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Abstract

The present paper is devoted to the boundedness of fractional integral operators in Morrey spaces
defined on quasimetric measure spaces. In particular, Sobolev, trace and weighted inequalities with
power weights for potential operators are established. In the case when measure satisfies the dou-
bling condition the derived conditions are simultaneously necessary and sufficient for appropriate
inequalities.
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1. Introduction

The main purpose of this paper is to establish the boundedness of fractional integral
operators in (weighted) Morrey spaces defined on quasimetric measure spaces. We de-
rive Sobolev, trace and two-weight inequalities for fractional integrals. In particular, we
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generalize: (a) Adams [1] trace inequality; (b) the theorem by Stein and Weiss [18] re-
garding the two-weight inequality for the Riesz potentials; (c) Sobolev-type inequality. We
emphasize that in the most cases the derived conditions are necessary and sufficient for
appropriate inequalities.
In the paper [9] (see also [10, Chapter 2]) integral-type sufficient condition guaranteeing

the two-weight weak-type inequality for integral operator with positive kernel defined on
non-homogeneous spaces was established. In the same paper (see also [10, Chapter 2]) the
authors solved the two-weight problem for kernel operators on spaces of homogeneous type.
In [12] (see also [5, Chapter 6]) a complete description of non-doubling measure �

guaranteeing the boundedness of fractional integral operator I� (see the next section for the
definition) from L p(�, X ) to Lq (�, X ), 1< p< q < ∞,was given.We notice that this result
was derived in [11] for potentials on Euclidean spaces. In [12], theorems of Sobolev and
Adams type for fractional integrals defined on quasimetricmeasure spaceswere established.
For the boundedness of fractional integrals on metric measure spaces we refer also to
[7]. Some two-weight norm inequalities for fractional operators on Rn with non-doubling
measure were studied in [8]. Further, in the paper [13] necessary and sufficient conditions
on measure � governing the inequality of Stein–Weiss type on non-homogeneous spaces
were established. For some properties of fractional integrals defined on Rn in weighted
Lebesgue spaces with power type weights see e.g., [16, Chapter 5].
The boundedness of the Riesz potential in Morrey spaces defined on Euclidean spaces

was studied in [15,2]. The same problem for fractional integrals on Rn with non-doubling
measure was investigated in [17].
Finally, we mention that necessary and sufficient conditions for the boundedness of max-

imal operators and Riesz potentials in the local Morrey-type spaces were derived in [3,4].
The main results of this paper were presented in [6].
It should be emphasized that the results of this work are new even for Euclidean spaces.
Constants (often different constants in the same series of inequalities) will generally be

denoted by c or C.

2. Preliminaries

Throughout the paperwe assume that X := (X, �, �) is a topological space, endowedwith
a complete measure � such that the space of compactly supported continuous functions is
dense in L1(X, �) and there exists a function (quasimetric) � : X×X −→ [0, ∞) satisfying
the conditions:

(1) �(x, y)> 0 for all x � y, and �(x, x) = 0 for all x ∈ X ;
(2) there exists a constant a0�1, such that �(x, y)�a0�(y, x) for all x, y ∈ X;
(3) there exists a constanta1�1, such that�(x, y)�a1(�(x, z)+�(z, y)) for all x, y, z ∈ X.

We assume that the balls B(a, r ) := {x ∈ X : �(a, x)< r} are �-measurable and
0< �(B(a, r ))<∞ for a ∈ X, r > 0. For every neighborhood V of x ∈ X, there ex-
ists r > 0, such that B(x, r ) ⊂ V . We also assume that �(X )= ∞, �{a} = 0, and B(a, r2)\
B(a, r1) � ∅, for all a ∈ X , 0< r1 < r2 < ∞.
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The triple (X, �, �) will be called quasimetric measure space.
Let 0< � < 1. We consider the fractional integral operators I�, and K� given by

I� f (x) :=
∫
X
f (y)�(x, y)�−1 d�(y),

K� f (x) :=
∫
X
f (y)(�B(x, �(x, y)))�−1 d�(y),

for suitable f on X.
Suppose that � is another measure on X, ��0 and 1� p< ∞. We deal with the Morrey

space L p,�(X, �, �), which is the set of all functions f ∈ L p
loc(X, �) such that

‖ f ‖L p,�(X,�,�) := sup
B

(
1

�(B)�

∫
B

| f (y)|p d�(y)

)1/p

< ∞,

where the supremum is taken over all balls B.
If �=�, then we have the classical Morrey space L p,�(X, �) with measure �. When �=0,

then L p,�(X, �, �) = L p(X, �) is the Lebesgue space with measure �.

Further, suppose that � ∈ R.Weare also interested inweightedMorrey spaceMp,�
� (X, �)

which is the set of all �-measurable functions f such that

‖ f ‖
Mp,�

� (X,�)
:= sup

a∈X;r>0

(
1

r�

∫
B(a,r )

| f (y)|p�(a, y)� d�(y)

)1/p

< ∞.

If � = 0, then we denote Mp,�
� (X, �) := Mp,�(X, �).

We say that a measure � satisfies the growth condition (� ∈ (GC)), if there exists
C0 > 0 such that �(B(a, r ))�C0r ; further, � satisfies the doubling condition (� ∈ (DC)) if
�(B(a, 2r ))�C1 �(B(a, r )) for some C1 > 1. If � ∈ (DC), then (X, �, �) is called a space
of homogeneous type (SHT). A quasimetric measure space (X, �, �), where the doubling
condition is not assumed, is also called a non-homogeneous space.
The measure � on X satisfies the reverse doubling condition (� ∈ (RDC)) if there are

constants �1 and �2 with �1 > 1 and �2 > 1 such that

�B(x, �1r )��2�B(x, r ). (1)

It is known (see e.g., [19, p. 11]) that if � ∈ (DC), then � ∈ (RDC).
The next statements are from [12] (see also [5, Theorem 6.1.1, Corollary 6.1.1] and [11]

in the case of Euclidean spaces).

Theorem A. Let (X, �, �) be a quasimetric measure space. Suppose that 1< p< q < ∞
and 0< � < 1. Then I� is bounded from L p(X ) to Lq (X ) if and only if there exists a positive
constant C such that

�(B(a, r ))�Crs, s = pq(1 − �)

pq + p − q
, (2)

for all a ∈ X and r > 0.
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Corollary B. Let (X, �, �) be a quasimetricmeasure space, 1< p< 1/� and 1/q=1/p−�.

Then I� is bounded from L p(X ) to Lq (X ) if and only if � ∈ (GC).

The latter statement by different proof was also derived in [7] for metric spaces.
To prove some of our statements we need the following Hardy-type transform:

Ha f (x) :=
∫
�(a,y)��(a,x)

f (y)d�(y),

where a is a fixed point of X and f ∈ L loc(X, �).

Theorem C. Suppose that (X, �, �) is a quasimetric measure space and 1< p�q <∞.
Assume that � is another measures on X. Let V (resp. W ) be non-negative �× �-measurable
(resp. non-negative �×�-measurable) function on X × X . If there exists a positive constant
C independent of a ∈ X and t > 0 such that(∫

�(a,y)� t
V (a, y)d�(y)

)1/q(∫
�(a,y)� t

W (a, y)1−p′
d�(y)

)1/p′

�C < ∞,

then there exists a positive constant c such that for all �-measurable non-negative f and
a ∈ X the inequality(∫

B(a,r )
(Ha f (x))

qV (a, x)d�(x)

)1/q

�c

(∫
B(a,r )

( f (x))pW (a, x)d�(x)

)1/p

holds.

This statement was proved in [5, Section 1.1] for Lebesgue spaces.

Proof of Theorem C. Let f �0. We define S(s) := ∫
�(a,y)<s f (y)d�(y), for s ∈ [0, r ].

Suppose S(r )<∞, then 2m < S(r )�2m+1, for some m ∈ Z. Let

s j := sup{t : S(t)�2 j }, j�m and sm+1 := r .

Then it is easy to see that (see also [5, pp. 5–8] for details) (s j )
m+1
j=−∞ is a non-decreasing

sequence, S(s j )�2 j , S(t)�2 j for t > s j , and

2 j
�

∫
s j ��(a,y)� s j+1

f (y)d�(y).

If � := lim j→−∞ s j , then

�(a, x)< r ⇔ �(a, x) ∈ [0, �] ∪
m⋃

j=−∞
(s j , s j+1].

If S(r ) = ∞, then we may put m = ∞. Since

0�

∫
�(a,y)<�

f (y)d�(y)� S(s j )�2 j ,
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for every j, therefore
∫
�(a,y)<� f (y)d�(y) = 0. From these observations, we have∫

�(a,x)<r
(Ha f (x))

qV (a, x)d�(x)

�

m∑
j=−∞

∫
s j ��(a,x)� s j+1

(Ha f (x))
qV (a, x)d�(x)

�

m∑
j=−∞

∫
s j ��(a,x)� s j+1

V (a, x)

(∫
�(a,y)� s j+1

( f (y))d�(y)

)q

d�(x).

Notice that∫
�(a,y)� s j+1

f d�� S(s j+2)�2 j+2
�C

∫
s j−1 ��(a,y)� s j

f d�.

Using Hölder’s inequality, we find that∫
�(a,x)<r

(Ha f (x))
qV (a, x)d�(x)

�

m∑
j=−∞

∫
s j ��(a,x)� s j+1

V (a, x)

(∫
�(a,y)� s j+1

( f (y))d�(y)

)q

d�(x)

�C
m∑

j=−∞

∫
s j ��(a,x)� s j+1

V (a, x)

(∫
s j−1 ��(a,y)� s j

( f (y))d�(y)

)q

d�(x)

�C
m∑

j=−∞

∫
s j ��(a,x)� s j+1

V (a, x)d�(x)

×
(∫

s j−1 ��(a,y)� s j
( f (y))pW (a, y)d�(y)

)q/p

×
(∫

s j−1 ��(a,y)� s j
W (a, y)1−p′

d�(y)

)q/p′

�C
m∑

j=−∞

∫
s j ��(a,y)

V (a, y)d�(y)

(∫
�(a,y)� s j

W (a, y)1−p′
d�(y)

)q/p′

(∫
s j−1 ��(a,y)� s j

( f (y))pW (a, y)d�(y)

)q/p

�C
m∑

j=−∞

(∫
s j−1 ��(a,y)� s j

( f (y))pW (a, y)d�(y)

)q/p

�C

(∫
�(a,y)�r

( f (y))pW (a, y)d�(y)

)q/p

.

This completes the proof of the theorem. �
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For our purposes we also need the following lemma (see [14] for the case of Rn).

Lemma D. Suppose that (X, �, �) be an SHT. Let 0< �< 1� p<∞. Then there exists a
positive constant C such that for all balls B0,

‖	B0‖L p,�(X,�)�C�(B0)
(1−�)/p.

Proof. Let B0 := B(x0, r0) and B := B(a, r ). We have

‖	B0‖L p,�(X,�) = sup
B

(
�(B0 ∩ B)

�(B)�

)1/p

.

Suppose that B0 ∩ B � ∅. Let us assume that r�r0. Then (see [19, Lemma 1] or [10, p.
9]) B ⊂ B(x0, br0), where b = a1(1 + a0). By the doubling condition it follows that

�(B ∩ B0)

�(B)�
�

�(B)

�(B)�
= �(B)1−�

��(B(x0, br0))
1−�

� C�(B0)
1−�.

Let now r0 < r . Then �B0�c�B, where the constant c depends only on a1 and a0. Then

�(B ∩ B0)

�(B)�
�c

�(B0)

�(B0)�
= c�(B0)

1−�. �

The next lemma may be well known but we prove it for the completeness.

Lemma E. Let (X, �, �) be a non-homogeneous space with the growth condition. Suppose
that 
> − 1. Then there exists a positive constant c such that for all a ∈ X and r > 0, the
inequality

I (a, r, 
) :=
∫
B(a,r )

�(a, x)
 d��cr
+1

holds.

Proof. Let 
�0. Then the result is obvious because of the growth condition for �. Further,
assume that −1< 
< 0. We have

I (a, r, 
) =
∫ ∞

0
�{x ∈ B(a, r ) : �(a, x)
 > �}d�

=
∫ ∞

0
�(B(a, r ) ∩ B(a, �1/
))d�=

∫ r


0
+
∫ ∞

r

:= I (1)(a, r, 
)+I (2)(a, r, 
).

By the growth condition for � we have

I (1)(a, r, 
)�r
�(B(a, r ))�cr
+1,

while for I (2)(a, r, 
) we find that

I (2)(a, r, 
)�c
∫ ∞

r

�1/
 d� = −c(
 + 1)



r
+1 = c1r


+1

because 1/
 < − 1. �
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The following statement is the trace inequality for the operator K� (see [1] for the case
of Euclidean spaces and, e.g., [10] or [5, Theorem 6.2.1] for an SHT).

Theorem F. Let (X, �, �)beanSHT. Suppose that1< p< q < ∞and0< �< 1/p.Assume
that � is another measure on X. Then K� is bounded from L p(X, �) to Lq (X, �) if and only if

�B�c(�B)q(1/p−�),

for all balls B in X.

3. Main results

In this section we formulate the main results of the paper. We begin with the case of an
SHT.

Theorem 3.1. Let (X, �, �) be an SHT and let 1< p< q < ∞. Suppose that 0< � < 1/p,
0< �1 < 1− �p and �2/q = �1/p. Then K� is bounded from L p,�1 (X, �) to Lq,�2 (X, �, �)
if and only if there is a positive constant c such that

�(B)�c�(B)q(1/p−�), (3)

for all balls B.

The next statement is a consequence of Theorem 3.1.

Theorem 3.2. Let (X, �, �) be an SHT and let 1< p< q < ∞. Suppose that 0< � < 1/p,
0< �1 < 1 − �p and �2/q = �1/p. Then for the boundedness of K� from L p,�1 (X, �) to
Lq,�2 (X, �) it is necessary and sufficient that q = p/(1 − �p).

For non-homogeneous spaces we have the following statements:

Theorem 3.3. Let (X, �, �) be a non-homogeneous space with the growth condition. Sup-
pose that 1< p�q <∞, 1/p−1/q��< 1 and � � 1/p.Suppose also that p�−1< �< p−
1, 0< �1 < �−�p+1 and �1q=�2 p. Then I� is bounded from M p,�1

� (X, �) to Mq,�2
� (X, �),

where � = q(1/p + �/p − �) − 1.

Theorem 3.4. Suppose that (X, �, �) is a quasimetric measure space and � satisfies condi-
tion (2). Let 1< p< q < ∞. Assume that 0< �< 1, 0< �1 < p/q and s�1/p= �2/q. Then
the operator I� is bounded from M p,�1s(X, �) to Mq,�2 (X, �).

4. Proof of the main results

In this section we give the proofs of the main results.

Proof of Theorem 3.1. Necessity: Suppose K� is bounded from L p,�1 (�) to Lq,�2 (X, �, �).
Fix B0 := B(x0, r0). For x, y ∈ B0, we have that

B(x, �(x, y)) ⊆ B(x, a1(a0 + 1)r0) ⊆ B(x0, a1(1 + a1(a0 + 1))r0).
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Hence using the doubling condition for �, it is easy to see that

�(B0)
�
�cK �	B0 (x), x ∈ B0.

Consequently, using the condition �2/q =�1/p, the boundedness of K� from L p,�(X, �)
to Lq,�2 (X, �, �) and Lemma D we find that

�(B0)
�−�1/p�(B0)

1/q
�c‖K�	B0‖Lq,�2 (X,�,�)

� c‖	B0‖L p,�1 (X,�)�c�(B0)
(1−�1)/p.

Since c does not depend on B0 we have condition (3).
Sufficiency: Let B := B(a, r ), B̃ := B(a, 2a1r ) and f �0. Write f ∈ L p,�1 (�) as

f = f1 + f2 := f 	B̃ + f 	B̃C , where 	B is a characteristic function of B. Then we have

S :=
∫
B
(K� f (x))

q d�(x)�c

(∫
B
(K� f1(x))

q d�(x) +
∫
B
(K� f2(x))

q d�(x)

)
:= c(S1 + S2).

Applying Theorem F and the fact � ∈ (DC) we find that

S1�

∫
X
(K� f1)

q (x)d�(x)�c

(∫
B(a,2a1r )

( f (x))p d�(x)

)q/p

.

Now observe that if �(a, x)< r and �(a, y)> 2a1r , then �(a, y)> 2a1�(a, x). Conse-
quently, using the facts � ∈ (RDC) (see (1)), 0< �1 < 1 − �p and condition (3) we have

S2�c
∫
B(a,r )

(∫
�(a,y)>r

f (y)

�B(a, �(a, y))1−� d�(y)

)q

d�(x)

= �(B)

[ ∞∑
k=0

∫
B(a,�k+1

1 r )\B(a,�k1r )

f (y)

�B(a, �(a, y))1−� d�(y)

]q

� c�(B)

⎡
⎣ ∞∑
k=0

(∫
B(a,�k+1

1 r )
( f (y))p d�(y)

)1/p

×
(∫

B(a,�k+1
1 r )\B(a,�k1r )

�B(a, �(a, y))(�−1)p′
d�(y)

)1/p′⎤
⎦
q

� c‖ f ‖q
L p,�1 (X,�)

�(B)

( ∞∑
k=0

�B(a, �k+1
1 r )�1/p+�−1+1/p′

)q

� c‖ f ‖q
L p,�1 (X,�)

�(B)�(B)(�1/p+�−1/p)q

( ∞∑
k=0

�k(�1/p+�−1/p)
2

)q

� c‖ f ‖q
L p,�1 (X,�)

�(B)q�1/p = c‖ f ‖q
L p,�1 (X,�)

�(B)�2 ,

where the positive constant c does not depend on B. Now the result follows
immediately. �
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Proof of Theorem 3.2. Sufficiency: Assuming � = 1/p − 1/q and � = � in Theorem 3.1
we have that K� is bounded from L p,�1 (X, �) to Lq,�2 (X, �).
Necessity: Suppose that K� is bounded from L p,�1 (X, �) to Lq,�2 (X, �). Then by

Theorem 3.1 we have

�(B)1/q−1/p+�
�c.

The conditions �(X ) = ∞ and �{x} = 0, for all x ∈ X , implies that � = 1/p − 1/q. �

Proof of Theorem 3.3. Let f �0. For x, a ∈ X, let us introduce the following notation:

E1(x) :=
{
y :

�(a, y)

�(a, x)
<

1

2a1

}
, E2(x) :=

{
y :

1

2a1
�

�(a, y)

�(a, x)
�2a1

}
,

E3(x) :=
{
y : 2a1 <

�(a, y)

�(a, x)

}
.

For i = 1, 2, 3, r > 0 and a ∈ X, we denote

Si :=
∫
�(a,x)<r

�(a, x)�
(∫

Ei (x)
f (y)�(x, y)�−1 d�(y)

)q

d�(x).

If y ∈ E1(x), then �(a, x)< 2a1a0�(x, y). Hence, it is easy to see that

S1�C
∫
B

�(a, x)�+q(�−1)
(∫

�(a,y)<�(a,x)
f (y)d�(y)

)q

d�(x).

Taking into account the condition � < (1 − �)q − 1 we have∫
�(a,x)>t

�(a, x)�+q(�−1) d�(x) =
∞∑
n=0

∫
B(a,2k+1t)\B(a,2k t)

(�(a, x))�+(�−1)q d�(x)

� c
∞∑
n=0

(2k t)�+q(�−1)+1 = ct�+q(�−1)+1,

while the condition � < p − 1 implies∫
�(a,x)<t

�(a, x)�(1−p′)+1 d�(x)�ct�(1−p′)+1.

Hence

sup
a∈X,t>0

(∫
�(a,x)>t

�(a, x)�+q(�−1) d�(x)

)1/q(∫
B(a,t)

�(a, y)�(1−p′) d�(y)

)1/p′

<∞.

Now using Theorem C we have

S1�c

(∫
B

�(a, x)�( f (y))d�(y)

)q/p

�c‖ f ‖q
M

p,�1
� (X,�)

r�1q/p = c‖ f ‖q
M

p,�1
� (X,�)

r�2 .
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Further, observe that if �(a, y)> 2a1�(a, x), then �(a, y)�a1�(a, x) + a1�(a, y)�
�(a, y)/2+a1�(x, y).Hence �(a, y)/(2a1)��(x, y). Consequently, using the growth con-
dition for �, the fact �1 < � − �p + 1 and Lemma E we find that

S3�c
∫
B(a,r )

�(a, x)�
(∫

�(a,y)>�(a,x)

f (y)

�(a, y)1−� d�(y)

)q

d�(x)

� c
∫
B(a,r )

�(a, x)�
( ∞∑
k=0

∫
B(a,2k+1�(a,x))\B(a,2k�(a,x))

f (y)

�(a, y)1−� d�(y)

)q

d�(x)

� c
∫
B(a,r )

�(a, x)�
[ ∞∑
k=0

(∫
B(a,2k+1�(a,x))

f p(y)�(a, y)� d�(y)

)1/p

×
(∫

B(a,2k+1�(a,x))\B(a,2k�(a,x))
�(a, y)�(1−p′)+(�−1)p′

d�(y)

)1/p′]q
d�(x)

� c‖ f ‖q
M

p,�1
� (X,�)

∫
B(a,r )

�(a, x)�

×
( ∞∑
k=0

(2k�(a, x))�1/p+�−1−�/p(�B(a, 2k+1�(a, x)))1/p
′
)q

d�(x)

� c‖ f ‖q
M

p,�1
� (X,�)

∫
B(a,r )

�(a, x)�
( ∞∑
k=0

(2k�(a, x))�1/p+�−1/p−�/p

)q

d�(x)

� c‖ f ‖q
M

p,�1
� (X,�)

∫
B(a,r )

�(a, x)(�1/p+�−1/p−�/p)q+� d�(x)

= c‖ f ‖q
M

p,�1
� (X,�)

∫
B(a,r )

�(a, x)�1q/p−1 d�(x)�c‖ f ‖q
M

p,�1
� (X,�)

r�1q/p

= c‖ f ‖q
M

p,�1
� (X,�)

r�2 .

So, we conclude that

S3�c‖ f ‖q
M

p,�1
� (X,�)

r�2 .

To estimate S2 we consider two cases. First assume that �< 1/p. Let

Ek,r := {x : 2kr��(a, x)< 2k+1r},

Fk,r := {x : 2k−1r/a1��(a, x)< a12
k+2r}.
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Assume that p∗ = p/(1 − �p). By Hölder’s inequality, Corollary B and the assumption
� = q(1/p + �/p − �) − 1 we have

S2 =
−1∑

k=−∞

∫
Ek,r

�(a, x)�
(∫

E2(x)
f (y)�(x, y)�−1 d�(y)

)q

d�(x)

�

−1∑
k=−∞

(∫
Ek,r

�(a, x)�
(∫

E2(x)
f (y)�(x, y)�−1 d�(y)

)p∗

d�(x)

)q/p′

×
(∫

Ek,r

�(a, x)�p
∗/(p∗−q) d�(x)

)(p∗−q)/p∗

� c
−1∑

k=−∞
2k(�+(p∗−q)/p∗)

(∫
X
I�( f 	Fk,r )(x)

p∗
d�(x)

)q/p∗

� c
−1∑

k=−∞
2k(�+(p∗−q)/p∗)

(∫
Fk,r

( f (x))p d�(x)

)q/p

� c

(∫
B(a,2a1r )

�(a, x)�( f (x))p d�(x)

)q/p

� c‖ f ‖q
M

p,�1
� (X,�)

r�1q/p = c‖ f ‖q
M

p,�1
� (X,�)

r�2 .

Let us now consider the case 1/p< � < 1.
First notice that (see [13])∫

E2(x)
(�(x, y)(�−1)p′

d�(y)�c�(a, x)1+(�−1)p′
,

where the positive constant c does not depend on a and x.
This estimate and Hölder’s inequality yield

S2�c
−1∑

k=−∞

(∫
Ek,r

�(a, x)�+[(�−1)p′+1)]q/p′
(∫

E2(x)
( f (y))p d�(y)

)q/p

d�(x)

)q/p′

� c
−1∑

k=−∞

(∫
Ek,r

�(a, x)�+[(�−1)p′+1)]q/p′
d�(x)

)(∫
Fk,r

( f (y))p d�(y)

)q/p

� c
−1∑

k=−∞
(2kr )�+[(�−1)p′+1)]q/p′+1

(∫
Fk,r

( f (y))p d�(y)

)q/p

= c
−1∑

k=−∞
2k�q/p

(∫
Fk,r

( f (y))p d�(y)

)q/p

�c

(∫
B(a,2a1r )

( f (y))p�(a, y)� d�(y)

)q/p

� c‖ f ‖q
M

p,�1
� (X,�)

r�1q/p = c‖ f ‖q
M

p,�1
� (X,�)

r�2 .

Now the result follows immediately. �
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Proof of Theorem 3.4. Let f �0. Suppose that a ∈ X and r > 0. Suppose also that f1 =
f 	B(a,2a1r ) and f2 = f − f1. Then I� f = I� f1 + I� f2. Consequently,∫

B(a,r )
(I� f (x))

q d�(x)�2q−1
(∫

B(a,r )
(I� f1(x))

q d�(x) +
∫
B(a,r )

(I� f2(x))
q d�(x)

)

:= 2q−1(S(1)a,r + S(2)a,r ).

Due to Theorem A and the condition s�1/p = �2/q we have

S(1)a,r �c

(∫
B(a,2a1r )

( f (x))p d�(x)

)q/p

= c

(
1

(2a1r )�1s

∫
B(a,2a1r )

( f (x))p dx

)q/p

r�1sq/p
�c‖ f ‖q

M p,�1s (X,�)
r�2 .

Now observe that if x ∈ B(a, r ) and y ∈ X\B(a, 2a1r ), then �(a, y)/2a1��(x, y).
Hence Hölder’s inequality, condition (2) and the condition 0< �1 < p/q yield

I� f2(x) =
∫
X\B(a,2a1r )

f (y)/�(x, y)1−� d�(y)

=
∞∑
k=0

(∫
B(a,2k+2a1r )\B(a,2k+1a1r )

( f (y))p d�(y)

)1/p

×
(∫

B(a,2k+2a1r )\B(a,2k+1a1r )
�(a, y)(�−1)p′

d�(y)

)1/p′

� c
∞∑
k=0

(
1

(2k+1a1r )�1s

∫
B(a,2k+1a1r )

( f (y))p d�(y)

)1/p

× (2ka1r )
�1s/p+�−1+s/p′

� c‖ f ‖Mp,�1s (X,�)r
�1s/p+�−1+s/p′

.

Consequently, by the assumptions s�1/p = �2/q and s = pq(1 − �)/(pq + p − q) we
conclude that

S(2)a,r �c‖ f ‖q
M p,�1s (X,�)

r (�1s/p+�−1+s/p′)q+s = c‖ f ‖q
M p,�1s (X,�)

r�2 .

Summarizing the estimates derived above we finally have the desired result. �
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