))$ if there exists a constant c > 1 such that

$$\mu(I) \ge c\mu(I'),$$

for all I', $I \in D$ with $I' \subset I$ and |I| = 2|I'|.

Remark 1. If $\mu \in DC(\mathbb{R})$, then $\mu \in DC^{(d)}(\mathbb{R})$. Further, $\mu \in RD^{(d)}(\mathbb{R})$ when $\mu \in DC^{(d)}(\mathbb{R})$.

Let $1 and let <math>\rho$ be a weight function on \mathbb{R}^2 . We denote by $L^p_{\rho}(\mathbb{R}^2)$ the Lebesgue space with weight ρ . If $\rho \equiv 1$, then $L^p_{\rho}(\mathbb{R}^2) := L^p(\mathbb{R}^2)$ is the classical Lebesgue space.

Further, we will use the notation $\rho(E) := \int_E \rho(x) dx$ for a weight ρ . We are interested in the following maximal operators:

$$(M_{\alpha,\beta}^{+,+}f)(x,y) := \sup_{h,s>0} \frac{1}{h^{1-\alpha}s^{1-\beta}} \int_{x}^{x+h} \int_{y}^{y+s} |f(t,\tau)| dt d\tau$$
$$(M_{\alpha,\beta}^{-,-}f)(x,y) := \sup_{h,s>0} \frac{1}{h^{1-\alpha}s^{1-\beta}} \int_{x-h}^{x} \int_{y-s}^{y} |f(t,\tau)| dt d\tau,$$

where $0 < \alpha, \beta < 1$.

Theorem 1. Let $0 < \alpha$, $\beta < 1$, $1 . Suppose that <math>w(x,y) = w_1(x)w_2(y)$ with $w_i^{1-p'} \in RD^{(d)}(\mathbb{R})$, i = 1, 2. Then the following conditions are equivalent:

(i) $M_{\alpha,\beta}^{+,+}$ is bounded from $L_w^p(\mathbb{R})$ to $L_v^q(\mathbb{R})$; (iii)

$$\sup_{\substack{a,b\in\mathbb{R}\\h,s>0}}\frac{1}{h^{1-\alpha}s^{1-\beta}}\left[\int\limits_{a-h}^{a}\int\limits_{b-s}^{b}v(x,y)dxdy\right]^{\frac{1}{q}}\left[\int\limits_{a}^{a+h}\int\limits_{b}^{b+s}w^{1-p'}(x,y)dxdy\right]^{\frac{1}{p'}}<\infty.$$

Theorem 2. Let $1 and let <math>0 < \alpha$, $\beta < 1$. Then $M_{\alpha,\beta}^{-,-}$ is bounded from $L_w^p(\mathbb{R}^2)$ to $L_v^q(\mathbb{R}^2)$ if and only if

$$\sup_{\substack{a,b \in \mathbb{R} \\ h,s>0}} h^{\alpha-1} s^{\beta-1} \bigg(\int_{a}^{a+h} \int_{b}^{b+s} v(x,y) dx dy \bigg)^{1/q} \bigg(\int_{a-h}^{a} \int_{b-s}^{b} w^{1-p'}(x,y) dx dy \bigg)^{1/p'} < \infty,$$

provided that $w(x,y) = w_1(x)w_2(y)$, where $w_i^{1-p'} \in RD^{(d)}(\mathbb{R}), i = 1, 2$.

Next, we formulate a special type of the two–weight inequality for one–sided strong fractional maximal functions.

Theorem 3. Let $1 and let <math>1/p - 1/q < \alpha, \beta < 1/p$. Then the following inequality holds

$$\left(\iint_{\mathbb{R}^2} (M^{+,+}_{\alpha,\beta}f)^q(x,y)v(x,y)dxdy\right)^{1/q} \le \le c \left(\iint_{\mathbb{R}^2} |f(x,y)|^p (\mathcal{M}^{-,-}_{\alpha,\beta}v)^{p/q}(x,y)dxdy\right)^{1/p},$$

where

$$(\mathcal{M}_{\alpha,\beta}^{-,-}v)(x,y) := \sup_{\substack{h>0\\s>0}} h^{(\alpha-1/p)q} s^{(\beta-1/p)q} \int_{x-h}^{x} \int_{y-s}^{y} v(t,\tau) dt d\tau$$

and the positive constant c does not depend on f and v.

Theorem 4. Let $1 and let <math>1/p - 1/q < \alpha, \beta < 1/p$. Then the following inequality holds

$$\left(\iint_{\mathbb{R}^2} (M_{\alpha,\beta}^{-,-}f)^q(x,y)v(x,y)dxdy\right)^{1/q} \le \le c \left(\iint_{\mathbb{R}^2} |f(x,y)|^p (\mathcal{M}_{\alpha,\beta}^{+,+}v)^{p/q}(x,y)dxdy\right)^{1/p},$$

where

$$(\mathcal{M}_{\alpha,\beta}^{+,+}v)(x,y) := \sup_{\substack{h>0\\s>0}} h^{(\alpha-1/p)q} s^{(\beta-1/p)q} \int_{x}^{x+h} \int_{y}^{y+s} v(t,\tau) dt d\tau$$

and the positive constant c does not depend on f and v.

The above presented statements give the criteria guaranteeing the trace inequality for one–sided strong fractional maximal operators.

Theorem 5. Let $1 and let <math>0 < \alpha$, $\beta < 1/p$. The following statements are equivalent:

- (i) $M_{\alpha,\beta}^{+,+}$ is bounded from $L^p(\mathbb{R}^2)$ to $L^q_v(\mathbb{R}^2)$;
- (ii) $M^{\alpha,\beta}_{\alpha,\beta}$ is bounded from $L^p(\mathbb{R}^2)$ to $L^q_v(\mathbb{R}^2)$;

$$\sup\left(\int_{I}\int_{J}v(x,y)dxdy\right)|I|^{(\alpha-1/p)q}|J|^{(\beta-1/p)q}<\infty,$$

where the supremum is taken over all one-dimensional intervals I and J.

120

Finally we mention that the appropriate results for mixed-type operators:

$$\begin{split} (M_{\alpha,\beta}^{+,-}f)(x,y) &:= \sup_{h,s>0} \frac{1}{h^{1-\alpha}s^{1-\beta}} \int_{x}^{x+h} \int_{y-s}^{y} |f(t,\tau)| dt d\tau, \\ (M_{\alpha,\beta}^{-,+}f)(x,y) &:= \sup_{h,s>0} \frac{1}{h^{1-\alpha}s^{1-\beta}} \int_{x-h}^{x} \int_{y}^{y+s} |f(t,\tau)| dt d\tau. \end{split}$$

also are derived.

Acknowledgement

The work was partially supported by the Georgian National Foundation Grant No. GNSF/ST07/3-169.

References

- D. E. Edmunds, V. Kokilashvili and A. Meskhi, Bounded and Compact Integral Operators. Mathematics and Its Applications, 543, *Kluwer Academic Publishers, Dordrecht, Boston, London*, 2002.
- I. Genebashvili, A. Gogatishvili, V. Kokilashvili and M. Krbec, Weight theory for integral transforms on spaces of homogeneous type. *Pitman Monographs and Surveys* in Pure and Applied Mathematics, 92, Longman, Harlow, 1998.
- V. Kokilashvili and A. Meskhi, On a trace inequality for one-sided potentials with multiple kernels. Frac. Calc. Appl. Anal. 6 (2003), No.4, 461–472.
- V. Kokilashvili and A. Meskhi, On one-sided potentials with multiple kernels. Integr. Transf. Spec. Funct. 16 (2005),
- V. Kokilashvili and A. Meskhi, A note on two-weight estimates for strong fractional maximal functions and potentials with product kernels. *Proc. A. Razmadze Math. Inst.* 137 (2005), 135–140.
- 6. V. Kokilashvili and A. Meskhi, Two-weight estimates for strong fractional maximal functions and potentials with multiple kernels. J. Korean Math. Soc. (to appear).
- E. T. Sawyer, Two weight norm inequalities for certain maximal and integral operators. In: Harmonic analysis, Minneapolis, Minn. 1981, pp. 102–127, Lecture Notes in Math. Vol. 908, Springer, Berlin, New York, 1982.

Authors' address:

A. Razmadze Mathematical Institute 1, Aleksidze St., Tbilisi 0193 Georgia