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EURASIAN MATHEMATICAL JOURNALISSN 2077-9879Volume 1, Number 1 (2010), 73 � 110ONE AND TWO WEIGHT ESTIMATESFOR ONE�SIDED OPERATORS IN Lp(·) SPACESV. Kokilashvili, A. Meskhi, M. SarwarCommuniated by R. OinarovKeywords and phrases: one-sided maximal funtions, one-sided potentials, one-weight inequality, two-weight inequality, trae inequality.Mathematis Subjet Classi�ation: 26A33, 42B25, 46E30.Abstrat. Various type weighted norm estimates for one-sided maximal funtionsand potentials are established in variable exponent Lebesgue spaes Lp(·). Inpartiular, su�ient onditions (in some ases neessary and su�ient onditions)governing one and two weight inequalities for these operators are derived. Amongother results generalizations of the Hardy�Littlewood, Fe�erman�Stein and traeinequalities are given in Lp(·) spaes.1 IntrodutionThis paper deals with the boundedness of one-sided maximal funtions andpotentials in weighted Lebesgue spaes with variable exponent. In partiular, wederive one-weight inequality for one-sided maximal funtions; su�ient onditions(in some ases neessary and su�ient onditions) governing two-weight inequalitiesfor one-sided maximal and potential operators; riteria for the trae inequalityfor one-sided frational maximal funtions and potentials; Fe�erman�Stein typeinequality for one-sided frational maximal funtions; generalization of the Hardy-Littlewood theorem for the Riemann�Liouville and Weyl transforms. It is worthmentioning that some results of this paper implies the following fat: the one-weight inequality for one-sided maximal funtions automatially holds when boththe exponent of the spae and the weight are monotoni funtions.The boundedness of one-sided integral operators in Lp(·) spaes was proved in[13℄. In that paper the authors established the boundedness of the one-sided Hardy�Littlewood maximal funtions, potentials and singular integrals in Lp(·)(I) spaeswith the ondition on p whih is weaker than the log-H�older ontinuity (weakLipshitz) ondition.Solution of the one-weight problem for one-sided operators in lassial Lebesguespaes was given in [48℄, [1℄. Trae inequalities for one-sided potentials in Lp spaeswere haraterized in [38℄, [40℄, [22℄. It should be emphasized that a omplete solutionof the two-weight problem with transparent integral onditions on weights for one-sided maximal funtions and potentials in the non-diagonal ase are given in the



74 V. Kokilashvili, A. Meskhi, M. Sarwarmonographs [16, Chapters 2 and 3℄, [9, Chapter 2℄. For Sawyer-type two-weightriteria for one-sided frational operators we refer to [35℄, [36℄, [34℄.Weighted inequalities for lassial integral operators in Lp(·) spaes were derivedin [6℄, [8℄, [10℄�[14℄, [19℄, [23℄�[32℄, [45℄, [47℄, et (see also [21℄, [44℄).The one-weight problem for the two-sided Hardy�Littlewood maximal operatorin Lp(·) spaes was solved in [7℄. Earlier, some generalizations of the Mukenhouptondition in these spaes de�ned on bounded sets were disussed in [30℄ and [31℄.Criteria for the boundedness of two-sided frational maximal operators from Lpwto Lq(·)v were given in [24℄. Two-weight Sawyer type riteria for two-sided maximalfuntions on the real line were announed in [23℄, [25℄.In [2℄ neessary and su�ient onditions on a weight v governing the boundednessompatness of the generalized Riemann�Liouville transform Rα(·) from Lp(·)(R+) to
L
q(·)
v (R+), α− > 1/p−, were derived.In Setion 1 we give the de�nition and some essential well-known propertiesof the Lebesgue spae with variable exponent and formulate Carleson�H�ormandertype inequalities. In Setion 2 we study the one-weight problem for one-sided Hardy�Littlewood maximal operators in Lp(·) spaes, while Setion 3 is devoted to the sameproblem for one-sided frational maximal funtions. In Setion 4 we derive su�ient(in some ases neessary and su�ient) onditions guaranteeing two-weight p(·) �

q(·) norm estimates for one-sided frational maximal operators. Fe�erman�Steintype inequalities in variable exponent spaes are disussed in Setion 5. In Setion6 we established riteria governing the trae inequality for the Riemann�Liouvilleand Weyl operators in Lp(·) spaes. In Setion 7 we formulate generalization of theHardy�Littlewood theorem for one-sided potentials in these spaes. Setion 8 isdediated to two-weight inequalities for one-sided operators.Finally, we point out that onstants (often di�erent onstants in the same seriesof inequalities) will generally be denoted by c or C.2 PreliminariesLet Ω be an open set in Rn and let p be a measurable funtion on Ω. Suppose that
1 ≤ p− ≤ p+ <∞, (1)where p− and p+ are the in�mum and the supremum respetively of p on Ω. Supposethat ρ is a weight funtion on Ω, i.e. ρ is an almost everywhere positive loallyintegrable funtion on Ω. We say that a measurable funtion f on Ω belongs to

L
p(·)
ρ (Ω) (or Lp(x)ρ (Ω)) if

Sp,ρ(f) =

∫

Ω

∣∣f(x)ρ(x)
∣∣p(x)dx <∞.It is known that (see, e.g., [33℄, [26℄, [28℄, [42℄) Lp(·)ρ (Ω) is a Banah spae withthe norm
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‖f‖

L
p(·)
ρ (Ω)

= inf
{
λ > 0 : Sp(·),ρ

(
f/λ

)
≤ 1
}
.If ρ ≡ 1, then we use the symbol Lp(·)(Ω) (resp. Sp) instead of Lp(·)ρ (Ω) (resp.

Sp(·),ρ). It is lear that ‖f‖Lp(·)
ρ (Ω)

= ‖fρ‖Lp(·)(Ω). It should be also emphasized thatwhen p is onstant, then L
p(·)
ρ (Ω) oinides with the lassial weighted Lebesguespae.Further, we denote

p−(E) := inf
E
p; p+(E) := sup

E
p, E ⊂ Ω,

p−(Ω) = p−; p+(Ω) = p+.The following statement is well-known (see, e.g., [33℄, [42℄):Proposition A. Let E be a measurable subset of Ω. Then the following inequalitieshold:
‖f‖r+(E)

Lr(·)(E)
≤ Sr(·)(fχE) ≤ ‖f‖r−(E)

Lr(·)(E)
, ‖f‖Lr(·)(E) ≤ 1;

‖f‖r−(E)

Lr(·)(E)
≤ Sr(·)(fχE) ≤ ‖f‖r+(E)

Lr(·)(E)
, ‖f‖Lr(·)(E) ≥ 1;

∣∣∣
∫

E

f(x)g(x)dx
∣∣∣ ≤

( 1

r−(E)
+

1

(r+(E))′

)
‖f‖Lr(·)(E) ‖g‖Lr′(·)(E),where r′(x) = r(x)

r(x)−1
and 1 < r− ≤ r+ <∞.Let I be an open set in R. In the sequel we shall use the notation:

I+(x, h) := [x, x+ h] ∩ I, I−(x, h) := [x− h, x] ∩ I;

I(x, h) := [x− h, x+ h] ∩ I.We introdue the following one�sided maximal operators:
(
Mα(·)f

)
(x) = sup

h>0

1

(2h)1−α(x)

∫

I(x,h)

|f(t)|dt,

(
M−

α(·)f
)
(x) = sup

h>0

1

h1−α(x)

∫

I−(x,h)

|f(t)|dt,

(
M+

α(·)f
)
(x) = sup

h>0

1

h1−α(x)

∫

I+(x,h)

|f(t)|dt,where 0 < α− ≤ α+ < 1, I is an open set in R and x ∈ I.If α ≡ 1, then Mα(·), M−
α(·) and M+

α(·) are the one�sided Hardy�Littlewoodmaximal operators whih are denoted by M , M− and M+ respetively.In [4℄ L. Diening proved the following statement:



76 V. Kokilashvili, A. Meskhi, M. SarwarTheorem A. Let Ω be a bounded open set in Rn. Then the maximal operator
(MΩf

)
(x) = sup

r>0

1

rn

∫

B(x,r)
T

Ω

|f(y)|dy, x ∈ Ω,is bounded in Lp(·)(Ω) if p ∈ P(Ω), that is,
a) 1 < p− ≤ p(x) ≤ p+ <∞;
b) p satis�es the Dini�Lipshitz (log-H�older ontinuity) ondition (p ∈ DL(Ω)):there exists a positive onstant A suh that for all x, y ∈ Ω with 0 < |x− y| ≤ 1

2
theinequality

∣∣p(x) − p(y)
∣∣ ≤ A

ln 1
|x−y|

(2)holds.The next statement was proved in [3℄.Theorem B. Let Ω be an open subset of Rn. Suppose that 1 < p− ≤ p+ <∞. Thenthe maximal operator MΩ is bounded in Lp(·)(Ω) if(i) p ∈ P(Ω);(ii)
|p(x) − p(y)| ≤ C

ln(e+ |x|) (3)for all x, y ∈ Ω, |y| ≥ |x|.We shall also need the following statements:Proposition B ([33℄, [42℄). Let 1 ≤ p(x) ≤ q(x) ≤ q+ < ∞. Suppose that Ω is anopen set in Rn with |Ω| <∞. Then the inequality
‖f‖Lp(·)(Ω) ≤ (1 + |Ω|)‖f‖Lq(·)(Ω)holds.Proposition C ([4℄). Let Ω be an open set in Rn and let p and q be bounded exponentson Ω. Then

Lq(·)(Ω) →֒ Lp(·)(Ω)if and only if p(x) ≤ q(x) almost everywhere on Ω and there is a onstant 0 < K < 1suh that ∫

Ω

Kp(x)q(x)/(|q(x)−p(x)|)dx <∞. (4)Remark A. In the previous statement it is used the onvention K1/0 := 0.De�nition A ([13℄). Let P−(I) be the lass of all measurable positive funtions
p : I → R satisfying the following ondition: there exist a positive onstant C1 suhthat for a.e x ∈ I and a.e y ∈ I with 0 < x− y ≤ 1

2
the inequality

p(x) ≤ p(y) +
C1

ln
(

1
x−y

) (5)



One and two weight estimates for one�sided operators in Lp(·) spaes 77holds. Further, we say that p belongs to P+(I) if p is positive funtion on I and thereexists a positive onstant C2 suh that for a.e x ∈ I and a.e y ∈ I with 0 < y−x ≤ 1
2the inequality

p(x) ≤ p(y) +
C2

ln
(

1
y−x

) (6)is ful�lled.De�nition B.We say that a measurable positive funtion on I belongs to the lass
P∞(I) (p ∈ P∞(I)) if (3) holds for all x, y ∈ I with |y| ≥ |x|. .We shall also need the following de�nition:De�nition C. Let p be a measurable funtion on unbounded interval I in R. Wesay that p ∈ G(I) if there is a onstant 0 < K < 1 suh that

∫

I

Kp(x)p−/(p(x)−p−)dx <∞.Theorem C ([13℄). Let I be a bounded interval in R. Suppose that 1 < p− ≤ p+ <
∞. Then

(i) if p ∈ P−(I), then M− is bounded in Lp(·)(I);
(ii) if p ∈ P+(I), then M+ is bounded in Lp(·)(I).In the ase of unbounded set we haveTheorem D ([13℄). Let I be an arbitrary open set in R. Suppose that 1 < p− ≤ p+ <

∞. If p ∈ P+(I) ∩ P∞(I), then the operator M+ is bounded in Lp(·)(I). Further, if
p ∈ P−(I) ∩ P∞(I). Then the operator M− is bounded in Lp(·)(I)In partiular, the previous statement yieldsTheorem E ([13℄). Let I = R+ and let 1 < p− ≤ p+ <∞. Suppose that p ∈ P+(I)and there is a positive number a suh that p ∈ P∞((a,∞)). Then M+ is boundedin Lp(·)(I). Further, if p ∈ P−(I) and there is a positive number a suh that p ∈
P∞((a,∞)), then M− is bounded in Lp(·)(I).The next statement gives one�weight riteria for one-sided maximal operators inlassial Lebesgue spaes (see [48℄, [1℄).Theorem F ([1℄). Let I ⊆ R be an interval. Assume that 0 ≤ α < 1 and 1 < p <
1/α, where p and α are onstants (1/α = ∞ if α = 0). We set 1/q = 1/p− α.

(i) Let T := M−
α . Then the inequality

[ ∫

I

|Tf(x)|qv(x)dx
]1/q

≤ C

[ ∫

I

|f(x)|pvp/q(x)dx
]1/p

(7)holds if and only if
sup
h>0

(
1

h

∫

I+(x,x+h)

v(t)dt

) 1
q
(

1

h

∫

I−(x−h,x)

v−p
′/q(t)dt

) 1
p′

<∞. (8)
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(ii) Let T := M+

α . Then (7) holds if and only if
sup
h>0

(
1

h

∫

I−(x−h,x)

v(t)dt

) 1
q
(

1

h

∫

I+(x,x+h)

v−p
′/q(t)dt

) 1
p′

<∞. (9)De�nition D. Let I ⊆ R+ be an interval. Suppose that 1 < p < q < ∞, where pand q are onstants. We say that the weight v ∈ A−
p,q(I) ( resp. v ∈ A+

p,q(I) ) if (8) (resp. (9)) holds.If p = q, then we denote the lass A+
p,q(I) ( resp. A−

p,q(I) ) by A+
p (I) (resp. A−

p (I)).Notie that v ∈ A+
p,q(I) (resp. v ∈ A−

p,q(I)) is equivalent to the ondition v ∈
A+

1+q/p′(I) (resp. v ∈ A−
1+q/p′(I)).Further, we denote by D(R) (resp. D(R+)) a dyadi lattie in R (resp. in R+).De�nition E. We say that a measure µ belongs to the lass RD(d)(Rn) (dyadireverse doubling ondition) if there exists a onstant δ > 1, suh that for all dyadiubes Q and Q′, Q ⊂ Q′, |Q| = |Q′|

2n , the inequality
µ(Q′) ≥ δµ(Q)holds.De�nition F. We say that measure µ on Rn satis�es the doubling ondition (µ ∈

DC(Rn)) if there is a positive number b suh that
µB(x, 2r) ≤ bµB(x, r)for all x ∈ Rn and r > 0.It is known (see [51℄, p. 11) that if µ ∈ DC(Rn), then µ ∈ RD(Rn), i.e., thereare positive onstants η1 and η2, 0 < η1, η2 < 1, suh that
µB(x, η1r) ≤ η2µB(x, r),for all x ∈ Rn and r > 0.It is easy to hek that if µ ∈ DC(Rn), then µ ∈ RD(d)(R).We shall need some lemmas giving Carleson-H�ormandar type inequalities.Lemma 2.1 ([52℄). Let 1 < p ≤ r < ∞ and let ρ−p′ ∈ RD(d)(Rn), where ρ is aweight funtion on R

n. Then there is a positive onstant C suh that for all non-negative f the inequality
∑

Q∈D(Rn)

(∫

Q

ρ−p
′

(x)dx

)− r
p′
(∫

Q

f(y)dy

)r
≤ C

(∫

Rn

(f(x)ρ(x))pdx

) 1
pholds.



One and two weight estimates for one�sided operators in Lp(·) spaes 79Lemma 2.2 ([50℄, [53℄). Let u(x) ≥ 0 on Rn; {Qi}i∈A is a ountable olletion ofdyadi ubes in Rn and {ai}i∈A, {bi}i∈A be positive numbers satisfying
(i)

∫

Qi

u(x)dx ≤ Cai for all i ∈ A;

(ii)
∑

j: Qj⊂Qi

bj ≤ Cai for all i ∈ A.Then (∑

i∈I
bi

(
1

ai

∫

Qi

g(x)u(x)dx

)p) 1
p

≤ Cp

(∫

Rn

gp(x)u(x)dx

) 1
pfor all g ≥ 0 on Rn and 1 < p <∞.3 Hardy�Littlewood one-sided maximal funtions. One-weight problemIn this setion we disuss the one-weight problem for the one-sided Hardy�Littlewoodmaximal operators.We begin with the following statement:Lemma 3.1 ([13℄). Let I be a bounded interval and let (1) hold on I. If p ∈ P+(I),then there is a positive onstant depending only on p suh that for all f , ‖f‖Lp(·)(I) ≤

1, the inequality (
M+f(x)

)p(x) ≤ C
(
1 +M+

(
|f |p(·)

)
(x)
)holds.Now we formulate the main results of this setion.Theorem 3.1. Let I be a bounded interval in R and let 1 < p− ≤ p+ <∞.

(i) If p ∈ P+(I) and a weight funtion w satis�es the ondition w(·)p(·) ∈ A+
p−(I),then for all f ∈ L

p(·)
w (I) the inequality

‖(Nf)w‖Lp(·)(I) ≤ C‖wf‖Lp(·)(I) (12)holds, where N = M+.
(ii) Let p ∈ P−(I) and let w(·)p(·) ∈ A−

p−
(I). Then inequality (12) holds for all

f ∈ L
p(·)
w (I), where N = M−.The result similar to Theorem 3.1 has been derived in [30℄, [31℄ for MΩ, where

Ω ⊂ Rn is a bounded domain.In the ase of unbounded intervals we have the next statement:Theorem 3.2. Let I = R+ and let 1 < p− ≤ p+ < ∞. Suppose that there is apositive number a suh that p(x) ≡ pc ≡ const outside (0, a).
(i) If p ∈ P+(I) and w(·)p(·) ∈ A+

p−(I), then (12) holds for N = M+.
(ii) If p ∈ P−(I) and w(·)p(·) ∈ A−

p−
(I), then (12) holds for N = M−.



80 V. Kokilashvili, A. Meskhi, M. SarwarTheorem 3.1 yields the following orollaries:Corollary 3.1. Let p be inreasing funtion on an interval I = (a, b) suh that
1 < p(a) ≤ p(b) <∞. Suppose that w is inreasing positive funtion on I. Then theone�weight inequality

‖w1/p(·)(M+f)(·)‖Lp(·)(I) ≤ c‖w1/p(·)f(·)‖Lp(·)(I)holds.Corollary 3.2. Let p be dereasing funtion on an interval I = (a, b) suh that
1 < p(b) ≤ p(a) <∞. Suppose that w is dereasing positive funtion on I. Then theone�weight inequality

‖w1/p(·)(M−f)(·)‖Lp(·)(I) ≤ c‖w1/p(·)f(·)‖Lp(·)(I)holds.Now we prove Theorems 3.1 and 3.2.Proof of Theorem 3.1. Sine the proof of the seond part is similar to the �rstone, we prove only (i). It is enough to show that
Sp
(
wM+(f/w)

)
≤ Cfor f satisfying the ondition ‖f‖Lp(·)(I) ≤ 1.First we prove that Sp∗ ( fw) <∞, where p∗(x) = p(x)

p−
·By using H�older's inequality we �nd that

Sp∗

(
f

w

)
=

∫

I

[f/w]p
∗(x) (x)dx ≤

(∫

I

|f(x)|p(x)dx
) 1

p−

·

(∫

I

w(x)p(x)(1−(p−)′)dx

) 1
´(p−)′

<∞,beause wp(·)(·) ∈ A+
p−

(I).Thus Lemma 3.1 might be applied for p∗. Consequently,
Sp
(
w(M+f/w)

)
=

∫

I

[
M+

(
f

w

)
(x)

]p(x)
wp(x)(x)dx

=

∫

I

([
M+ (f/w) (x)

]p∗(x)
)p−

wp(x)(x)dx

≤ C

∫

I

(
1 +M+

(∣∣∣ f
w

∣∣∣
p∗(·)
)

(x)

)p−
(w(x))p(x)dx

≤ C

∫

I

(w(x))p(x) dx+ C

∫

I

(
M+

(∣∣∣ f
w

∣∣∣
p∗(·)
)

(x)

)p−
wp(x)(x)dx
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≤ C + C

∫

I

∣∣f/w
∣∣p(x)wp(x)(x)dx ≤ C. �Proof of Theorem 3.2. First we prove (i). Without loss of generality we anassume that M+f(a) < ∞. Sine M+ is sub-linear operator it is enough to provethat Sp,w(M+f) <∞, whenever Sp,w(f) <∞. We have

∫

R+

(
M+f

)p(x)
(x)w(x)p(x)dx ≤ c

[ ∫ a

0

(
M+fχ[0,a]

)p(x)
(x)w(x)p(x)dx

+

∫ a

0

(
M+(fχ[a,∞))

)p(x)
(x)w(x)p(x)dx+

∫ ∞

a

(
M+(fχ[0,a])

)p(x)
(x)w(x)p(x)dx

+

∫ ∞

a

(
M+fχ[a,∞)

)p(x)
(x)w(x)p(x)dx

]
= c[I1 + I2 + I3 + I4].Sine M+f(x) = M+(fχ[0,a])(x) for x ∈ [0, a], using the assumptions w(·)p(·) ∈

A+
p−([0, a]), p+ ∈ P+((0, a)) and Theorem 3.1 we �nd that I1 <∞.Further, the ondition w(·)p(·) ∈ A+

p−(I) implies that w(·)p(·) ∈ A+
p−((a,∞)).Consequently, sine p ≡ pc ≡ onst on (a,∞), by Theorem F we have I4 <∞.Now observe that M+(fχ[0,a])(x) = 0 when x ∈ (a,∞). Therefore I3 = 0.It remains to estimate I2. For this notie that if x ∈ (0, a), then

M+
(
f · χ[a,∞)

)
(x) = sup

h>0

1

h

∫ x+h

x

|f(y)|χ[a,∞)(y)dy

= sup
h>a−x

1

h

∫ x+h

a

|f(y)|χ[a,∞)(y)dy

≤ sup
h>a−x

1

x+ h− a

∫ a+(x+h−a)

a

|f(y)|χ[a,∞)(y)dy ≤M+f(a) <∞.Hene,
I2 ≤ c

∫ a

0

w(x)p(x)dx <∞beause w(·)p(·) is loally integrable on R+.To prove (ii) we use the notation of the proof of (i) substituting M+ by M+. Infat, the proof is similar to that of (i). The only di�erene is in the estimates of
I2 :=

∫ a

0

(
M−(fχ[a,∞))

)p(x)
(x)w(x)p(x)dxand

I3 :=

∫ ∞

a

(
M−(f · χ[0,a])(x)

)p(x)
(x)w(x)p(x)dx.Obviously, we have that I2 = 0. Further, we represent I3 as follows:

I3 =

∫ ∞

a

(
M−(f · χ[0,a])(x)

)pc
(x)w(x)pcdx
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=

∫ 2a

a

(
M−(f · χ[0,a])(x)

)pc
(x)w(x)pcdx

+

∫ ∞

2a

(
M−(f · χ[0,a])(x)

)pc
(x)w(x)pcdx := I

(1)
3 + I

(2)
3 .Observe that for x ∈ (a, 2a],

M−(f · χ[0,a])(x) ≤ sup
x−a<h<x

1

a− x+ h

∫ a

a−(a−x+h)

|f(y)|dy ≤ M−f(a) <∞.Hene,
I

(1)
3 ≤ (M−f)pc(a)

∫ 2a

a

(w(x))pc dx <∞.If x > 2a, then
(
M−f

)
(x) ≤ 1

a− x

∫ a

0

|f(y)|dy.Therefore by using H�older's inequality with respet to the exponent p(·) (seeproposition A) we �nd that
I

(2)
3 ≤

(∫ ∞

2a

(w(x))pc (a− x)−pcdx

)(∫ a

0

|f(x)|dx
)pc

≤ c

(∫ ∞

2a

(w(x))pc (a− x)−pcdx

)
‖fw ‖pc

L
p(·)
([0,a])

‖w−1‖pc

L
p′(·)
([0,a])

:= cJ1 · J2 · J3.It is lear that J2 < ∞. Further, sine w(·)p(·) ∈ A−
p−

(
(a,∞)

), by H�older'sinequality we have that w(·)p(·) ∈ A−
pc

(
(a,∞)

) beause pc ≥ p−. Hene, by applyingTheorem F (for α = 0) we have that the operator M−
f := M−(fχ(a,∞)) is boundedin Lpc

w ((a,∞)). Consequently, the Hardy operator
Haf(x) =

1

x− a

∫ x

a

|f(t)|dt, x ∈ (a,∞),is bounded in Lpc
w ((a,∞)). This implies (see, e.g., [20℄, [37℄) that J1 <∞.It remains to see that J3 <∞. Indeed, Proposition B yields

‖w−1‖
L

p′(·)
([0,a])

≤ (1 + a)‖w−1‖
L(p−)′·([0,a])

≤ c‖χ{w−1≥1}(·)w−1(·)‖
L(p−)′(·)([0,a])

+ ‖χ{w−1<1}(·)w−1(·)‖
L(p−)′([0,a])

≤ c
∥∥χ{w−1≥1}(·)w− p(·)

p− (x)
∥∥
L(p−)′([0,a])

+ c

≤ c

(∫ a

0

wp(x)(1−(p−)′)(x)dx

)1/(p−)′

+ c.Thus I(2)
3 <∞. �



One and two weight estimates for one�sided operators in Lp(·) spaes 834 Frational maximal operators. One-weight problemIn this setion we derive the one-weight inequality for one-sided frational maximaloperators. Our main results are the following statements:Theorem 4.1. Let I be a bounded interval and let 1 < p− ≤ p+ <∞. Suppose that
α is onstant satisfying 0 < α < 1/p+. Let q(x) = p(x)

1−αp(x) .
(i) If p ∈ P+(I) and a weight w satis�es the ondition w(·)q(·) ∈ A+

p−,q−
(I), thenthe inequality

‖(Nαf)w‖Lq(·)(I) ≤ C‖wf‖Lp(·)(I), f ∈ Lp(·)w (I) (10)holds for Nα = M+
α .

(ii) Let p ∈ P−(I) and let w(·)q(·) ∈ A−
p−,q−(I). Then inequality (13) holds for

Nα = M−
α .Theorem 4.2. Let I = R+, 1 < p− ≤ p+ < ∞ and let p(x) ≡ pc ≡ onst outsidesome interval (0, a). Suppose that q(x) = p(x)

1−αp(x) , where α is onstant satisfying
0 < α < 1/p+.

(i) If p ∈ P+(I) and w(·)q(·) ∈ A+
p−,q−

(I), then (10) holds for Nα = M+
α .

(ii) If p ∈ P−(I) and w(·)q(·) ∈ A−
p−,q−

(I), then (10) holds for Nα = M−
α .Proof of Theorem 4.1. We prove (i). The proof of (ii) is the same. First we showthat the inequality

M+
α (f/w)(x) ≤

(
M+

(
f p(·)/s(·)w−q(·)/s(·))(x)

)s(x)/q(x)
(∫

I

f p(y)(y)dy

)α
,holds, where s(x) = 1 + q(x)/p′(x).Indeed, denoting g(·) := (f(·))p(·)/s(·)(w(·))−q(·)/s(·) we see that f(·)/w(·) =

(g(·))s(·)/p(·)wq(·)/p(·)−1 = (g(·))1−αgs(·)/p(·)+α−1wαq(·). By using H�older's inequalitywith respet to the exponent (1 − α)−1 and the fats that s(·)/q(·) = 1 − α,
(s(y)/p(y) + α− 1)/α = s(·) we have

1

h1−α

∫

I+(x,x+h)

f(y)

w(y)
dy

≤
(

1

h

∫

I+(x,x+h)

g(y)dy

)1−α(∫

I+(x,x+h)

g(s(y)/p(y)+α−1)/α(y)wq(y)(y)dy

)α

≤
(
M+g(x)

)s(x)/q(x)
(∫

I+(x,x+h)

gs(y)(y)wq(y)(y)

)α

≤
(
M+g(x)

)s(x)/q(x)
(∫

I

f p(y)(y)dy

)α
.
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α (f/w)

)
≤ C when Sp(f) ≤ 1. By applying theabove�derived inequality we �nd that

Sq
(
wM+

α (f/w)
)
≤ c

∫

I

(
M+

α (f p(·)/s(·)w−q(·)/s(·))
)s(x)

(x)wq(x)(x)dx

= cSs
(
M+(f p(·)/s(·)w−q(·)/s(·))wq(·)/s(·)

)
.Observe now that the ondition on the weight w is equivalent to the assumption

wq(·)(·) ∈ A+
s−(I). On the other hand, ‖f p(·)/s(·)‖Ls(·)(I) ≤ 1. Therefore takingTheorem 3.1 into aount we have the desired result. �Proof of Theorem 4.2. (i) Let f ≥ 0 and let Sp,w(f) <∞. We have

Sq,w(M+
α f) =

∫

I

(
M+

α f
)q(x)

(x)w(x)q(x)dx

≤ c

[ ∫ a

0

(
M+

α fχ[0,a](x)
)q(x)

(x)w(x)q(x)dx

+

∫ a

0

(
M+

α (f · χ[a,∞))(x)
)q(x)

(x)w(x)q(x)dx

+

∫ ∞

a

(
M+

α (f · χ[0,a])(x)
)q(x)

(x)w(x)q(x)dx

+

∫ ∞

a

(
M+

α (fχ[a,∞))(x)
)q(x)

(x)w(x)q(x)dx

]
:= c[I1 + I2 + I3 + I4].It is easy to see that I1 <∞ beause of Theorem 4.1 and the ondition wq(·)(·) ∈

A+
p−,q−([0, a]). Further, it is obvious that I3 < ∞ beause M+

α (fχ[0,a])(x) = 0 for
x > a. Further, observe that

I2 ≤ c

∫ a

0

w(x)q(x)dx <∞,where the positive onstant depends on α, f , p, a.It is easy to hek that by H�older's inequality with respet to the power
(
(pc)

′/qc
)
/
(
(p−)′/q−

)the ondition w(·)qc ∈ A+
p−,q−

([a,∞)) implies w(·)qc ∈ A+
pc,qc([a,∞)). Hene, by usingTheorem F we �nd that I4 <∞.

(ii) We keep the notation of the proof of (i) but substitute M+
α by M−

α . The onlydi�erene between the proofs of (i) and (ii) is in the estimates of I2 and I3.It is obvious that I2 = 0, while for I3 we have
I3 =

∫ 2a

a

(
M−

α (f · χ[0,a])(x)
)q(x)

(x)w(x)q(x)dx

+

∫ ∞

2a

(
M−

α (f · χ[0,a])(x)
)qc

(x)w(x)qcdx := I
(1)
3 + I

(2)
3 .
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M−

α f(x) ≤ sup
x−a<h<x

hα−1

∫ a

x−h
|f(y)|dy ≤ cM−

α f(a).Consequently,
I

(1)
3 ≤ c

(
M−

α f(a)
)qc
∫ 2a

a

(
w(x)

)qc
dx <∞.Now observe that when x > a we have the following pointwise estimates:

M−
α (fχ[0,a]))(x) ≤ (x− a)α−1

∫ a

0

|f(y)|dy ≤ (x− a)α−1‖fw‖Lp(·)([0,a])‖w−1‖Lp′(·)([0,a])

:= (x− a)α−1J1 · J2.Hene,
I

(2)
3 ≤

(∫ ∞

2a

(x− a)(α−1)qc(w(x))qcdx

)
(J1 · J2)

qc .It is obvious that J1 <∞. Further,
J2 ≤ ‖w−1(·)χw−1>1(·)‖Lp′(·)([0,a]) + ‖w−1(·)χw−1≤1(·)‖Lp′(·)([0,a])

:= J
(1)
2 + J

(2)
2 .It is lear that J (2)

2 <∞. To estimate J (1)
2 observe that by Proposition B we have

J
(1)
2 ≤ (1 + a)‖w−1χw−1>1‖Lp−([0,a]) ≤ (1 + a)‖w−q(·)/q−χw−1>1‖Lp−([0,a])

≤ (1 + a)‖w−q(·)/q−‖Lp−([0,a]) <∞.Sine M−
α is bounded from Lpc

w ([a,∞)) to Lqcw ([a,∞)) we have the Hardyinequality
(∫ ∞

a

(x− a)(α−1)qcwqc(x)

(∫ x

a

|f(t)|dt
)qc

dx

)1/qc

≤ c

(∫ ∞

a

|f(x)|pcwpc(x)dx

)1/pc

.From this inequality it follows that (see, e.g., [20℄, [37℄)
∫ ∞

2a

(x− a)(α−1)qc(w(x))qcdx <∞. �5 Generalized frational maximal operators. Two-weightproblemLet I = [a, b] be a bounded interval and let I+ := [b, 2b− a); I− := [2a− b, a).Let Q = I1 × I2 × · · · × In be a ube in Rn. We denote:
Q+ := I+

1 × I+
2 × · · · × I+

n , Q− := I−1 × I−2 × · · · × I−n .



86 V. Kokilashvili, A. Meskhi, M. SarwarLet α be a measurable funtion on Rn, 0 < α− ≤ α(x) ≤ α+ < n. Let us de�nedyadi frational maximal funtions on Rn:
(
M

+,(d)
α(·) f

)
(x) = sup

Q∋x
Q∈D(Rn)

1

|Q|1−α(x)
n

∫

Q+

|f(y)|dy;

(
M

−,(d)
α(·) f

)
(x) = sup

Q∋x
Q∈D(Rn)

1

|Q|1−α(x)
n

∫

Q−

|f(y)|dy.If α(x) ≡ 0, then we have Hardy-Littlewood dyadi maximal funtions M+,(d),
M−,(d).In the paper [39℄ the two-weight weak-type inequality was proved in the lassialLebesgue spaes for one-sided dyadi Hardy-Littlewood maximal funtions de�nedon Rn.Theorem 5.1. Let p be onstant and let 1 < p < q− ≤ q+ < ∞, 0 < α− ≤ α+ < nwhere q and α are measurable funtions on Rn. Suppose that w−p′ ∈ RD(d)(Rn).Then M+,(d)

α(·) is bounded from Lpw(Rn) to Lq(·)v (Rn) if and only if
A := sup

Q,Q∈D(Rn)

∥∥χQ(·)|Q|α(·)
n

−1v(·)
∥∥
Lq(·)(Rn)

∥∥χQ+w−1
∥∥
Lp′ (Rn)

<∞. (11)Proof. Neessity. Assuming f = χQ+w−p′ (Q ∈ D(Rn) ) in the inequality
∥∥M+,(d)

α(·) f
∥∥
L

q(·)
v (Rn)

≤ C‖f‖Lp
w(Rn) (12)we have that

∥∥∥∥χQ(·)
(

1

|Q|1−α(x)
n

∫

Q+

f

)∥∥∥∥
L

q(·)
v (Rn)

=
∥∥χQ(·)|Q|α(·)

n
−1
∥∥
L

q(·)
v (Rn)

( ∫

Q+

w−p′(y)dy

)

≤
∥∥M+,(d)

α(·) f
∥∥
L

q(·)
v (Rn)

≤ C

( ∫

Q+

w−p′(y)dy

)1
p

.Thus, to show that (11) holds it remains to prove that for all dyadi ubes Q,
SQ =

∫
Q

w−p′(y)dy < ∞. Indeed, suppose the ontrary that SQ = ∞ for some ubeQ. Then SQ = ‖w−1‖Lp′ (Q) = ∞. This implies that there is a non-negative funtion
g suh that g ∈ Lp(Q) and ∫

Q

g(y)w−1(y)dy = ∞. Further, let Q = Q̄+, where
Q̄ ∈ D(Rn). Then taking f = χQgw

−1 we have
‖f‖Lp

w(Rn) =

( ∫

Q̄+

gp(x)dx

) 1
p

<∞;
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∥∥M+,(d)

α(·) f
∥∥
L

q(·)
v (Rn)

≥
∥∥χQ̄(·)|Q̄|α(·)

n
−1
∥∥
L

q(·)
v (Rn)

( ∫

Q̄+

f(y)dy

)

=
∥∥χQ̄(·)|Q̄|α(·)

n
−1
∥∥
L

q(·)
v (Rn)

∫

Q̄+

g(y)w(y)−1dy = ∞.This ontradits (12).Su�ieny. For every x ∈ R
n we take Qx ∈ D(Rn) ( Qx ∋ x) so that

|Qx|
α(x)

n
−1

∫

Q+
x

|f(y)|dy > 1

2

(
M

+,(d)
α(·) f

)
(x). (13)Assume that f be non-negative bounded with ompat support. Then it is easyto see that we an take maximal ube Qx ontaining x for whih (13) holds. Let

Q ∈ D(Rn) and let us introdue the set
FQ :=

{
x ∈ Q : Q is maximal for whih |Q|α(x)

n
−1

∫

Q+

f(y)dy >
1

2
M

+,(d)
α(·) f(x)

}
.Dyadi ubes have the following property: if Q1, Q2 ∈ D(Rn), and o

Q1

⋂ o

Q2 6= ∅,then Q1 ⊂ Q2 or Q2 ⊂ Q1, where o

Q denotes the inner part of a ube Q.Now observe that FQ1

⋂
FQ2 6= ∅ if Q1 6= Q2. Indeed, if o

Q1

⋂ o

Q2 = ∅, then it islear. If o

Q1

⋂ o

Q2 6= ∅, then Q1 ⊂ Q2 or Q2 ⊂ Q1. Let us take x ∈ FQ1

⋂
FQ2. Then

x ∈ Q1, x ∈ Q2 and
1

|Q1|1−
α(x)

n

∫

Q+
1

f(y)dy >
1

2

(
M

+,(d)
α(·) f

)
(x);

1

|Q2|1−
α(x)

n

∫

Q+
2

f(y)dy >
1

2

(
M

+,(d)
α(·) f

)
(x).If Q1 ⊂ Q2, then Q2 would be the maximal ube for whih (13) holds.Consequently x 6∈ FQ1 and x ∈ FQ2 . Analogously we have that if Q2 ⊂ Q1, then

x ∈ FQ1 and x 6∈ FQ2.Further, it is lear that FQ ⊂ Q and ⋃
Q∈Dm(Rn)

FQ = Rn, where Dm(Rn) =
{
Q :

Q ∈ D(Rn), FQ 6= ∅
}
.Suppose that ‖f‖Lp

w(Rn) ≤ 1 and that r is a number satisfying the ondition
p < r < q−. We have
∥∥M+,(d)

α(·) f
∥∥r
L

q(·)
v (Rn)

=
∥∥vr
(
M

+,(d)
α(·) f

)r∥∥
L

q(·)
r (Rn)

= sup

∫

Rn

vr(x)

(
M

+,(d)
α(·) f

)r
(x)h(x)dx,where the supremum is taken over all funtions h, ‖h‖

L

(
q(·)
r

)′
(Rn)

≤ 1. Now for suhan h, using Lemma 2.1, we have that
∫

Rn

vr(x)

(
M

+,(d)
α(·) f

)r
(x)h(x)dx =

∑

Q∈Dm(Rn)

∫

FQ

vr(x)

(
M

+,(d)
α(x) f

)r
(x)h(x)dx
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≤ C

∑

Q∈Dm(Rn)

(∫

FQ

vr(x)|Q|(α(x)
n

−1)rh(x)dx

)( ∫

Q+

f(y)dy

)r

≤ C
∑

Q∈Dm(Rn)

∥∥vr(·)|Q|(α(·)
n

−1)rχQ(·)
∥∥
L

q(·)
r (Rn)

∥∥h
∥∥
L

(
q(·)
r

)′
(Rn)

( ∫

Q+

f(y)dy

)r

= C
∑

Q∈Dm(Rn)

∥∥v(·) |Q|α(·)
n

−1χQ(·)
∥∥r
Lq(·)(Rn)

∥∥h
∥∥
L

(
q(·)
r

)′
(Rn)

( ∫

Q+

f(y)dy

)r

≤ C Ar
∑

Q∈Dm(Rn)

( ∫

Q+

w−p′(y)dy

)− r
p
( ∫

Q+

f(y)dy

)r
≤ CAr‖f‖rLp

w(Rn).In the last inequality we used also the fat that Q+ ∈ D(Rn) if and only if
Q ∈ D(Rn).Let us pass now to an arbitrary f , where f ∈ Lpw(Rn). For suh an f we take thesequene fm = fχQ(0,km)χ{f<jm}, where

Q(0, km) := {(x1, · · · , xn) : |xi| < km, i = 1, · · · , n}.and km, jm → ∞ as m→ ∞. Then it is easy to see that fm → f in Lpw(Rn) and alsopointwise. Moreover, fm(x) ≤ f(x). On the other hand, {M+,(d)
α(·) fm

} is a Cauhysequene in Lq(·)v (Rn), beause
∥∥Mα(·)fm −Mα(·)fj

∥∥
L

q(·)
v (Rn)

≤
∥∥Mα(·)

(
fm − fj

)∥∥
L

q(·)
v (Rn)

≤ C
∥∥fm − fj

∥∥
Lp

w(Rn)
.Sine Lq(·)v (Rn) is a Banah spae, there exists g ∈ L

q(·)
v (Rn) suh that

∥∥(Mαfm
)
− g
∥∥
L

q(·)
v (Rn)

→ 0.Taking Proposition A into aount we an onlude that there is a subsequene
Mα(·)fmk

whih onverges to g in L
q(·)
v (Rn) and also almost everywhere. But fmkonverges to f in Lpw(Rn) and almost everywhere. Consequently,

‖g‖
L

q(·)
v (Rn)

≤ C‖f‖Lp
w(Rn), (14)where the positive onstant C does not depend on f . Now observe that sine fmk

isnon-dereasing, for �xed x ∈ Q, Q ∈ D(Rn), we have that
|Q|α(x)

n
−1

∫

Q+

f(y)dy = lim
k→∞

|Q|α(x)
n

−1

∫

Q+

fmk
(y)dy

≤ lim
k→∞

sup
Q∋x

|Q|α(x)
n

−1

∫

Q+

fmk
(y)dy = lim

k→∞

(
M

+,(d)
α(·) fmk

)
(x)



One and two weight estimates for one�sided operators in Lp(·) spaes 89and the last limit exists beause it onverges to g almost everywhere. Hene,
(
M

+,(d)
α(·) f

)
(x) ≤ lim

k→∞

(
M

+,(d)
α(·) fmk

)
(x) = g(x).for almost every x. Finally, (14) yields

∥∥M+,(d)
α(·) f

∥∥
L

q(·)
v (Rn)

≤ C‖f‖Lp
w(Rn).

�The proof of the next statement is similar to that of Theorem 4.1; therefore it isomitted.Theorem 5.2. Let 1 < p < q− ≤ q+ < ∞, 0 < α− ≤ α+ < n, where p is onstantand q, α are measurable funtions on Rn. Suppose that w−p′ ∈ RD(d)(Rn). Then
M

−,(d)
α(·) is bounded from from Lpw(Rn) to Lq(·)v (Rn) if and only if

sup
Q,Q∈D(Rn)

∥∥χQ(·)|Q|α(·)
n

−1v(·)
∥∥
Lq(·)(Rn)

∥∥w−1(·)χQ−(·)
∥∥
Lp′(Rn)

<∞.Let us now onsider the ase when p ≡ q ≡ onst.Theorem 5.3. Let 1 < p <∞, where p is onstant. Suppose that 0 < α− ≤ α+ < n.Then M+,(d)
α(·) is bounded from Lpw(Rn) to Lpv(Rn) if and only if

∫

Rn

vp(x)

(
M

+,(d)
α(·)

(
w−p′χQ

)
(x)

)p
dx ≤ C

∫

Q

w−p′(x)dx <∞,for all dyadi ubes Q ⊂ Rn.Proof. For su�ieny it is enough to show that the inequality
∥∥∥v M+,(d)

α(·),u f
∥∥∥
Lp(Rn)

≤ C
∥∥∥u

1
p f
∥∥∥
Lp(Rn)

(15)holds if for all Q ∈ D(Rn),

∫

Rn

vp(x)

(
M

+,(d)
α(·),u χQ

)p
(x) dx ≤ C

∫

Q

|f(x)|pu(x) dx,where (
M

+,(d)
α(·),u f

)
(x) = M

+,(d)
α(·)

(
fu
)
(x).To prove (15) we argue in the same manner as in the proof of Theorem 4.1. Letus onstrut the set FQ for Q ∈ D(Rn). We have
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∫

Rn

vp(x)

(
M

+,(d)
α(·),u

)p
(x) dx

≤ 2p
∑

Q∈Dm

∫

FQ

vp(x)

(
1

|Q|1−α(x)
n

∫

Q+

f(y)u(y)dy

)p
dx

= C
∑

Q∈Dm

(∫

FQ

vp(x) |Q|
(

α(x)
n

−1
)
p dx

)( ∫

Q+

f(y)u(y)dy

)p

= C
∑

Q∈Dm

(∫

FQ

vp(x) |Q|
(

α(x)
n

−1
)
p dx

)(
u(Q+)

)p
(

1

u(Q+)

∫

Q+

f(y)u(y)dy

)p
.Taking Lemma 1.2 into aount it is enough to show that

S :=
∑

j: Qj⊂Q

F
Q−

j

6=∅

Qj∈D(Rn)

( ∫

F
Q−

j

vp(x)
∣∣Q−

j

∣∣
(

α(x)
n

−1
)
p
dx

)
up
(
Qj

)
≤ C

∫

Q

u(x)dx.Indeed, we have
S =

∑

j: Qj⊂Q

F
Q−

j

6=∅

Qj∈D(Rn)

∫

F
Q−

j

vp(x)

(∣∣Q−
j

∣∣α(x)
n

−1
∫

Qj

u(y)dy

)p
dx

≤
∑

j: Qj⊂Q

F
Q−

j

6=∅

Qj∈D(Rn)

∫

F
Q−

j

vp(x)
(
M+,(d)

(
u χQ

)
(x)
)p
dx

=

∫

S

Qj⊂Q F
Q
−
j

vp(x)
(
M+,(d)

(
u χQ

)
(x)
)p
dx

≤
∫

Rn

vp(x)
(
M+,(d)

(
u χQ

)
(x)
)p
dx ≤ C

∫

Q

u(y)dy.Neessity. Taking the test funtion fQ = χQw
−p′ in the two-weight inequality

∥∥∥v
(
M

+,(d)
α(·) f

)∥∥∥
Lp(Rn)

≤ C
∥∥∥f w

∥∥∥
Lp(Rn)and observing that ∫

Q

w−p′(y)dy < ∞ for every Q ∈ D(Rn) we have the desiredresult. �The proof of the next statement is similar to that of the previous theorem. Theproof is omitted.



One and two weight estimates for one�sided operators in Lp(·) spaes 91Theorem 5.4. Suppose that 1 < p < ∞, where p is onstant. Then M
−,(d)
α(·) isbounded from Lpw(Rn) to Lpv(Rn) if and only if there is a positive onstant C suhthat for all Q ∈ D(Rn),

∫

Rn

vp(x)

(
M

−,(d)
α(·)

(
w−p′χQ

))p
(x)dx ≤ C

∫

Q

w−p′(x)dx <∞.Let us now disuss the two�weight problem for the one-sided maximal funtions
M+

α(·), M−
α(·) de�ned on R.Reall that byM+,(d)

α(·) andM−,(d)
α(·) we denote one�sided dyadi maximal funtions.Now we assume that they are de�ned on R.Together with these operators we need the following maximal operators:

(
M̄+

α(·)f
)
(x) = sup

h>0

1

(h/2)1−α(x)

x+h∫

x+ h
2

|f(y)|dy;

(
M̄−

α(·)f
)
(x) = sup

h>0

1

(h/2)1−α(x)

x−h
2∫

x−h

|f(y)|dy;

(
M̃+

α(·)f
)
(x) = sup

j∈Z

1

2(j−1)(1−α(x))

x+2j∫

x+2j−1

|f(y)|dy.To prove the next statements we need some lemmas.Lemma 5.1. Let f ∈ Lloc(R). Then the following pointwise estimates hold:
(
M+

α(·)f
)
(x) ≤ 2α+−1

1 − 2α+−1

(
M̄+

α(·)f
)
(x);

(
M−

α(·)f
)
(x) ≤ 2α+−1

1 − 2α+−1

(
M̄−

α(·)f
)
(x) (16)for every x ∈ R.Proof. Observe that

1

h1−α(x)

x+h∫

x

|f(t)|dt =
1

h1−α(x)

x+ h
2∫

x

|f(t)|dt+ 1

h1−α(x)

x+h∫

x+ h
2

|f(t)|dt

= 2α(x)−1 1

(h/2)1−α(x)

x+ h
2∫

x

|f(t)|dt+ 2α(x)−1 1

(h/2)1−α(x)

x+h∫

x+ h
2

|f(t)|dt
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≤ 2α(x)−1

(
M+

α(·)f
)
(x) + 2α(x)−1

(
M̄+

α(·)f
)
(x).Hene,

(
M+

α(·)f
)
(x) ≤ 2α(x)−1

(
M+

α(·)f
)
(x) + 2α(x)−1

(
M̄+

α(·)f
)
(x).Consequently,

(
1 − 2α(x)−1

)(
M+

α(·)f
)
(x) ≤ 2α(x)−1

(
M̄+

α(·)f
)
(x),whih implies

(
M+

α(·)f
)
(x) ≤ 2α(x)−1

1 − 2α(x)−1

(
M̄+

α(·)f
)
(x) ≤ 2α+−1

1 − 2α+−1

(
M̄+

α(·)f
)
(x).Analogously the inequality (16) follows. �Lemma 5.2. The following inequality

(
M̄+

α(·)f
)
(x) ≤ C

(
M̃+

α(·)f
)
(x) (17)holds with a positive onstant C independent of f and x.Proof. Let us take h > 0. Then h ∈ [2j−1, 2j) for some j ∈ Z. Consequently,

1

(h/2)1−α(x)

x+ h
2∫

x+h

|f(t)|dt ≤ 1

(2j−2)1−α(x)

x+2j∫

x+2j−2

|f(t)|dt

=
1

2(j−2)1−α(x)

x+2j−1∫

x+2j−2

|f(t)|dt+
1

2(j−2)(1−α(x))

x+2j∫

x+2j−1

|f(t)|dt

=
1

2(j−2)(1−α(x))

x+2j−1∫

x+2j−2

|f(t)|dt+ 2α(x)−1

2(j−1)(1−α(x))

x+2j∫

x+2j−1

|f(t)|dt

≤
(
M̃+

α(·)f
)
(x) + 2α+−1

(
M̃+

α(·)f
)
(x) =

(
1 + 2α+−1

)(
M̃+

α(·)f
)
(x).Hene, (17) holds for C = 1 + 2α+−1. �Lemma 5.3. There exists a positive onstant C depending only on α suh that forall f, f ∈ Lloc(R), and x ∈ R,

(
M̃+

α(·)f
)
(x) ≤ C

(
M

+,(d)
α(·) f

)
(x). (18)



One and two weight estimates for one�sided operators in Lp(·) spaes 93Proof. Let h = 2j for some integer j. Suppose that I and I ′ are dyadi intervalssuh that I ⋃ I ′ is again dyadi, |I| = |I ′| = 2j−1 and [x+ h
2
, x+h) ⊂ (I

⋃
I ′). Then

x ∈ (I
⋃
I ′)−, where (I

⋃
I ′)− is dyadi and

x+h∫

x+ h
2

|f(t)|dt ≤
∫

I
S

I′

|f(t)|dt ≤ 2j(1−α(x))
(
M

+,(d)
α(·) f

)
(x),whene (

M̃+
α(·)f

)
(x) ≤ 21−α−

(
M

+,(d)
α(·) f

)
(x).If I ⋃ I ′ is not dyadi, then we take I1 ∈ D(R) with length 2j ontaining I ′.Consequently, x ∈ (I1)

−, where I−1 is dyadi. Observe that x ∈ I−, where I− is alsodyadi. Consequently,
x+h∫

x+ h
2

|f(t)|dt ≤
∫

I
S

I1

|f(t)|dt =

∫

I

|f(t)|dt+
∫

I1

|f(t)|dt ≤ C h1−α(x)
(
M

+,(d)
α(·) f

)
(x),with positive onstant C independent of j. Finally, we have (18). �Lemma 5.4. There exists a positive onstant C depending only on α suh that

(
M

+,(d)
α(·) f

)
(x) ≤ C

(
M+

α(·)f
)
(x) (19)for all f, f ∈ Lloc(R), x ∈ R.Proof. Let x ∈ I, I ∈ D(R). Denote I = [a, b). Then I+ = [b, 2b − a). Let h =

2b− a− x. We have
1

|I|1−α(x)

∫

I+

|f(t)|dt ≤ 21−α(x)

|I⋃ I+|1−α(x)

x+h∫

x

|f(t)|dt

≤ 21−α−
1

h1−α(x)

x+h∫

x

|f(t)|dt ≤ 21−α−M+
α(·)f(x).Sine I is arbitrary dyadi ube ontaining x, then (19) holds for C = 21−α− . �Summarizing Lemmas 5.1�5.4, we have the next statement:Proposition 5.1. There exists positive onstants C1 and C2 suh that for all f ,

f ∈ Lloc(R) and x ∈ R the two-sided inequality
C1

(
M+

α(·)f
)
(x) ≤

(
M

+,(d)
α(·) f

)
(x) ≤ C2

(
M+

α(·)f
)
(x)holds.Now Theorem 5.1 (for n = 1) and Proposition 5.1 yield the following theorem:



94 V. Kokilashvili, A. Meskhi, M. SarwarTheorem 5.5. Let p, q and α be measurable funtions on I = R, 1 < p− < q− ≤
q+ < ∞, 0 < α− ≤ α+ < 1. Suppose also that p ∈ G(I). Further, assume that
w−(p−)′ ∈ RD(d)(I). Then M+

α(·) is bounded from L
p(·)
w (I) to Lq(·)v (I) if

B := sup
a∈R

h>0

∥∥χ(a−h,a)(·) hα(·)−1
∥∥
L

q(·)
v (R)

∥∥χ(a,a+h)w
−1
∥∥
L(p−)′ (R)

<∞.Proof. By using Theorem 5.1 we have that the ondition B <∞ implies
‖M+,(d)

α(·) f‖Lq(·)(R) ≤ C‖fw‖Lp−(R)Now Propositions C and 5.1 omplete the proof. �Analogously the next statement an be proved:Theorem 5.6. Let p, q and α be measurable funtions on I := R, 1 < p− < q− ≤
q+ <∞, 0 < α− ≤ α+ < 1. Suppose also that p ∈ G(I) and that w−(p−)′ ∈ RD(d)(I).Then M−

α(·) is bounded from Lpw(I) to Lq(·)v (I) if
B1 := sup

a∈I
h>0

∥∥χ(a,a+h)(·)hα(·)−1v(·)
∥∥
Lq(·)(I)

∥∥χ(a−h,a)w
−1
∥∥
L(p−)′(I)

<∞.The results of this setion dedue the following orollaries:Corollary 5.1. Let I := R and 1 < p < q− ≤ q+ < ∞, 0 < α− ≤ α+ < 1, where
p is onstant. Assume that w−p′ ∈ RD(d)(R). Then M+

α(·) is bounded from Lpw(I) to
L
q(·)
v (I) if and only if

sup
a∈I
h>0

∥∥χ(a−h,a)(·) hα(·)−1
∥∥
L

q(·)
v (I)

∥∥χ(a,a+h)w
−1
∥∥
Lp′ (I)

<∞.Corollary 5.2. Let I := R and let 1 < p < q− ≤ q+ < ∞, where p is onstant.Suppose that α is measurable funtion on R satisfying 0 < α− ≤ α+ < 1. Supposealso that w−(p−)′ ∈ RD(d)(I). Then M−
α(·) is bounded from from Lpw(I) to Lq(·)v (I) ifand only if

sup
a∈I
h>0

∥∥χ(a,a+h)(·)hα(·)−1v(·)
∥∥
Lq(·)(I)

∥∥χ(a−h,a)w
−1
∥∥
Lp′(I)

<∞.Corollary 5.3. Let I = R, 1 < p− < q− ≤ q+ < ∞, 0 < α− ≤ α+ < 1. Supposethat p− = p(∞) and p ∈ P∞(I). Assume that w−(p−)′ ∈ RD(d)(R). Then:
(i) M+

α(·) is bounded from Lpw(I) to Lq(·)v (I) if B <∞;
(ii) M−

α(·) is bounded from Lpw(I) to Lq(·)v (I) if B1 <∞.Proof of Corollary 5.1. Su�ieny is a diret onsequene of Theorem 5.5.Neessity follows immediately by applying the two-weight inequality for the testfuntion f(x) = χ(a,a+h)(x)w
−p′(x) (see also neessity of the proof of Theorem 5.1for the details). �Proof of Corollary 5.2. Similar to that of Corollary 5.1. �



One and two weight estimates for one�sided operators in Lp(·) spaes 95Proof of Corollary 5.3. (i) The result follows from Theorem 4.5 beause theondition p ∈ P∞(I) implies that
∫

I

Kp(x)p(∞)/|p(x)−p(∞)|dx <∞.Hene, by using the assumption p(∞) = p− we have that p ∈ G(I).The seond part of the theorem is obtained in a similar manner; therefore it isomitted. �The next statement gives the boundedness of M+
α(·) in the diagonal ase p ≡ q ≡

const.Theorem 5.7. Let I := R and let 1 < p < ∞, where p is onstant. Suppose that
0 < α− ≤ α+ <∞. Then M+

α(·) is bounded from Lpw(I) to Lpv(I) if and only if thereis a positive onstant C suh that for all bounded intervals J ⊂ R,
∫

R

vp(x)

(
M+

α(·)

(
w−p′χJ

)
(x)

)p
dx ≤ C

∫

J

w−p′(x)dx <∞.Proof. Su�ieny follows from Proposition 5.1 and Theorem 5.3 for n = 1. Forneessity we take f = χJ w
p′ in the two weight inequality
∥∥v M+

α(·) f
∥∥
Lp

v(I)
≤ C

∥∥w f
∥∥
Lp

v(I)and we are done. �Analogously the following theorem follows:Theorem 5.8. Let I := R and let 1 < p < ∞, where p is onstant. Suppose that
0 < α− ≤ α+ <∞.. Then M−

α(·) is bounded from Lpw(I) to Lpv(I) if and only if
∫

R

vp(x)

(
M−

α(·)

(
w−p′χJ

)
(x)

)p
dx ≤ C

∫

J

w−p′(x)dx <∞for all bounded intervals J ⊂ R.Finally we mention that the results similar to those of this setion were derivedin [24℄ for generalized two-sided frational maximal funtions and Riesz potentials.6 Fe�erman�Stein type inequalityIn this setion we derive Fe�erman�Stein type inequality for the operators M−
α(·),

M+
α(·). Notie that this inequality for the lassial Riesz potentials for the diagonalase was established by E. Sawyer (see, e.g., [49℄).The main statement of this setion reeds as follows:



96 V. Kokilashvili, A. Meskhi, M. SarwarTheorem 6.1. Let α, p and q be measurable funtions on I = R. Suppose that
1 < p− < q− ≤ q+ <∞ and 0 < α− ≤ α+ < 1/p−. Suppose that p ∈ G(I). Then thefollowing inequalities hold:

‖v(·)(M+
α(·)f)(·)‖Lq(·)(R) ≤ c‖f(·)(Ñ−

α(·)v)(·)‖Lp(·)(R); (20)

‖v(·)(M−
α(·)f)(·)‖Lq(·)(R) ≤ c‖f(·)(Ñ+

α(·)v)(·)‖Lp(·)(R), (21)where (
Ñ−
α(·)v

)
(x) = sup

h>0
h−1/p−‖v(·)hα(·)χ(x−h,x)(·)‖Lq(·)(R),

(
Ñ+
α(·)v

)
(x) = sup

h>0
h−1/p−‖v(·)hα(·)χ(x,x+h)(·)‖Lq(·)(R).Proof. We prove (20). The proof of (21) is the same. First we show that theinequality

‖v(·)(M+,(d)
α(·) f)(·)‖Lq(·)(R) ≤ c‖f(·)(Ñ−

α(·)v)(·)‖Lp(·)(R)holds.Repeating the arguments of the proof of Theorem 5.1 for one-dimensional dyadiintervals J we onstrut the sets FJ . Take h, ‖h‖L(q(·)/r)′(R) ≤ 1, where p− < r < q−.By using Lemma 2.1 and Proposition C we have∫

R

vr(x)
(
M

+,(d)
α() f(x)

)r
h(x)dx =

∑

J∈Dm(R)

∫

FJ

v(x)r
(
M

+,(d)
α(·) f

)r
(x)h(x)dx

≤ c
∑

J∈Dm(R)

(∫

FJ

vr(x)|J |(α(x)−1)rh(x)dx

)(∫

J+

f(t)dt

)r

≤ c
∑

J∈Dm(R)

∥∥∥vr(·)|J |(α(·)−1)rh(·)χFJ
(·)
∥∥∥
Lq(·)/r(R)

∥∥∥h
∥∥∥
L(q(·)/r)′(R)

(∫

J+

f(t)dt

)r

≤ c
∑

J∈Dm(R)

∥∥∥vr(·)|J |(α(·)−1)rχFJ
(·)
∥∥∥
Lq(·)/r(R)

(∫

J+

f(t)dt

)r

= c
∑

J∈Dm(R)

(∫

J+

f(x)
∥∥∥v(·)|J |α(·)−1χFJ

(·)
∥∥∥
Lq(·)(R)

dx

)r

= c
∑

J∈Dm(R)

|J |−r/(p−)′
(∫

J+

f(x)
∥∥∥v(·)|J |α(·)−1/p−χFJ

(·)
∥∥∥
Lq(·)(R)

dx

)r

≤ c
∑

J∈Dm(R)

|J |−r/(p−)′
(∫

J+

f(x)
(
Ñ−
α(·)v

)
(x)dx

)r

≤ c‖f(·)
(
Ñ−
α(·)v

)
(·)‖rLp−(R) ≤ c‖f(·)Ñ−

α(·)v(·)‖rLp(·)(R).Here we used the inequality∥∥∥v(·)|J |α(·)−1/p−χFJ
(·)
∥∥∥
Lq(·)(R)

≤ Cα,p
(
Ñ−
α(·)v

)
(x), x ∈ J+,whih follows in the same manner as Lemma 5.4 was proved. Now Proposition 5.1ompletes the proof. �



One and two weight estimates for one�sided operators in Lp(·) spaes 977 The trae inequality for one-sided potentialsLet
Rα(·)f(x) =

x∫

−∞

f(t)

(x− t)1−α(x)
dt; x ∈ R,

Wα(·)f(x) =

∞∫

x

f(t)

(t− x)1−α(x)
dt; x ∈ R,where α is a measurable funtion on R with 0 < α− ≤ α+ < 1.Here we establish riteria whih guarantees the boundedness of Rα(·) and Wα(·)from Lp(·)(I) to Lq(·)v (I).Theorem G ([24℄). Suppose that 1 < p < q− ≤ q+ < ∞, where p is onstant. Let

0 < α− ≤ α+ < 1. Then the generalized Riesz potential
Tα(·)f(x) =

∫

R

f(y)

|x− y|1−α(x)
dy, x ∈ R,is bounded from Lp(R) to Lq(·)v (R) if and only if

sup
J⊂R

∥∥χJ(·) |J |α(·)∥∥
L

q(·)
v (R)

|J |− 1
p <∞, (22)where the supremum is taken over all bounded intervals J ⊂ R.Now we prove the following statement:Theorem 7.1. Let I := R and let measurable funtions p, q, and α satisfy theonditions 1 < p− < q− ≤ q+ < ∞, 0 < α− ≤ α+ < 1. Further, suppose that

p ∈ G(I).If
sup
J⊂R

∥∥χJ(·) |J |α(·)∥∥
L

q(·)
v (R)

|J |−
1

p− <∞,where the supremum is taken over all bounded intervals J ⊂ R, then Rα(·) and Wα(·)are bounded from Lp(·)(I) to Lq(·)v (I).Proof. The result is a diret onsequene of the inequalities
(
Rα(·)f

)
(x) ≤

(
Tα(·)f

)
(x),

(
Wα(·)f

)
(x) ≤

(
Tα(·)f

)
(x) (f ≥ 0),Theorem G and Proposition C. �.Theorem 7.2. Let I := R and let p, q and α satisfy the onditions of Theorem G.Then the following onditions are equivalent:(i) Rα(·) is bounded from Lp(I) to Lq(·)v (I);(ii) Wα(·) is bounded from Lp(I) to Lq(·)v (I);(iii) ondition (22) holds.



98 V. Kokilashvili, A. Meskhi, M. SarwarProof. The impliations (iii) ⇒ (i), (ii) ⇒ (i) follow from Theorems 7.1 and G.Let us now show that (i) ⇒ (iii). Let f(x) = χ(a,a+h)(x), where a ∈ R and h > 0.Then ‖f‖Lp(R) = h
1
p . On the other hand,

∥∥Rα(·)f
∥∥
L

q(·)
v (R)

≥
∥∥∥χ(a,a+h)(·)

( a∫

a−h

dt

(x− t)1−α(x)

)∥∥∥
L

q(·)
v (R)

≥ C
∥∥χ(a,a+h)(·)hα(·)∥∥

L
q(·)
v (R)

.Hene, (i) implies that
∥∥χ(a,a+h)(·)hα(·)∥∥

L
q(·)
v (R)

h−
1
p ≤ Cfor all a ∈ R and h > 0. This implies (iii). Analogously the impliation (ii)⇒(iii)an be derived. �8 Hardy�Littllewood type inequalitiesThe results of the previous setion enable us to formulate neessary and su�ientonditions governing the Hardy�Littlewood (see [17℄) type inequalities for one�sidedpotentials. For these inequalities in lassial Lebesgie spaes we refer also to [46℄. Inpartiular, we give neessary and su�ient onditions on q, p and α for whih Rα(·)and Wα(·) are bounded from Lp to Lq(·), where p is onstant.Theorem 8.1. Let I = R and let p, q and α satisfy the onditions of Theorem G.Then the following onditions are equivalent:(i) Rα(·) is bounded from Lp(I) to Lq(·)(I);(ii) Wα(·) is bounded from Lp(I) to Lq(·)(I);(iii) sup

J⊂R

∥∥χJ(·) |J |α(·)∥∥
Lq(·)(J)

|J |− 1
p <∞,where the supremum is taken over all bounded intervals J in R.9 Two-weight inequalities for monotoni weightsLet

(Tv,wf)(x) = v(x)

∫ x

0

f(y)w(y)dy, x ∈ R+,

(T ′
v,wf)(x) = v(x)

∫ ∞

x

f(y)w(y)dy, x ∈ R+.In the sequel we will use the following notation:
vα(x) :=

v(x)

x1−α , w̃(x) :=
1

w(x)
, w(x) :=

1

w(x)x
, wα(x) :=

1

x1−αw(x)
.



One and two weight estimates for one�sided operators in Lp(·) spaes 99Let us �x a positive number a and let
p0(x) := p−([0, x]), p̃0(x) :=

{
p

0
(x), if x ≤ a;

pc = onst, if x > a,

p1(x) := p−([x, a]); p̃1(x) :=

{
p1(x), if x ≤ a;
pc = onst, if x > a,

Ik := [2k−1, 2k+2]; k ∈ Z, Ik = [2k, 2k+1]; k ∈ Z,where (0, x) and [0, x] are open and lose intervals respetively.Reall that a funtion p satis�es the Dini�Lipshitz ondition on R+, i.e, p ∈
DL(R+) if (2) holds for x, y ∈ R+ satisfying the ondition 0 < |x− y| ≤ 1

2
.The following two statement are known (see [15℄):Theorem 9.1. Let 1 < p̃

0
(x) ≤ p(x) ≤ p+ <∞. Suppose that there exists a positivenumber a suh that p(x) = pc = const when x > a. If

sup
t>0

∫ ∞

t

(
v(x)

)p(x)(∫ t

0

w(y)(ep0)′(x)dy

) p(x)

(ep0)′(x)

dx <∞then Tv,w is bounded in Lp(·)(R+).Theorem 9.2. Let 1 < p̃1(x) ≤ p(x) ≤ p+ <∞. Suppose that there exists a positivenumber a suh that p(x) = pc = const, when x > a. If
sup
t>0

∫ t

0

(v(x))p(x)
(∫ ∞

t

w(y)(ep1)′(x)dy

) p(x)

(ep1)′(x)

dx <∞,then T ′
v,w is bounded in Lp(·)(R+).The next two lemmas will be useful for us.Lemma 9.1 ([2℄). Let 1 ≤ p− ≤ p(x) ≤ q(x) ≤ q+ < ∞, p ∈ DL(R+) and let

p(x) = pc = const, q(x) = qc = const when x > a for some positive number a. Thenthere exist a positive onstant c suh that
∑

i

‖ fχIi ‖Lp(·)(R+)‖ gχIi ‖Lq′(·)(R+)≤ c ‖ f ‖Lp(·)(R+)‖ g ‖Lq′(·)(R+)for all fand g with f ∈ Lp(·)(R+) and g ∈ Lq
′(·)(R+).Lemma 9.2 ([4℄). Let p ∈ DL(R+). Then there exist a positive onstant c suh thatfor all open intervals I in R+ satifying the ondition | I |> 0 we have

| I |p−(I)−p+ (I)≤ c.Now we prove some lemmas.



100 V. Kokilashvili, A. Meskhi, M. SarwarLemma 9.3. Let 1 < p− ≤ p0(x) ≤ p(x) ≤ p+ < ∞ and let p(x) ≡ pc ≡ onst if
x > a for some positive onstant a. Suppose that v and w are positive inreasingfuntions on R+ satisfying the ondition

B := sup
t>0

∫ ∞

t

(v(x)
x

)p(x)(∫ t

0

w(y)−(ep0)′(x)dy

) p(x)

(ep0)′(x)

dx <∞. (23)Then v(4x) ≤ cw(x) for all x > 0, where the positive onstant c is independent of
x.Proof. First assume that 0 < t < a. The fat that c = lim

t→0

v(4t)
w(t)

< ∞ follows fromthe inequalities:
∫ ∞

t

(
v(x)

x

)p(x)(∫ t

0

w(y)−( ep0)′(x)dy

) p(x)

(fp0)′(x)

dx

≥
∫ 8t

4t

(
v(4t)

w(t)

)p(x)
· t

p(x)

(fp0)′(x) · x−p(x)dx

≥
(
v(4t)

w(t)

)p− ∫ 8t

4t

t
p(x)

(fp0)′(x) · x−p(x)dx ≥ c

(
v(4t)

w(t)

)p−
,where the positive onstant c is independent of a small positive number t.Further, suppose that δ is a positive number suh that v(4t) ≤ (c+ 1)w(t) when

t < δ. If δ < a, then for all δ < t < a, we have that
v(4t) ≤ v(4a) ≤ c̃w(δ) ≤ c̃w(t),where c depends on v, w and δ. Now it is enough to take c = max{(c+ 1), c}.Let now a ≤ t <∞. Then p(x) ≡ pc ≡ onst for x > t and, onsequently,

B ≥ sup
t>0

(∫ ∞

t

(
v(x)

x

)pc

dx

)(∫ t

0

w(x)−p
′
cdx

)pc−1

≥ c

(
v(4t)

w(t)

)pc

.The lemma is proved. �The proof of the next lemma is similar to that of the previous one; therefore weomit it.Lemma 9.4. Let 1 < p− ≤ p1(x) ≤ p(x) ≤ p+ < ∞, and let p(x) ≡ pc ≡ onstif x > a for some positive onstant a. Suppose that v and w are positive dereasingfuntions on R+. If
B̃ := sup

t>0

∫ t

0

(v(x))p(x)
(∫ ∞

t

(w(y))(ep1)
′(x) dy

) p(x)

(fp1)′(x)

dx <∞, (24)then v(x) ≤ cw(4x), where the positive onstant c does not depend on x > 0.



One and two weight estimates for one�sided operators in Lp(·) spaes 101Theorem 9.3. Let 1 < p− ≤ p+ < ∞ and let p ∈ DL(R+). Suppose that p(x) ≡
pc ≡ const if ∈ (a,∞) for some positive number a. Let v and w be weights on R+suh that

(a) T ′
v0, ew

is bounded in Lp(·)(R+);
(b) there exists a positive onstant b suh that one of the following two onditionshold:

(i) ess sup v(y)
y∈[ x

4
,4x]

≤ bw(x) for almost all x ∈ R+;

(ii) v(x) ≤ b ess inf w(y)
y∈[ x

4
,4x]

for almost all x ∈ R+.Then M− is bounded from L
p(·)
w (R+) to Lp(·)v (R+).Proof. Suppose that ‖g‖Lp′(·)(R+) ≤ 1. We have

∫ ∞

0

(
M−f(x)

)
v(x)g(x)dx ≤

∑

k∈Z

∫ 2k+1

2k

(
M−f1,k(x)

)
v(x)g(x)dx

+
∑

k∈Z

∫ 2k+1

2k

(
M−f2,k(x)

)
v(x)g(x)dx+

∑

k∈Z

∫ 2k+1

2k

(
M−f3,k(x)

)
v(x)g(x)dx :=S1 + S2 + S3,where f1,k = f · χ[0,2k−1], f2,k = f · χ[2k+1,∞], f3,k = f · χ[2k−1,2k+2].If y ∈ [0, 2k−1) and x ∈ [2k, 2k+1], then y < x/2. Hene x/2 ≤ x−y. Consequently,if h < x/2, then for x ∈ [2k−1, 2k+2], we have

1

h

∫ x

x−h
| f1,k(y) | dy =

1

h

∫ x

x−h
| f · χ[0,2k−1] | dy = 0.Further, if h > x

2
, then

1

h

∫ x

x−h
| f1,k(y) | dy =

1

h

∫ x

x−h
| f · χ[0,2k−1] | dy ≤ c

1

x

x∫

0

| f(y) | dy.This yields that
M−f1,k(x) ≤ c

1

x

x∫

0

| f(y) | dy for x ∈ [2k, 2k+1].Hene, due to the boundedness of Tv̄, ew in Lp(x)(R+) we have that
S1 ≤ c

∞∫

0

(Tv0,1|f |) (x) v(x)g(x)dx

≤ c ‖(Tv0,1|f |) v‖Lp(·)(R+) · ‖g‖Lp′(·)(R+) ≤ c ‖fw‖Lp(·)(R+).



102 V. Kokilashvili, A. Meskhi, M. SarwarObserve now that S2 = beause f2,k = f · χ[2k+2,∞]. Let us estimate S3. By usingondition (i) of (b), boundedness of the operator M− in Lp(·)(R+) and lemma 9.1we have that
S3 ≤ c

∑

k

(ess sup v
Ek

)‖M−f3,k(·)‖Lp(·)(R+) · ‖g(·)χEk
‖Lp′(·)(R+)

≤ c
∑

k

(ess sup v
Ek

)‖f(·)χIk‖Lp(·)(R+) · ‖g(·)χEk
‖Lp′(·)(R+)

≤ c ‖f(·)w(·)‖Lp(·)(R+).If ondition (ii) of (b) holds, then
v(z) ≤ b ess inf w(y)

y∈[ z
4
,4z]

≤ b ess inf w(y)
y∈(2k−1,2k+2)

≤ bw(x)for z ∈ Ek and x ∈ Ik. Hene, ess sup w(y)
Ek

≤ bw(x)if x ∈ Ik. Consequently, taking into aount this inequality and the estimate of S3in the previous ase we have the desire result for M−. �Theorem 9.4. Let 1 < p− ≤ p+ < ∞ and let p ∈ DL(R+). Suppose that p(x) ≡
pc ≡ const if x > a, where a is some positive number. Let v and w be weight funtionson R+ suh that

(a) T ′
v,w is bounded in Lp(·)(R+);

(b) there exists a positive onstant b suh that one of the following two onditionshold:
(i) ess sup v(y)

y∈[ x
4
,4x]

≤ bw(x) for almost all x ∈ R+;

(ii) v(x) ≤ b ess inf w(y)
y∈[ x

4
,4x]

for almost all x ∈ R+.Then M+ is bounded from L
p(·)
w (R+) to Lp(·)v (R+).Proof. Suppose that ‖g‖Lp′(·)(R+) ≤ 1. We have

∫ ∞

0

(
M+f(x)

)
v(x)g(x)dx ≤

∑

k∈Z

∫ 2k+1

2k

(
M+f1,k(x)

)
v(x)g(x)dx

+
∑

k∈Z

∫ 2k+1

2k

(
M+f2,k(x)

)
v(x)g(x)dx+

∑

k∈Z

∫ 2k+1

2k

(
M+f3,k(x)

)
v(x)g(x)dx :=S1 + S2 + S3,where fi,k, i = 1, 2, 3 are de�ned in the proof of the previous theorem. It is easy tosee that S1 = 0. To estimate S2 observe that

M+f · χ[2k+1,∞)(x) ≤ c sup
j≥k+2

2−j
∫

Ik

|f(y)|dy, x ∈ Ek, (25)



One and two weight estimates for one�sided operators in Lp(·) spaes 103Indeed, notie that if y ∈ (2k+2,∞) and x ∈ Ek, then y − x ≥ 2k+1. Hene,
1

h

∫ x+h

x

| f2,k(y) | dy ≤
1

h

∫

{y:y−x<h,y−x>2k+1}

|f(y)|dy = 0for h ≤ 2k+1 and x ∈ Ik.Let now h > 2k+1. Then h ∈ [2j, 2j+1) for some j ≥ k + 1. If y − x < h, then itis lear that y = y− x+ x ≤ h+ x ≤ 2j+1 + 2k+1 ≤ 2j+1 + 2j ≤ 2j+2. Consequently,for suh an h we have that
1

h

x+h∫

x

|f2,k(y)|dy =
1

h

x+h∫

x

|f · χ[2k+2,∞)(y)|dy ≤
1

h

∫

{y:y−x<h,y>2k+2}

|f(y)|dy

≤ 1

x

∫

{y: y∈[2k+2,2j+2]}

|f(y)|dy ≤
j+1∑

i=k+1

2−j
∫

{y: y∈[2j ,2j+2]}

|f(y)|dywhih proves inequality (25).Taking into aount estimate (25) and the boundedness of T ′
v,w in Lp(·)(R+) we�nd that

S2 ≤ c
∑

k

∫

Ek

v(x)g(x)

(
sup
j≥k+1

2−j
∫

Ej

|f(y)|dy
)
dx

≤ c
∑

k

(∫

Ik

v(x)g(x)dx

)( ∞∑

j=k+1

2−j
∫

Ej

|f(y)|dy
)

= c
∑

j

2−j
(∫

Ej

|f(y)|dy
) j−1∑

k=−∞

(∫

Ek

v(x)g(x)dx

)

= c
∑

j

2−j
(∫

Ej

|f(y)|dy
)( 2j∫

0

v(x)g(x)dx

)
≤ c

∑

j

∫

Ej

|f(y)| y−1

( y∫

0

v(x)g(x)dx

)
dy

= c

∫

R+

|f(y)| y−1

( y∫

0

v(x)g(x)dx

)
dy = c

∫

R+

v(x)g(x)

( ∞∫

x

|f(y)| y−1dy

)
dx

≤ c ‖g‖Lp′(·)R+
· ‖T ′

v(·),1/·f‖Lp(·)R+
≤ c‖fw‖Lp(·)R+

.To estimate S3 assume that ondition (i) of (b) is satis�ed. By Lemma 9.1 andthe boundedness of the operator M+ in Lp(·)(R+) we onlude that
S3 ≤ c

∑

k

(ess sup v
Ek

)‖M+f3,k(·)‖Lp(·)(R+) · ‖g(·)χEk
‖Lp′(·)(R+)

≤ c
∑

k

(ess sup v
Ek

)‖f(·)χIk‖Lp(·)(R+) · ‖g(·)χEk
‖Lp′(·)(R+)

≤ c ‖f(·)w(·)χIk(·)‖Lp(·)(R+) · ‖g(·)χEk
‖Lp′(·)(R+)
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≤ c‖f(·)w(·)‖Lp(·)(R+)‖g(·)‖Lp′(·)(R+) ≤ c ‖f(·)w(·)‖Lp(·)(R+).

�Theorem 9.5. Let 1 < p− ≤ p0(x) ≤ p(x) ≤ p+ <∞ and let p ∈ DL(R+). Supposethat p(x) ≡ pc ≡ const if x > a, where a is some positive onstant. Assume that vand w are positive inreasing weights on (0,∞). If ondition (23) is satis�ed, then
M− is bounded from L

p(·)
w (R+) to Lp(·)v (R+).Proof. Follows from Lemma 9.3 and Theorem 9.3. �Theorem 9.6. Let 1 < p− ≤ p1(x) ≤ p(x) ≤ p+ <∞, and let p ∈ DL(R+). Supposethat p(x) ≡ pc ≡ const if x > a, where a is some positive onstant. Let v and wbe positive dereasing weights on (0,∞). If ondition (24) is satis�ed, then M+ isbounded from L

p(·)
w (R+) to Lp(·)v (R+).Proof. Follows immediately from Lemma 9.4 and Theorem 9.4. �Let us disuss two�weight estimates for one-sided potentials de�ned on R+:

Rαf(x) =

x∫

0

f(t)

(x− t)1−αdt, Wαf(x) =

∞∫

x

f(t)

(t− x)1−αdt,where x > 0 and 0 < α < 1.The following statements were proved in [13℄:Theorem H. Let I = R+ and let p ∈ P+(I). Suppose that there exists a positiveonstant a suh that p ∈ P∞((a,∞)). Suppose that α is a onstant on I, 0 < α < 1
p+Iand q(x) = p(x)

1−αp(x) . Then Wα is bounded from Lp(·)(I) to Lq(·)(I).Theorem I. Let I = R+ and let p ∈ P+(I). Let α be a onstant on I, 0 < α < 1
p+Iand let q(x) = p(x)

1−αp(x) . Suppose that p ∈ P∞((a,∞)) for some positive number a.Then Rα is bounded from Lp(·)(I) to Lq(·)(I).Remark A. Theorems H and I are true if we replae the ondition p ∈ P∞((a,∞))by the ondition: p is onstant outside an interval (0, a) for some positive number a.Our next statements regarding one�sided potentials read as follows:Theorem 9.7. Let 1 < p− ≤ p+ < ∞, α < 1/p+, q(x) = p(x)
1−αp(x) , p ∈ DL(R+).Suppose that p(x) ≡ pc ≡ onst if x > a, where a is some positive number. Let vand w be a.e. positive measurable funtions on R+ satisfying the onditions:

(a) Tvα, ew is bounded in Lp(·)(R+),
(b) there exists a positive onstant b suh that one of the following two onditionshold:

(i) ess sup v(y)
y∈[ x

4
,4x]

≤ bw(x) for almost all x ∈ R+;

(ii) v(x) ≤ b ess inf w(y)
y∈[ x

4
,4x]

for almost all x ∈ R+.Then Rα is bounded from L
p(·)
w (R+) to Lq(·)v (R+).



One and two weight estimates for one�sided operators in Lp(·) spaes 105Theorem 9.8. Let 1 < p− ≤ p+ < ∞, α < 1/p+, q(x) = p(x)
1−αp(x) , p ∈ DL(R+).Suppose that p(x) ≡ pc ≡ onst if x > a, where a is some positive number. Let vand w be a.e. positive measurable funtions on R+ satisfying the onditions:

(a) T ′
v,wα

is bounded in Lp(·)(R+),
(b) there exists a positive onstant b suh that one of the following two onditionshold:

(i) ess sup v(y)
y∈[ x

4
,4x]

≤ bw(x) for almost all x ∈ R+;

(ii) v(x) ≤ b ess inf w(y)
y∈[ x

4
,4x]

for almost all x ∈ R+.Then Wα is bounded from L
p(·)
w (R+) to Lq(·)v (R+).Proof of Theorem 9.7. Let f ≥ 0 and let ‖g‖Lq′(·)(R+) ≤ 1. It is obvious that

∫ ∞

0

(Rαf(x)) v(x)g(x)dx ≤
∑

k∈Z

∫ 2k+1

2k

(Rαf1,k(x)) v(x)g(x)dx

+
∑

k∈Z

∫ 2k+1

2k

(Rαf2,k(x)) v(x)g(x)dx+
∑

k∈Z

∫ 2k+1

2k

(Rαf3,k(x)) v(x)g(x)dx :=

= S1 + S2 + S3,where fi,k, i = 1, 2, 3 are de�ned in the proof of Theorem 8.3If y ∈ [0, 2k−1) and x ∈ [2k, 2k+1], then y < x
2
. Hene

Rαf1,k(x) ≤
c

x1−α

∫ x

0

f(t)dt, x ∈ [2k−1, 2k+2].By using H�older's inequality, Theorem 9.1, Remark A we �nd that ondition (i)guarantees the estimate
S1 ≤ c‖fw‖Lp(·)(R).Further, observe that if x ∈ [2k, 2k+1), then Rαf2,k(x) = 0. Hene S2 = 0.To estimate S3 we argue as in the ase of the proof of Theorem 9.3. �The proof of these theorems are based on the following lemmas whih an bederived easily by using monotoniity of the weights v, w and the fat that q(x) =

p(x)
1−αp(x) :The proof of the next two lemmas are similar to that of Lemma 9.3; thereforewe omit it.Lemma 9.5. Let the onditions of Theorem 9.9 be satis�ed. Then there is a positiveonstant c suh that for all t > 0 the inequality

v(4t) ≤ cw(t)is satis�ed.



106 V. Kokilashvili, A. Meskhi, M. SarwarLemma 9.6. Let the onditions of Theorem 9.10 be satis�ed. Then there is a positiveonstant b suh that for all t > 0 the inequality
v(t) ≤ bw(4t)holds.These lemmas and Theorems 9.7 and 9.8 immediately imply the followingstatements:Theorem 9.9. Let 1 < p− ≤ p+ <∞ and let α be a onstant satisfying the ondition

α < 1/p+. Suppose that q(x) = p(x)
1−αp(x) and p ∈ DL(R+). Assume that p(x) ≡ pc ≡onst outside some interval [0, a], where a is a positive onstant. Let v and w bepositive inreasing funtions on R+ satisfying the ondition

∞∫

t

(vα(x))
q(x)




t∫

0

w−(ep0)′(x)(y)dy




q(x)

(ep0)′(x)

dx <∞.Then Rα is bounded from L
p(·)
w (R) to Lq(·)v (R).Theorem 9.10. Let 1 < p− ≤ p+ < ∞ and let α be a onstant satisfying theondition α < 1/p+. Suppose that q(x) = p(x)

1−αp(x) and p ∈ DL(R+). Suppose alsothat p(x) ≡ pc ≡ onst outside some interval [0, a], where a is a positive onstantand that v and w are positive dereasing funtions on R+ satisfying the ondition
sup
t>0

∫ t

0

(v(x))p(x)
(∫ ∞

t

(wα(y))
( ep1)′(x) dy

) p(x)

(fp1)′(x)

dx <∞.Then Wα is bounded from L
p(·)
w (R) to Lq(·)v (R).Aknowledgement. The �rst and seond authors were partially supported by theGeorgian National Siene Foundation Grant No. GNSF/ST07/3-169.
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