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In this note we present two–weight criteria for one–sided strong fractional
maximal operators, provided that the right –hand side weight is a product
of one–dimensional weights. As a corollary we have necessary and sufficient
condition governing the trace inequality for these operators. Fefferman–
Stein – type inequalities are discussed as well.

Two–weight estimates for two–sided strong fractional maximal operators
and potentials with multiple kernels were derived in [6] (see also [5]) in
terms of integral–type conditions. Necessary and sufficient conditions on a
weight function v governing the boundedness of one–sided potential oper-
ators with product kernels from Lp to Lq

v were given in the papers [3] and
[4]. For Sawyer– type two–weight conditions regarding the two–sided strong
Hardy–Littlewood maximal operator we refer to [7], where the two–weight
inequality was established provided that the right –hand side weight is a
product of single variable weights or belongs to the Muckenhoupt Ap class.

For two–weight criteria for one–dimensional one–sided operators see the
monographs [2], [1] and references cited therein.

We denote by D the set of all dyadic intervals in R.

Definition 1. A measure µ on R satisfies the dyadic doubling condition
(µ ∈ DC(d)(R)) if there exists a constant a > 1 such that

µ(I) ≤ aµ(I ′)

for all I ′, I ∈ D with I ′ ⊂ I and |I| = 2|I ′|. Further, µ satisfies the doubling
condition on R (µ ∈ DC(R)) if there is a constant b > 1 such that

µ(2I) ≤ bµ(I)

for all intervals I ⊂ R.
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Definition 2. We say that a measure µ defined on R satisfies the dyadic
reverse doubling condition

(

µ ∈ RD(d)(R)
)

if there exists a constant c > 1
such that

µ(I) ≥ cµ(I ′),

for all I ′, I ∈ D with I ′ ⊂ I and |I| = 2|I ′|.

Remark 1. If µ ∈ DC(R), then µ ∈ DC(d)(R). Further, µ ∈ RD(d)(R)
when µ ∈ DC(d)(R).

Let 1 < p < ∞ and let ρ be a weight function on R
2. We denote by

Lp
ρ(R

2) the Lebesgue space with weight ρ. If ρ ≡ 1, then Lp
ρ(R

2) := Lp(R2)
is the classical Lebesgue space.

Further, we will use the notation ρ(E) :=
∫

E
ρ(x)dx for a weight ρ.

We are interested in the following maximal operators:

(M+,+
α,β f)(x, y) := sup

h,s>0

1

h1−αs1−β

x+h
∫

x

y+s
∫

y

|f(t, τ)|dtdτ

(M−,−
α,β f)(x, y) := sup

h,s>0

1

h1−αs1−β

x
∫

x−h

y
∫

y−s

|f(t, τ)|dtdτ,

where 0 < α, β < 1.

Theorem 1. Let 0 < α, β < 1, 1 < p < q < ∞. Suppose that

w(x, y) = w1(x)w2(y) with w1−p′

i ∈ RD(d)(R), i = 1, 2. Then the following

conditions are equivalent:

(i) M+,+
α,β is bounded from Lp

w(R) to Lq
v(R);

(iii)

sup
a,b∈R

h,s>0

1

h1−αs1−β

[

a
∫

a−h

b
∫

b−s

v(x, y)dxdy

]
1

q

[

a+h
∫

a

b+s
∫

b

w1−p′

(x, y)dxdy

]
1

p′

< ∞.

Theorem 2. Let 1 < p < q < ∞ and let 0 < α, β < 1. Then M−,−
α,β is

bounded from Lp
w(R2) to Lq

v(R
2) if and only if

sup
a,b∈R

h,s>0

hα−1sβ−1

(

a+h
∫

a

b+s
∫

b

v(x, y)dxdy

)1/q( a
∫

a−h

b
∫

b−s

w1−p′

(x, y)dxdy

)1/p′

< ∞,

provided that w(x, y) = w1(x)w2(y), where w1−p′

i ∈ RD(d)(R), i = 1, 2.

Next, we formulate a special type of the two–weight inequality for one–
sided strong fractional maximal functions.
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Theorem 3. Let 1 < p < q < ∞ and let 1/p − 1/q < α, β < 1/p. Then

the following inequality holds

(
∫∫

R2

(M+,+
α,β f)q(x, y)v(x, y)dxdy

)1/q

≤

≤ c

(
∫∫

R2

|f(x, y)|p(M−,−
α,β v)p/q(x, y)dxdy

)1/p

,

where

(M−,−
α,β v)(x, y) := sup

h>0
s>0

h(α−1/p)qs(β−1/p)q

x
∫

x−h

y
∫

y−s

v(t, τ)dtdτ

and the positive constant c does not depend on f and v.

Theorem 4. Let 1 < p < q < ∞ and let 1/p − 1/q < α, β < 1/p. Then

the following inequality holds

(
∫∫

R2

(M−,−
α,β f)q(x, y)v(x, y)dxdy

)1/q

≤

≤ c

(
∫∫

R2

|f(x, y)|p(M+,+
α,β v)p/q(x, y)dxdy

)1/p

,

where

(M+,+
α,β v)(x, y) := sup

h>0
s>0

h(α−1/p)qs(β−1/p)q

x+h
∫

x

y+s
∫

y

v(t, τ)dtdτ

and the positive constant c does not depend on f and v.

The above presented statements give the criteria guaranteeing the trace
inequality for one–sided strong fractional maximal operators.

Theorem 5. Let 1 < p < q < ∞ and let 0 < α, β < 1/p. The following

statements are equivalent:

(i) M+,+
α,β is bounded from Lp(R2) to Lq

v(R
2);

(ii) M−,−
α,β is bounded from Lp(R2) to Lq

v(R
2);

(iii)

sup

(
∫

I

∫

J

v(x, y)dxdy

)

|I|(α−1/p)q|J |(β−1/p)q < ∞,

where the supremum is taken over all one-dimensional intervals I and J .
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Finally we mention that the appropriate results for mixed–type operators:

(M+,−
α,β f)(x, y) := sup

h,s>0

1

h1−αs1−β

x+h
∫

x

y
∫

y−s

|f(t, τ)|dtdτ,

(M−,+
α,β f)(x, y) := sup

h,s>0

1

h1−αs1−β

x
∫

x−h

y+s
∫

y

|f(t, τ)|dtdτ.

also are derived.
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