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TWO-WEIGHT ESTIMATES FOR STRONG FRACTIONAL
MAXIMAL FUNCTIONS AND POTENTIALS WITH
MULTIPLE KERNELS

VAKHTANG KOKILASHVILI AND ALEXANDER MESKHI

ABSTRACT. In the paper two—weight inequalities of various type for strong
fractional maximal functions and potentials with multiple kernels defined
on R? are established.

Introduction

In the present paper a full characterization of two-dimensional weight func-
tions v governing the trace inequality

[ Ka,pfl

is given, where K, g is one of the following two-dimensional operators:

1
(Mapf)(z,y) = sup W/I/Jﬁ(tﬂ'ﬂdtdﬂ

IxJ>(x,y)

ri@2) < cllflle ),

Tapf) (2, y) = /R/R|CC — t|“_1|y — T|6_1f(t,7')dtd7';
(Indsf)(z,y) :/R/| ) l|$—t|a_1\y—7'\ﬁ_1f(t,r)dtd7-;
T|I<2|y

1
(MolIgf)(z,y) =sup mﬁ/j dt,

I>x

/ ly — 5 £ (¢, 7)dr
R

and I and J are arbitrary bounded intervals in R containing x and y respec-
tively. For the operator I, g we additionally assume that the weight v satisfies
the Muckenhoupt one-dimensional A (R) condition with respect to only one
variable uniformly to another one. Moreover, criteria guaranteeing the two—
weight inequality for these operators are obtained, provided that the weight
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524 V. KOKILASHVILI AND A. MESKHI

on the right-hand side is a product of two one-dimensional weights. Dual in-
equalities of Fefferman-Stein type for strong fractional maximal functions and
potentials with product kernels are also established.

The one-weight problem for the operator I, g has been solved in [22]. From
the historical point of view we recall that the one-weight criteria for the Riesz
potentials

Iaf(x):/ L),d:% 0<0z<n7
R [T — Y[
have been derived in [34]. The pioneering results concerning the two—weight
problem for I, have been obtained in [40, 41], while L — L9 two—weight criteria
in more transparent form have been given in [14, 15] for 1 < p < ¢ < oo (see
also [17, 42] regarding two—weight criteria for integral transforms with positive
kernels). Namely, the next statement holds.

Theorem A. Let 1 <p < qg<oo andlet0 < a <n. Then I, is bounded from
L2 (R™) into LI(R™) if and only if

1/q , , 1/p'
A= sup (/ v) (/ | — y| TP w7 (y)dy) <00
zER™;r>0 B(z,2r) lz—y|>r

and

N L/ 1/q
Ay = sup ( / wlp) ( / |zy<“>%<y>dy) < oo,
z€R™;r>0 B(z,2r) |z—y|>r

where p' = p/(p—1) and B(z,r) is a ball with center x and radius r. Moreover,
there exist positive constants c; and co depending only on p, q and o such that

cymax{Ay, Ao} < ||Ia]| < camax{Ay, As}.

The proof of Theorem A is based on the two—weight weak-type criterion for
the Riesz potentials given in [38] and on more transparent one established in
[13, 15] (see also [25]). These criteria avoid the concept of capacity and can be
easily verified.

Earlier, a capacitary characterization of those measures which guarantee the
trace inequality for the operator I, was derived in [3, 30].

In the case w = 1, Theorem A (the trace inequality) has been obtained in

[1].
Theorem A’. Let 1 < p < ¢ < 00, 0 < a < n/p. Then the operator I, is
bounded from LP(R™) to LL(R™) if and only if

A= sup (/ v(x)dx)rq(o‘"/p) < o0.
zE€R™;r>0 B(z,r)

For p = ¢ the following two—weight criterion of pointwise type is due to [31]
(see also [45] for more general case).
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Theorem B. Let 1 < p < 00, 0 < a < 1/p. Then the operator I, is bounded
from LP(R™) to LP(R™) if and only if I,v € L (R™) and

loc

o[ L) (m))”p’ e

A3 = ess sup ( Loo(@)

zER™

Moreover,
143 < ||| < 243,

where the constants c¢; and co depend only on p and .

For the solution of the two—weight problem for fractional maximal operators
Mo f(@) S [l 0<ax
T)=Ssup ———— a<n
“ BBI; |B|t=e/m Jp 7 7

where the supremum is taken over all balls B in R™ containing x, we refer
o [18, 36, 46] (see also [17]). A two—weight criterion for the strong Hardy-
Littlewood maximal functions has been obtained in [36], provided that the
weight on the right-hand side satisfies some additional conditions, for instance,
belongs to the Muckenhoupt A, class in each variable separately, or is a product
of one-dimensional weights. For some two—weight inequalities for fractional
integrals and fractional maximal functions associated to starlike sets in R™ we
refer to [6].

Necessary and sufficient conditions guaranteeing the trace inequalities for
one-sided potentials with multiple kernels have been given in [26, 28, 29]. For
some properties of potentials with product kernels in unweighted case see, e.g.,
[35, Ch. 5].

Two-weight inequalities for potential type operators can be applied, for ex-
ample, to establish two-weight estimates for multipliers of Fourier transforms
(see, e.g., [9]).

The paper is organized as follows: In Section 1 we present some well-known
results concerning Carleson-Hormander type inequality; doubling measures;
two—weight estimates for the Hardy transforms and the truncated potentials.
In Section 2 we formulate the main results of the paper, while in Section 3 we
prove them.

Constants (often different constants in the same series of inequalities) will
generally be denoted by c¢. For the real line and the set of all integers we will
use the symbols R and Z respectively. The Lebesgue measure of the measurable
set £ C R™ will be denoted by |E|. We will also use the notation p(E) := [, p
for the weight p on R™ and measurable set £ C R™. For aset I C R and ¢t € R,
I —t denotes the set {x —t:z € I}.

Finally we mention that some of the results presented in this paper have
been announced in [27, 29].
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1. Preliminaries

Let p be an almost everywhere positive function on R”. By the symbol
LE(R™) (1 < p < 00) we denote the weighted Lebesgue space which is the set
of all measurable functions f : R™ — R for which

1/p
I llcz @y = (/Rn |f(3f)|”p(:v)dw) < o0

We shall need the following two—weight criterion for the Hardy operator

Hi(x) = / fdt, zeR,
[t| <]z

(see [4, 24, 33], [30, Ch. 1]).

Theorem C. Let 1 < p < g < co. Then H is bounded from LP(R) to LL(R) if
and only if

1/q , 1/p'
Ay = sup (/ U(m)dﬂ:) (/ ut~? (J;)dx) < 0.
t>0 |z|>t |z|<t

Moreover, there exist positive constants ¢1 and co depending only on p and
q such that c; Ay < ||H|| < caAy.

The next statement concerning the truncated Riesz potential

Jaf(x) = / %dyu RS Rn,
ly|<2|z| |z -y

is due to [39] for p = ¢ (for the simple proof in the case 1 < p < ¢ < oo see [10,

Section 5.1]).

Theorem D. Let 1 < p < g < co. Suppose that o > n/p. Then the operator
Jo is bounded from LP(R™) to LL(R™) if and only if

1/q
As = sup (/ %dw) "7 < .
>0 \ J|a|>t |Z] P

Moreover, there exist positive constants c¢1 and cy depending only on p and q
such that

c14s < [[Ja| < c24s.

Let D be the set of all dyadic intervals in R. By dyadic interval we mean
an interval of the form [2¥n,2%(n + 1)), where k and n are integers. The main
property of the dyadic intervals is that if |[I’| < |I|, then I’ C T or I' N1 = .
Let us denote Ay, = 277 for k € Z. Suppose that D) is the collection of the
intervals determined by Ag. It is clear that D = UkezD(k). Each I € D®) is
the union of 2 non-overlapping intervals belonging to D(*+1) (for details and
some properties of the dyadic intervals see, for instance, [16, p. 136]).
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Definition 1.1. We say that the weight function p satisfies the dyadic reverse
doubling condition (p € RD@(R)) if there exists a constant d > 1 such that

dp(I") < p(I)
for all I', I € D, where I' C I and |I| = 2|I’|.
It is obvious that the constant d in Definition 1.1 is equal to 2 when p =
1. It is also easy to see that if a measure u satisfies the doubling condition
w([z = 2r,z + 2r]) < bu(lx —r,z + 7)) (ie., p € DC(R)), where the constant
b is independent of € R and r > 0, then u € DCW(R), i.e., u(I) < bypu(I'),
where I,I' € D, I' C I and |I'|= |I|/2. Consequently (see, e.g., [43, p. 21]) if
i € DC(R), then € RDD(R).

We shall also need the next Carleson-Hormander ([5, 20]) type embedding
theorem regarding dyadic intervals (see [41, 44]).

Theorem E. Let 1 < p < g < oo and let p be a weight function on R such
that pl_p/ satisfies the dyadic reverse doubling condition. Let {cr} be non-
negative numbers corresponding to dyadic intervals I in R. Then the following
two statements are equivalent:

(i) There is a positive constant C' such that

e (7 [owas) <o ([ atororis) "

for all non-negative g € LL(R);
(ii) There is a positive constant Cy such that

. —q/p’
cr < Cy|I)? (/ p(x)=P dw)
I
forall I € D.

This result yields the following corollary.

Corollary A. Let 1 < p < g < oo and let p be a weight function on R such
that plfp, satisfies the dyadic reverse doubling condition. Then the Carleson-
Hormander inequality

= (e dw)m(/f ie) s [ ramtoie)

holds for all non-negative f € Lb(R)

2. Main results

Here we formulate the main results of this paper. Let us begin with the
operator M,Ig.
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Theorem 2.1. Let 1 < p < ¢ < o0 and let 0 < «,0 < 1. Suppose that
w(z,y) = wi(z)wa(y) with w,"? € RDW(R). Then M,Is is bounded from
LP (R?) to LI(R?) if and only if

1/p
B, = sup [1]%~ 1<// (z y)dxdy)
a€R;r>0;ICR ly— a\<r
) 1/q
dxdy) < 00;
(//y a|>r ‘y_a“l Ala
1/p
s ([ / (@l ~ ol * P dady
a€R;r>0;ICR ly— a\>r

/4
X (// v(m,y)d:cdy) < o0,
IJ|y—al<r

where I is arbitrary bounded interval in R.

&
i

Notice that By is a dual of Bs.

For the strong fractional maximal operator we have:
Theorem 2.2. Let 1 < p < q < oo and let 0 < «a,8 < 1. Suppose that
w(z,y) = wi(x)wy(y) with w;~ w; P ¢ RDW(R). Then M, s is bounded
from LP (R?) to L4(R?) if and only if

1/q /v
B3 —sup|[|“ L= 1<// v(x y)dacdy) (// (z,y da:dy) < 00,

where the supremum are taken over all arbitrary bounded intervals I and J in
R.

To formulate the next result we need:

Definition 2.3. We say that the weight p on R satisfies Ao (R) condition
(p € Ax(R)) if there exist constants ¢,d > 0 such that for all intervals I and
measurable sets F C I the inequality

s
) o (12)
p(I) 1]
holds, where p(E) = [ g p- Further, we say that a two-dimensional weight u

belongs to the class Ay (R) with respect to the first variable uniformly to the
second one (u € A (R)) if the inequality

) <E|)

uy(I) =\ |
holds for all y € R, all intervals I C R and measurable sets £ C I, where
uy(E) = [y u(z,y)dz. The class AY (R) is defined analogously.

IN




TWO-WEIGHT ESTIMATES 529

It is known (see [7, 21], [16, Ch. IV]) that p € A (R) if and only if p belongs
to the Muckenhoupt A,(R) class for some p > 1. It should be mentioned that
some essential properties of the Muckenhoupt A, classes defined on rectangles
has been studied in [11, 23] (see also [8], [16, Ch. IV]).

Our result concerning the Riesz potential with product kernels is:

Theorem 2.4. Let 1 < p < ¢ < o0 and let 0 < o, < 1. Suppose that
w(z,y) = wi(x)ws(y) with w%fp/ € RDW(R) and v € AE,Z;')(R) uniformly to
the second variable. Then I, g is bounded from LP,(R?) to L1(R?) if and only
if max{B1, B2} < 0.

Remark 2.5. Criteria for the boundedness of I, 3 from L% (R?) to LE(R?) pro-
vided that the weights v and w!'~P raised to a certain power satisfy Ao, con-

dition uniformly with respect to the second variable have been announced in
[29].

From Theorems 2.1 and 2.2 we have:
Corollary 2.6. Let 1 <p < g < oo andlet0 < o, 8 < 1/p. Then the following
statements are equivalent:

(i) M, Ig is bounded from LP(R?) to LI(R?);

(ii) My, g is bounded from LP(R?) to L%(R?);

(iii)

By :=sup (// v(m,y)dwdy) |1)9(@=1/P)| JaB=1/P) < oo,
1,J 1JJ

where I and J are arbitrary bounded intervals in R.

Notice that in Corollary 2.6 there is no any additional condition on v except
(iii).

Theorem 2.4 yields:
Corollary 2.7. Let 1 < p < g < o0, 0 < a,0 < 1/p. Suppose that the two-
dimensional weight v(zx,y) belongs to A (R) uniformly to y, or v € AY (R)
uniformly to x. Then the following statements are equivalent:

(i) I, is bounded from LP(R?) to LI(R?);

(ii) By < 0.

For the operator I,.J3 we have:

Theorem 2.8. Let 1 < p < ¢ < oo. Suppose that 0 < oo < 1 and § > 1/p.
Then the two—weight inequality

1/q 1/p
([[ esspamineaisar) < [[ waruaay)
R2 R2
holds if and only if

1/q
(i) Bs = sup 70(%?;) dxdy
— q|(l—a)q
a€R;r>0k€Z \ J|z—a|>r J2k<|y|<2k+1 |z — al
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, 1/p’
X (/ ul"? (x)dac) 2k(B=1/P) < o0;
|z—a|<r

1/q
(ii) Bs = sup </ / v(z, y)dxdy)
a€R;r>0;kEZL |lz—a|<r J2k<|y|<2k+1
1 1

—p’ /v’
% (/ de> ok(B=1/p) ~ 0.
|z—al>r |:17 - a|(a71)p

Corollary 2.9. Let 1 < p < g < co. Suppose that 0 < a < 1 and 8 > 1/p.
Then the operator 1,Js is bounded from LP(R?) to L(R?) if and only if

a+r 1/‘1
sup (/ / v(m,y)d:vdy) roVPk(B=1/p) < 0,
a€R;r>0;kEZ a—r J2F<|y|<2k+1

In the diagonal case p = ¢ we have:

Theorem 2.10. Let 1 < p < c0. Suppose that 0 < a < 1/p < 3. Then the
operator I,Jg is bounded from LP(R?) to LP(R?) if and only if 1,V; € LY (R)

loc
for all 7 € Z and there exists a positive constant ¢ such that for almost all

z € R and all j € Z the inequality
Ia[Ian]p,(x) < cla[Vj](z)

holds, where 1, is the one-dimensional potential and
v = [ (e, Il dy.
27 <|y|<29+1

We have also the Fefferman-Stein type dual inequality for the operators
M g, MoIg and I, g. Notice that this inequality for the classical Riesz poten-
tials I, in the case p = ¢ was established by E. Sawyer (see, e.g., [2]).

Theorem 2.11. Let 1 < p < g < co. Suppose that 1/p—1/q < o, 8 < 1/p.
Then there exists a positive constant ¢ such that

(/[ sty paans)” < e [[ 160 (aser i)

where

(Ma,gv)(,y) == sup |I|(a_1/”)q|J\(ﬂ_l/p)q//v(t,T)dth
I>z;J3y IJJ

and the positive constant does not depend on f and v.

Theorem 2.12. Let 1 <p<g<oo andlet 1/p—1/q < o, < 1/p. Suppose
that v € Agé) uniformly to x. Then the following inequality holds:

(J] ortspreanievioar) <o [[ 15 np (e visay)

with a positive constant c independent of f.

1/p
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For I, g we have:

Theorem 2.13. Let 1 <p<qg<oo andlet1/p—1/q < a,B < 1/p. Suppose
that v e A (R)N AW (R). Then the following inequality

(J] 1) <e( [[ 1senrtmpie pas)

holds, where the positive constant ¢ does not depend on f.

3. Proofs of the main results
To prove the main statements of the paper we shall need the following lemma.

Lemma 3.1. Let 0 < a <1, 0< B < 1. Suppose that k € Z and f > 0. Then
the following inequalities hold:

(3.1) (MEg) f(a,y) <

Ca

|R(0,252)] Jp(o,2m+2)

25
3.9 M) f(z,y 7/ / Stor (@, y)dtdr,
(3.2) 8 @y < [R(0,28°2)]2 J po anv2y Jrooreay )

1
(M) ) = sup / / ly — 7171 f (¢, 7)dtdr

Ia;|I| <2k

k
M(Q)fx,y = //ftTdth
op f(@:) IxJaxy)m Ve a|J|1 |I[=el g0

RO, r)={t:—r<t<r}, r>0;
Kiw,9) = [ st w
doy) = sup s | Haf (s ),

I— thIE'D|I
I—t.:{:z:ft-xel}

Sy (xz,y):= sup / s, €)dsde.
(@) I3 €D J—1oy7eD |I|1 “ |J|1 L rf )
We notice that such type estimate first has been established in [12] for the
classical Hardy-Littlewood maximal functions (see also [16, p. 431]. For frac-
tional maximal functions see [36, 37]).

Proof of Lemma 3.1. We shall need the following observation (see, e.g., [16,
p. 431]). Let j and I be an integer and an interval respectively such that
2771 < |I| < 27. Suppose that k € Z, j < k. Let E be the set of those
t € R(0,2%+2) for which there is some I; € D —t with |I;| = 2! and such
that I C Iy. Then

(3.3) |E| > 22,
where D —t:={I —t: 1 € D}.
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To prove (3.1) we take f and (z,y) € R%. Then there exists an interval I
(/1] < 2%) such that = € I and

% / (Isf (s, ) y)ds = (ME)I5)f(a,y).

Let j be an integer such that 2771 < |I| < 27. In this case j < k. Let E be the
set defined above. Further, for every ¢ € F there exists an interval Q € D — ¢t
such that |Q| =2/ I C Q and

FOMEI L) @) < i [Uaf (s, ) s

c
< g @b s ) )ds < cKilay).
Q| Q
By (3.3) we also have that |E| > |R(0,2%+2)|/2. Hence

MEIT < i/ Ki(z,y)dt < ——— Ky(z, y)dt.
( @ ﬁ)f(l'vy) = |E‘ 5 t(xﬂy) = |R(O,2k+2)| R(O’2k+2) t(x7y)

To prove (3.2) we argue as above. For given f and (x,y) € R? we take
intervals Ry > x and Ry 3 y, |R1|, |Re| < 2F, such that

2 k
W/R n f(S,G)deG > M(gfﬁ)f($,y)

Now, let us take integers j and i so that 2/~ < |Ry| < 27 and 20! < |Ry| < 2°.
It is obvious that j,i < k. Further, let us define the sets £ and FE5 by the
following way:
Ey:={t€ R(0,28"?):31 €D —t, |I| = 22" R, C I};
Ey:={r € R(0,2""?):3J e D -1, |J| =2""', Ry C J}.
Then for all t € Fy and 7 € F> we have
1

2" 1 /
-M z,y) < s,€)(y)dsde < ¢Sy - (x,y).
2 a3 f( y) |R1|1_O‘|R2|1_B R IR, f( )(y) t, ( y)

By (3.3) we have that |Ey|, |Ey| > |R(0,2%+2)|/2. Hence
c
< -
By X B2 JE, <,

c
< —— St - (x,y)dtdr.
~ |R(0,2k+2)2 /12(0,2k+2) /12(0,2k+2) v (@, y)didr

The lemma has been proved. (I

St - (z,y)dtdr

Proof of Theorem 2.1. Sufficiency. First let us show sufficiency for the dyadic
version of the operator M,Ig:

NaTof(e) = s [1°7 [ Is(rt )
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Let f > 0. Without loss of generality we can assume that f is bounded and
has a compact support. Therefore N, Iz is finite for all (z,y) € R?. We claim
that if we prove the theorem for such functions, then by elementary discussion
we can pass to arbitrary f € LP(R?). Indeed, let f € LP(R?) and let us
take the sequence f, = fXBon)X{f<n}- Then f, — f in LP (R?) and also
pointwisely. Moreover, f,(z,y) < f(x,y). On the other hand, (M,Ig)f, is a
Cauchy sequence, because

||(Moclﬁ)fn_(Malﬁ)fm”L?,(R?) < H(Majﬁ)(fn_fm)HL%(R"’) < Can_fm”Lﬁ(R?)'

Consequently, by the completeness of the space L%(IR?) there exists g € LI(R?)
such that

[(Mals)fn —

Hence, there exists a subsequence (M,Ig)f,, which converges in norm and
almost everywhere to g. But f,, converges to f in L? and also a.e.. This leads
to the inequality

(3.4) lgllLsm2)y < cll flle, @2y,

where ¢ does not depend on f.
Now we will argue for the subsequence f,, :
For all (z,y) € R? with 2 € I we have (f,, is non-decreasing)

(t,7)
I*- 1// ——2— _didr = hm 1%~ 1// L =k dtdr
. Iy— |15 ! ly—7 \”3

(t,
< lim sup |[I|*~ 1// . 1T T gdtdT
k—oo 1 152 ly — 7]
= lim (Motlﬁ)fmc (.T,y)
k—o0
and the last limit exists, because it converges a.e. to g. Hence

(Malﬁ)f(x7y) < klglgo(MaIﬁ)fnk (l‘,y) = g(x,y)

1r2) = 0.

for almost all (z,y). Finally, by (3.4) we have
[(Madp) fllLs @z < cl f]

Further, for (z,y) € R? there exists dyadic interval I,(z) C R containing x
such that

L% (R2)

(3.5) / U D2 Nl f ).

Ly ()|t
Let
Fr={(z,y) €R?*:z €I and I is minimal for which (3.5) holds}.

Let D,, be a subset of D for which F; # (). By the main property of dyadic
intervals it is clear that F; N F; = () when I # J. Notice also that from the
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inequality
2 (0%
(Vols)f(e,0) € s [ Df ()t < el (o)1,
|1y ()] Iy ()

with the constant ¢ depending on L norm and the support of f, it follows the
existence of minimal dyadic interval containing = for which (3.5) holds.

From the definition of maximal operator and the latter inequality it is ob-
vious that R? = Urep,, Fr. It is also clear that F; C I x R and that Fr is a
measurable set for every I. Let us use the notation:

Vi(y) i= |1 (Vs / oz, y)de; Fi(r / f(t.7)d
I
We have

| [0t @ oto. spaody

<o 3 [ [ s [t nwa] ot

I€D,,

q

<2 ) / Vily / ( e T|ﬁ—1f(tm>d7) dt} dy
I€D, I'\J/R

(change the order of integration in the inner integral)

o Y /v, /R|y—7-|5_1}_7‘1(7)d7'rdy

I€D,,
(by Theorem A and the fact that in the case n =1 the first integrals in A;

and As of Theorem A can be taken over intervals (z — 7,z 4 r), see [14])

< clmax{By B ) ([ o) 1_p<F1(y>>pwz<y>dy] "
- c}; (/ dt) —a/v' [A(Fl(y))pwg(y)dy] a/p

(due to Minkowski’s integral inequality and Corollary A)
—q/p’ 1/p 4q
< ¥ ([forroa) | [([rennma) a] <di e,
repy, \JI 1 \Jr

Hence N,Ig is bounded from LE (R?) to LI(R?).
Let us now pass to the operator M,Ig. Assume that & € Z. Due to
Lemma 3.1 we have

Dy = / [ () oo )y
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1 q
// < SUp oo // ly —€lP~Lf(s —t, e)deds) v(x —t,y)dzdy
r2 \zerrep [I['*

(by the condition max{Bj, Ba} < 0o and the fact that this condition

is translation invariant)

< ¢ (max{ B, 32})‘1(//R2(f(w —t,y))Pw(z — t,y)dxdy) v

—e (J[ vt o)

Consequently,
1/p
Dtl/q< ,y))P ,dd) ’
1 <o [[ ety

where the constant ¢ does not depend on t.
Applying Lemma 3.1, Minkowski’s inequality and the latter inequality we
find that

(/ R2[(M°(‘2k)fﬁ)f(xay)]qv(ﬂc,y)dxdy>1/q

1 a 1/q
|R(0,27F2)| K dt dzd
c (/]Rz <|R(0,2k+2) R(0.2042) t(z,y) ) v(z,y)dz y>
1/q
¢ \R(0,2k+2)\*1/ </ Kg(x,y)v(z,y)dxdy) dt
R(0,2k+2) R2

1/p
—clro.2) [ oy (D < ( L (f(x,y»pw(x,y)dxdy) .

Passing now k to the infinity we finally obtain sufficiency.
To prove necessity we take the functions

IN

IN

F(@,y) = x1(@)X ey —al>ry @) 77 (2, y)]|a — y| @ "DED]

where a € R and I is an interval in R. Then we have

/\/]RZ ’U(xay)[(MaIﬂ)f(z’y)]dedy

// o(a, y)| I (// 1)Bdtd7) dxdy
ly—al<r |T—al|>r |y_T|

(if |y —a| <r and |7 —a| > r, then \T—y|<2|7'—a|)

q
// (z,y)dwdy | |I)@~ 11 // W)
ly— a\<7 |T—a|>r ‘Tfal |7 — a| =0
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On the other hand,

q/p
11 ) = (// ()l — a| - 1pdxdy> .
ly— a|>7

From the two—weight inequality we will derive the condition By < co. To prove
Bi < oo we take the functions

f(fE, y) = XI (I)X{y:|y—a\<7"}(y)wlipl (1‘7 y)

and argue as above. Theorem 2.1 has been proved. O

Proof of Theorem 2.2. First we prove the theorem for the operator

Nosflaw)= s 17 [ [ pejara.
IxJ>(z,y);I,J€D I1JJ
We can assume that f is a non-negative bounded function with compact
support. In this case N, gf(x,y) < oo for all (z,y) € R%
For every (z,y) € R? let us take the pair of dyadic intervals {I(z),J(y)},
x € I(x), y € J(y) such that

(3.6) f(t,7)dtdT > Ny gf(z,y).

[1(x)[*~ "\J )P /I(:v I(y)
Let us introduce the set
Fry={(z,y) €R?:z € I,ye Jand (3.6) holds for I and J}

for each (I,J),I,J € D. In this case for a fixed point (z,y) the minimal dyadic
rectangle I x J satisfying (3.6) (i.e., for any proper dyadic rectangle I; x Ji,
Iy C I, J; C J (3.6) fails) exists but the latter is not unique. For our reasons
it is enough that (3.6) holds on every (z,y) € Fr; R?* = Us jepFr s and
FiyCcIxJ.

In the sequel we will use the notation:

Vigi= \I|(°‘71)q\J|(ﬁ71)q//U(x,y)dmdy; FLJ :z//f(t,r)dtdr.
1JJ 1JJ

We have

//Rz [Nosf(2,y)]"v(z, y)dzdy

< 2 Z ‘_/I’]FiJ (by the condition Bs < o)

1,JeD
o 2 (ot vo) (o) 7 ([ )
S g (o) T (feeon) (o))

(due to Corollary A with respect to the intervals T)
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<c) (/ dt>Q/p</Rwl(t)(/Jf(t,T)dT>pdt>Q/p

JeD
(by generalized Minkowski’s inequality and Corollary A)

<cy (/ dt> /p(/] (/pr(t,T)wl(t)dt>l/pdT>q < el 11Ty ge-

JeD

Arguing in the same manner as in the proof of Theorem 2.1, using (3.2) and
the fact that the condition B3 < oo is translation invariant, we can derive
sufficiency of the theorem.

To show necessity we observe that

1/q
1Mo ey > If'““'“(“ﬂ“”””@ <//f (& T"“‘”>

for any pair of intervals (I, J). It remains now to use the two-weight inequality
for the functions

f,y) = xa @) (w7 (2, ). =
The next statement is well-known ([34]).

Proposition 3.2. Let 1 < ¢ < co. Suppose that 0 < a < 1 and p € Ax(R).
Then there ezists a positive constant ¢ depending only on «, p and w such that
the inequality

o fllam) < cllMafllLae)
holds.

Applying Proposition 3.2 to one of the variables uniformly with respect to
the second one we easily derive Theorem 2.4.

Proof of Corollary 2.6. To prove the implication (iii) = (i) observe that the
condition By < oo implies max{B, B2} < oo for w = 1. Indeed, we have

1/q
By:=c sup Ia_l/prﬁ_l/p(// v(:ay)dmdy) = CBi/q7
a€R;r>0;ICR y—al<r

while

) 1/q
By:=c sup |T|o= /Py e (// (1 dwdy) :
a€R;r>0;ICR ly—a|>r |y - a|

Further,

a—=1/p)q,.q/p’ Y)
‘[‘ M //y a|>r |y_a|(1 ﬁ)qdzdy

- ‘]‘(a—l/p)qTQ/p’Z// U(xil)dxdy
k0’1 J2kr<|y—a|<2k+ir |y_a’|(
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(o9}
< ‘]‘(a—l/p)qrq/p’Z(ri)(ﬁ—l)q// v(z,y)dzdy
k=0 I J2kr<|y—al<2k+iy
< eByrt/P Ny (2Fr) TP = By Y o7hY = e,
k=0 k=0

Hence, By < cBi/q and consequently, max{Bj, Ba} < cBi/q when w = 1.
Now it remains to apply Theorem 2.1. It is easy to see that the implication
(ii) = (iii) follows from the boundedness of the operator M, g on the class of
functions

fra(z,y) = xi(z)xs ().
Due to the inequality M, gf(z,y) < MoIgf(z,y) (f > 0) we find that (i) =
(ii). Finally we have (i) = (i) = (i) = (iii). O
Proof of Corollary 2.7. First we prove the implication (ii) = (i). We have
already shown (see the proof of Corollary 2.6) that max{B;, Bz} < cBi/q.
Further, let v € A, Then the results follows directly from Theorem 2.4. Let
now v € A(y) Then taking into account the previous case we have

J [ v psy e sdedy= [ o )T ) dude <1 ey

where v*(y,z) = v(z,y), fi(r,t) = f(t,7). It remains to notice that the

condition v € AY is equivalent to the fact v* € A%). The implication (ii) = (i)

has been proved.
The fact (i) = (ii) follows from Corollary 2.6 using the obvious inequality

Ma,gf(x,y) g Ia,ﬁf(xay)a f Z 0 D

To prove Theorem 2.8 we need the next statement concerning the operator

(I H) f(x,y) // —2 ) dgtdr.
II<yl |ﬂﬂ*1ﬁ|1 *

Proposition 3.3. Let 1 < p < ¢ < 00, 0 < a < 1. Suppose that w(z,y) =
wy(z)wa(y). Then the operator I, H is bounded from LP (R?) to L4(R?) if and
only if

1/p
(1) D, = sup (/ / (z y)dwdy)
a€R;r>0;5>0 |z—al<r y\<s
1/q
([ %dmy) < o
lx—a|>r J|y|>s ‘13 - CL‘ 1
) 1/p’
(i) D, = (/ / d:cdy)
a€ER; r>0 s>0 |lz—a|>r Jy|<s |17 - CL|
/a
X (/ / v(x,y)dmdy) < 0.
lz—al<r Jly|>s
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hold.

This statement in more general form has been formulated in [29].
To prove this proposition we need the following statements (see, e.g., [32]).

Lemma 3.4. Let 1 < p < ¢ < oo and let {a,}, {b,} be positive sequences.
The inequality

(3.7 (S| afa) e 3 torm)”
n=—oo k=—o0 n=-—oo

with the positive constant ¢ independent of {gr} ({gr} € lfﬁ (7)), holds if and

only if . . /
B :=sup (Z ai)l/Q( Z b;l")l/p < Q.

nez

Moreover, if ¢ is the best constant in (3.7), then

q )(p—l)/p
q—1 '

B§c§3q5<

Lemma 3.5. Let 1 < p < q < oo and let m be an integer. Suppose that
{an}i_ oo, {bn}_ o are positive sequences. Then the two-weight inequality

(3.9 (S| afa) e 3 tarm)”
n=—oo k=—oo

for all {gr}7r _ . holds if and only if
B .= sup (i aZ)l/q( i b;P')l/pl < 00.

—oco<n<m T e —oo

Moreover, if ¢ is the best constant in (3.8), then

(»-1)/
BU™ < ¢ < BU™gh (L) P
qg—1

S

Proof of Proposition 3.3. Sufficiency. First suppose that S := fR wéfp’(y)dy =
0.
Let {xk}ﬁiw be a sequence of positive numbers for which the equality

(3.9) ok = / W™ (y)dy
ly|<zp

holds for all k£ € Z. It is clear that {x)} is increasing and

R\ {0} = UrezEk,
where Ej := {y € R : z; < |y| < xx41}. Besides, it is easy to verify that
ok — fEk w%_p . Let f > 0. We have

ri= [ [ vlen) 1A ) dody
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kez//Ek o (//T|<|y o i1 dth) dedy
< Z/ (/ (z,y dy) (/]R (/7—|<xk+1 mdr>dt) dx

kEZ

_Z/vk (/R|x—t|°‘1Fk(t)dt>qu,

kEZ
where

a(@)i= [ ey F@®= [ s
Ey |T|<Tp41
Further, by Theorem A,

I < cmax( D, 021 Y | [ unto) [ v >dy)1p<Fk<x>>de}

JEZ

o [ g ([, ) (5 L) o]

k=—o00
On the other hand, (3.9) yields

([t o) (Z ) 7o)

q/p

k=n k=—o0
(B om) (o)

—+oo

(Z 2k(1—P))2(n+1)(P—1) — ¢ < 00

k=n
for all n € Z. Hence, by Lemma 3.4 and Holder’s inequality with respect to
the integral fm;<‘7|<$,_+1f(1',7')d7' we conclude that

s p 1a/p
1-p’
! = c|:/R UH(.T)JXE% </zj<|y<zj+1WQ (y)dy> (/zj<|‘r|<z]-+1f(x77-)d7—> dﬂ{|

q/p
< c[/Rm(x)Z </I’_<|T<%+1 wz(T)fP(x,T)dT>dx] = eD[|f%, 2y

JEZ
If S < oo, then without loss of generality we can assume that S = 1. In
this case we choose the sequence {z)}9____ for which (3.9) holds for all ¥ < 0.
Arguing as in the case S = co and using Lemma 3.5 instead of Lemma 3.4, we
obtain the desired result. For necessity we put the functions

1@, 9) = X(arta-al>rp X ety >0 (@) w' ™ ()| — o 7DD,

f(xay) = X{z:|z—a|<r} (x)X{y:\y|>t} (y)wlip/ (x,y)
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(a € R; r,t > 0) in the two—weight inequality and we are done. O

Proof of Theorem 2.8. Let f > 0. Represent I,Jg as follows:
t
LJsf(z,y) = //T f(t.7) —dtdr

<lyly2 |2 =t =T =yt

t
+// 1{(,177-) 1_6dtd7
R Jlyl/2<|r <2yl [z =t T =y

=S f(a,y) + SThf (@, ).

We have
0 d5f118g ey < cUISShF NG ey + SChF %)) = c(SH) + @),

If |7] < |y|/2, then |y — 7|°~1 < cgly|’~L. Therefore, due to Proposition 3.3
we find that

S <c// (z, )]y~ (//MW2 m_tl)adtd7> dxdy
<o [[ Ut uruwsy) "

Here we have used the inequality

max{Bi, B} < cmax{Bs, Bs},

where
1/q
Bi = sup (/ / .v) dxdy)
b aER;r>0;s>0 lz—a|>r J]y|>s |"17 - a’| 1 @ q‘y|(1 Aa
1/p’
X ( ( )dx) ;
|z— a|<r
1/q
B = sup </ / ( Y)) dzdy)
a€]R;'r‘>0;s>0 lz—al<r J]y|>s |y|
ul—P 1/p
(] e )
lx—a|>r |1’ - a‘| )

To check the latter inequality we take r > 0 and s > 0. Then s € [27,2"F1) for
some n € Z. Hence

Sq/p'(/ ul=P ) / / = ag) = d:bdy
|z—al<r |z—a|>r J|y|>s |£L' - (L| |y|

a/p’
T
|z—al<r |z—a|>r J|y|>2" |LE— a| * q|y| 1
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! ! q/p/
= cQna/p </| ‘ ul"? (x)dgc)
r—a|<T

xZQk(ﬁ L / v(w,y) —— = —dxdy

(1—
|lz—a|>r J2k<|y|<2k+1 |I‘—CL| )

< cBlna/v’ Z 2-ka/v" — ¢BY.
k=n
Hence Bf < ¢Bs. Analogously it can be proved that Bj < ¢Bg.
Further, Holder’s inequality, Theorem A and simple calculations yield

s [furen( L1107 (f g 70)

1/p/
X < / ly — 7|@—1¥ dT) dt> dzdy
lyl/2<|7|<2lyl
-> /] (&, g1/
2J<\y\<2z+1

JEZL

/p N4
X </ |:17t|a1(/ fp(t,T)d'r) dt) dx
lyl/2<|7[<2ly]

¢ v(x,y>|y|q<ﬁ1/p>dy)
Z / </za‘<|y|<2j+1

JEL

1/p q
X </ |x—t|0‘_1</ fp(t,T)dT) dt) dx
R 2i-l<|r|<29+2

q/p
c(max{Bs, By})" ( [t [ g T y)dzdy)

JEZ

o [ vtortsay) "

IN

| /\

IN

Necessity follows in the same manner as in the proof of Theorem 2.1 has

been obtained.

Theorem 2.10 can be proved easier than the latter statement using the Hardy

inequality (see, e.g., [19]):

(3.10) /R(Hf(x))p|x\*pdx < C/R(f(x))pdx.

Indeed, let us first show sufficiency. Keeping the notation from the proof of the
previous theorem, Theorem B and inequality (3.10) we will derive the following

chain of inequalities:

1
1SS S A1 5 g
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p
< c//v(:c,y)|y|(ﬁ1)p(// f(t’:)_adth) dxdy
iri<lyl/2 T =]
P
_ // w(@, y)|y|B-1P (// 1)adth) dady
IR S << Iri<lul/2 |$—f|
<e) Y0 / -(x)(/ |x—t|a1(/ f(t,T)dT)dt) da
jez R |T|<29
p
< 221(1—19)/ (/ f(t,T)dT) dt
= R |T]<27
p
— C/Zw'(lp)(/ f(t,T)dT) dt
R J |T]<27
<

C/]R <;/21<w|<21+1 |xp</|7<|x| f(t’T)dT)pdx> “
= c/R (/erf’(/hql f(t, T)dT)pdx>dt < C/R [ 77 )t

Using again Theorem B we find that

2)
IS5 FI1% g oy

1/p
c//v(m,y)(/ |x—t|°‘_1(/ fp(t,T)dT>
RJR R lyl/2<|7I<lyl
p' \p
X (/ |y — 7| B—1 d7> dt> dzdy
lyl/2<|7|<lyl|
I/p NP
cZ/l@(m)(/ x—t“_l(/ fp(t,T)dT> dt) dxdy
; JR R 27 -1<|7| <29+t

¢ P, m)dtdr < c||f|P , e -
zj:/]R/QJ‘1<|,,.<2j+1 HL (R2)

Necessity. To prove necessity we observe that the boundedness of the oper-
ator I,Js from LP(R?) to L?(R?) implies the inequality

p
[y [le -t a0 do < ol

for all non-negative functions g defined on R and all j € Z. This is possible
if we put the functions of the form f;(x,y) = g(z)x{y:2i-2<|y|<2i-13(y) in the
inequality

IN

IN

IN

Hadsfllp@e) < cllfllce@?)-
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Further, by Theorem B we conclude that 1,V; € v

loc

up (W>/ <.

ver; jez \ Lo Vj(x)

(R) for all j € Z and

O

Proof of Theorem 2.11. First we prove the statement for the dyadic strong frac-
tional maximal function No gf(z,y). Suppose that f > 0, f is bounded and
has a compact support. Arguing as in the proof of Theorem 2.2 for given
(x,y) € R? we take dyadic intervals I(z) and J(y) (z € I(x), y € J(y)) so that
(3.6) holds. Using the notation of the proof of Theorem 2.2 we find that

I—// o.8f)(z,y)v (xy)dmdy<2qZVIJFIJ

1,J€D
1/
=2 Z (//fx y (// trdtd7‘> dacdy) |1|(@=Da| 7| (B=Da
1,JeD
q ! (a=1/p)| 7ja(B=1/p) )
— q(a—1/p)| 719(B—1/p
QI;D(IIIJ)‘I/P’(/I/Jf(x’y)(ll B /I/Jv(t,T)dtch') dxdy)
< 29 Z |I|~ a/v' |J]~ a/v' (//f x,y)( agv) Ya(g, y)dxdy) ,
1,JeD
where
Naﬁv(x,y): sup |I|q(”‘*1/p)|J|q(ﬁ*1/p)//v(t,T)dth.
I32;J5y;1,J€D 1)y

Applying Corollary A twice with p(z) = 1 and Minkowski’s inequality we

obtain
_ p q/p
T<ey |1 ( / ( / f(x,w(Na,ﬁv)“%x,y)dm) dy)

1D

< ([(f fp<x,y><ﬁa,av>p/q<x,y)dy)l/pdx)q

I1€eD

<c ( /R /R fp(177y)(ﬁaﬂ”)p/q(ifvy)dl‘dy)q/p~

Let us now pass to M, g. Keeping the notation of Lemma 3.1 we have

Divi= [ (Surwn)) (o, y)dody
R
a
= // ( sup |I|”71\J\571/ f(s,s)dsde) v(z,y)dzdy
R2 I—t>x;J—t3y;I,J€D I—tJJ—T1

q
= // ( sup |I|"_1|J|5_1/ f(s—t,e—T)dsde) v(z —t,y — 7)dzdy
R2 I3x;J3y;1,JeD I1JJ
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L=t =i gpete = oy = ey

IN

~ q/p
c (//R2 (f(x—t,y— T))p(Na,gv(- —t,-— T))p/q(x,y)dxdy)
- - T (a—1/p) q(8—1/p)
c (//Rz(f(:c t,y ))P(Iax;JS;;g,JEDuq | J| p

p/q qa/p
X // v(s—t,e— T)deE) dmdy)
1Jg

o ([[—ru=nr( s jr- e e
R2

I>x;J3y;1,J€D

r/q alp
X / / v(s, E)deE) dxdy)
I-tJJ—T1

‘ </R2 FP (@) (Nago(- —t,- = T))p/q(x,y)dxdy) "

IN

IN

o ( J[ 0@ Tmpripas)" .

Taking into account the proof of the latter theorem we can formulate the
next statement for the classical fractional maximal function M,.

Lemma 3.6. Let 1 < p < g < oo. Suppose that p is an one-dimensional
weight. Assume that 0 < v < 1/p. Then the inequality

</R(va(ff))qp($)d$>l/q <ec </R |f($)|p(M,yp)p/q(x)dx>

holds with a positive constant ¢ independent of f and p, where

N]\f p p/q €T _Sup l q() 1/17) p x dx
I>x 1

1/p

Proposition 3.2 and Lemma 3.6 yield:

Corollary 3.7. Let 1 <p < q < oo and let p € Axo(R). Suppose that 0 < v <
1/p. Then the inequality

(A|Ivf($)|qp(x)dx>l/q <ec (/R|f(m)|p(]\77f’)p/q($)da:>l/p

holds with a positive constant ¢ independent of f.

Proof of Theorem 2.12. As before we assume that f is non-negative bounded
and has a compact support. Using the notation of the proof of Theorem 2.1
we have

J = / / (NuIs ) (w, y)ola, y)dudy
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<o 3 [ [ Eiriar) a

1€Dy,

=27 )" \I\W*l)q/R </Iv(x,y)dx>(/RF1(7)|yT|B1d7'>qdy

1€D,,
(by Corollary 3.7 and the fact [, v(z,-)dz € A (R) with the constant
independent of I)

<e 3 e [ ([ sewa) 50 [foew)| wa]”

I€D,,
(generalized Holder’s inequality)

<e 3 e [[ [renfi( [oe )] wa] " w)

1€Dy,

1 1 pla 1/p N4
=c —_— P (¢t —_— dxd d dt
2. |1|<1—a>q<./1 Lrrwn] o g [ ]| a] )
1€Dy, '
1 1 @ oY
== T 4 1 S T S T vz, LT 1 A
7 O (P Y WS (1
€Dm

(by Corollary A with p(z) =1 )

<o ( [[ Uiy

Arguments similar to that of the proof of the previous theorem completes
the proof. O

Proof of Theorem 2.13. We have

J [ o @alvotyydady

< (Lo Lo ([ E5er)e) o)

( by Proposition 3.2 since v € A (R))
< c// (Mo I f (2, y)) v(2, y)dedy
R2

(by Theorem 2.12 since v € AY (R))

<c ( / / 2 |f<z,y>|p<fw’a,ﬁv>”/q<x,y>dxdy) . 0

Remark 3.8. Tt is known that (M, p)*, where p is a one-dimensional function
and 0 < A < 1, belongs to the Muckenhoupt’s class A; (see, e.g., [36]), i.e.,
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there exists a positive constant ¢ such that for all intervals I C R with finite
length the inequality

1] [ (,)* < cess nt (01,0
I

holds. Let now 0 < o, 8 < 1/p.
From the latter fact and the inequalities

o 1 1
(Mo pv)(z,y) < SUP”O/M/ (SHPW/ (t,T)dT)dt

I>x Joy

= (Mavr(,9))(@);
(Ma,ﬁv)(x y) < SUPW/ (SuP|I|q11/pa)/ (t, T)dt)dT

= (Mgva(x,-)) (),

where

v1(t, y) == sup | J|1F~1/P) / v(t,7)dT; wvo(x,T) := sup [I|2@~1/P) /v(t, T)dt,
Joy J Iz I

it follows that (]Tja,gv)k(-,y) € A;(R) for every y € R and ( algv))‘( ) €

A1 (R) for every z € R.

Remark 3.9. An analysis of proofs of the main results enables us to conclude
that all statements concerning M, g, I g and I,Jg hold also for the following
operators defined on R” x R™ (n,m > 1):

M("’m)f T,y) = sup / / (2, s)|dzds;
( a,f )( ) Box Bo5(2.3) |B |1 a/n|B |1 B/m |
nm Z S)
I dzds, = €R", y € R™;
(a7 l'y /n/m |$—Z|n O’|y—8‘m 3 zZas, T Yy
t
AT £) () / / n{ i . 7) ——ddr,
n Jirermiri<alyy 1T — "y — 7|

zeR" yeR™
respectively, where 0 < o < n, 0 < 3 < m and By is a ball in R%.
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