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Abstract. Various type weighted norm estimates for one-sided maximal functions
and potentials are established in variable exponent Lebesgue spaces LPO). In
particular, sufficient conditions (in some cases necessary and sufficient conditions)
governing one and two weight inequalities for these operators are derived. Among
other results generalizations of the Hardy-Littlewood, Fefferman—-Stein and trace
inequalities are given in LP() spaces.

1 Introduction

This paper deals with the boundedness of one-sided maximal functions and
potentials in weighted Lebesgue spaces with variable exponent. In particular, we
derive one-weight inequality for one-sided maximal functions; sufficient conditions
(in some cases necessary and sufficient conditions) governing two-weight inequalities
for one-sided maximal and potential operators; criteria for the trace inequality
for one-sided fractional maximal functions and potentials; Fefferman—Stein type
inequality for one-sided fractional maximal functions; generalization of the Hardy-
Littlewood theorem for the Riemann—Liouville and Weyl transforms. It is worth
mentioning that some results of this paper implies the following fact: the one-
weight inequality for one-sided maximal functions automatically holds when both
the exponent of the space and the weight are monotonic functions.

The boundedness of one-sided integral operators in LP() spaces was proved in
[13]. In that paper the authors established the boundedness of the one-sided Hardy—
Littlewood maximal functions, potentials and singular integrals in LP()(I) spaces
with the condition on p which is weaker than the log-Holder continuity (weak
Lipschitz) condition.

Solution of the one-weight problem for one-sided operators in classical Lebesgue
spaces was given in [48], [1]. Trace inequalities for one-sided potentials in L? spaces
were characterized in [38], [40], [22]. It should be emphasized that a complete solution
of the two-weight problem with transparent integral conditions on weights for one-
sided maximal functions and potentials in the non-diagonal case are given in the
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monographs [16, Chapters 2 and 3|, [9, Chapter 2|. For Sawyer-type two-weight
criteria for one-sided fractional operators we refer to [35], [36], [34].

Weighted inequalities for classical integral operators in L) spaces were derived
in [6], [8], [10]-[14], [19], [23]-32], [45], [47], etc (see also [21], [44]).

The one-weight problem for the two-sided Hardy-Littlewood maximal operator
in LP0) spaces was solved in [7]. Earlier, some generalizations of the Muckenhoupt
condition in these spaces defined on bounded sets were discussed in [30] and [31].

Criteria for the boundedness of two-sided fractional maximal operators from L?
to L1 were given in [24]. Two-weight Sawyer type criteria for two-sided maximal
functions on the real line were announced in [23], [25].

In [2| necessary and sufficient conditions on a weight v governing the boundedness
compactness of the generalized Riemann-Liouville transform R, from LPO(R,) to

LIV (R,), a_ > 1/p_, were derived.

In Section 1 we give the definition and some essential well-known properties
of the Lebesgue space with variable exponent and formulate Carleson—-Hormander
type inequalities. In Section 2 we study the one-weight problem for one-sided Hardy—
Littlewood maximal operators in LP*) spaces, while Section 3 is devoted to the same
problem for one-sided fractional maximal functions. In Section 4 we derive sufficient
(in some cases necessary and sufficient) conditions guaranteeing two-weight p(-) —
¢(-) norm estimates for one-sided fractional maximal operators. Fefferman—Stein
type inequalities in variable exponent spaces are discussed in Section 5. In Section
6 we established criteria governing the trace inequality for the Riemann-Liouville
and Weyl operators in LP() spaces. In Section 7 we formulate generalization of the
Hardy—-Littlewood theorem for one-sided potentials in these spaces. Section 8 is
dedicated to two-weight inequalities for one-sided operators.

Finally, we point out that constants (often different constants in the same series
of inequalities) will generally be denoted by ¢ or C.

2 Preliminaries
Let 2 be an open set in R™ and let p be a measurable function on 2. Suppose that
1<p_<py<oo, (1)

where p_ and p, are the infimum and the supremum respectively of p on €. Suppose
that p is a weight function on €2, i.e. p is an almost everywhere positive locally

integrable function on ). We say that a measurable function f on €) belongs to
L5(Q) (or L (Q) if

Spal) = [ | @)ola) "z < .

It is known that (see, e.g., [33], [26], [28], [42]) L5 () is a Banach space with
the norm
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1150y = i {A > 025,00, (f/A) < 1}

If p = 1, then we use the symbol LP0)(Q) (resp. S,) instead of LEV(Q) (resp.
Sp(y,p)- It is clear that Hf”Lﬁ(')(Q) = |[fpllLr) () It should be also emphasized that

when p is constant, then L]Z(')(Q) coincides with the classical weighted Lebesgue
space.
Further, we denote

p—(E):=infp; py(E):=suwpp, EC
E
p—() =p_; p4(Q) =py.

The following statement is well-known (see, e.g., [33], [42]):

Proposition A. Let E be a measurable subset of 2. Then the following inequalities
hold:

ro(E r_(FE
LI < Seor(Fxm) < Ity Il <1

r_(FE ro(E
A0 < Seor(Fxm) < I 11l > 1

| [ r@steiie] < (5 + =y) W low ol

where r'(z) = (gf)z and 1 <r_ <ry < oo.

Let I be an open set in R. In the sequel we shall use the notation:
I (z,h):=[x,c+h|NI, I (x,h):=][x—hz|NI;
I(z,h) =[x —h,z+h|NI.

We introduce the following one-sided maximal operators:

(Ma(of)(ﬂf)zsup(%)%am / |f(t)|dt,
)

h>0
I(z,h

(M;(,)f)(x):supﬁ / |f(t)]de,

h>0
I_(z,h)
1
(M@ =swp e [ sl
I+(Z‘,h)

where 0 < a_ < ay <1, I is an open set in R and x € [.
If « = 1, then My, Ma_(_) and Ma() are the one-sided Hardy-Littlewood
maximal operators which are denoted by M, M~ and M™ respectively.

In [4] L. Diening proved the following statement:
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Theorem A. Let ) be a bounded open set in R™. Then the mazimal operator

(Mof)e) = [ |y, we0

B(z,r)

is bounded in LPY)(Q) if p € P(RQ), that is,

a) 1<p <p(x)<py <oo;

b) p satisfies the Dini-Lipschitz (log-Hélder continuity) condition (p € DL(Q)):
there ezists a positive constant A such that for all z,y € Q with 0 < |x —y| < % the
inequality

T (2)

holds.
The next statement was proved in [3].

Theorem B. Let ) be an open subset of R"™. Suppose that 1 < p_ < p, < oo. Then
the mazimal operator My, is bounded in LPC)(Q) if
(i) p € P();
(if)
C
_ < -
Ip(z) —p(y)| < Ine + [2])

for all z,y € Q, |y| > |z|.
We shall also need the following statements:

Proposition B ([33], [42]). Let 1 < p(z) < q(x) < ¢4 < o0o. Suppose that §) is an
open set in R™ with |Q)| < co. Then the inequality

1l o) < L+ QDN Nl e @)
holds.

Proposition C ([4]). Let Q2 be an open set in R™ and let p and q be bounded exponents
on 2. Then

LQ(')<Q) SN LP(')(Q)
if and only if p(x) < q(x) almost everywhere on 2 and there is a constant 0 < K < 1
such that

/ K@@/ (4@ @D g < o0 (4)
Q

Remark A. In the previous statement it is used the convention K0 := 0.

Definition A ([13]). Let P_(I) be the class of all measurable positive functions
p : I — R satisfying the following condition: there exist a positive constant C'; such
that fora.ex €  andaey e I with0<x —y < % the inequality

Cy
p(x) <ply) + ——— (5)
In ( 1 )

=y
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holds. Further, we say that p belongs to P (1) if p is positive function on I and there
exists a positive constant Cy such that fora.ex € T anda.ey € I with0 <y—az < %
the inequality

G ©)
)

is fulfilled.

Definition B. We say that a measurable positive function on I belongs to the class
Poo(l) (p € Poo(l)) if (3) holds for all z,y € I with |y| > |z|. .
We shall also need the following definition:

Definition C. Let p be a measurable function on unbounded interval I in R. We
say that p € G(I) if there is a constant 0 < K < 1 such that

/ KP@p-/ 0@ 1y < o0,
1

Theorem C ([13|). Let I be a bounded interval in R. Suppose that 1 < p_ < p; <

0o. Then
(i) ifpe P_(I), then M~ is bounded in LPV)(I);
(ii) if p € Py (I), then M+ is bounded in LPV)(I).

In the case of unbounded set we have

Theorem D ([13]). Let I be an arbitrary open set in R. Suppose that 1 < p_ < p, <
0o. If p € Po(I) N Pu(I), then the operator M+ is bounded in LPU)(I). Further, if
p € P_(I)NPx(I). Then the operator M~ is bounded in LPC)(I)

In particular, the previous statement yields

Theorem E ([13]). Let I =R, and let 1 < p_ < p; < oo. Suppose that p € P.(I)
and there is a positive number a such that p € Pux((a,00)). Then M is bounded
in LPO(I). Further, if p € P_(I) and there is a positive number a such that p €
Poo((a,0)), then M~ is bounded in LPV)(I).

The next statement gives one-weight criteria for one-sided maximal operators in
classical Lebesgue spaces (see [48], [1]).

Theorem F ([1]). Let I C R be an interval. Assume that 0 < a <1 and1 <p <
1/a, where p and o are constants (1/a= o0 if a =0). We set 1/g=1/p — a.
(i) Let T := M_ . Then the inequality

[ [rswmea] " < of [ir@peima) )

holds if and only if

L

sup (% / v(t)dt)%(% / vp//q(t)dt>pl<oo. (8)

I (z,z+h) I_(x—h,z)
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(ii) Let T := M}. Then (7) holds if and only if

sup (% / v(t)dt);(% / vp’/q(t)dt)” < . ()

I_(xz—h,x) I (z,z+h)

Definition D. Let I C R, be an interval. Suppose that 1 < p < ¢ < 0o, where p
and q are constants. We say that the weight v € A_ (I) (resp. v € Af (1)) if (8) (
resp. (9)) holds.
If p = ¢, then we denote the class Af (1) (resp. A, (1)) by A (1) (vesp. A, (I)).
Notice that v € Af (1) (resp. v € A (1)) is equivalent to the condition v €
Al (D) (vesp.v € AL, (1))
Further, we denote by D(R) (resp. D(R,)) a dyadic lattice in R (resp. in R.).

Definition E. We say that a measure y belongs to the class RD@(R") (dyadic
reverse doubling condition) if there exists a constant ¢ > 1, such that for all dyadic

cubes @ and @', Q C @', |Q| = |§—n,‘, the inequality

Q") = op(@Q)

holds.
Definition F. We say that measure p on R" satisfies the doubling condition (u €
DC(R™)) if there is a positive number b such that

uB(z,2r) < Bz, 7)

for all z € R™ and r > 0.

It is known (see [51], p. 11) that if p € DC(R"), then p € RD(R"), i.e., there
are positive constants 7; and 7, 0 < 1y, m2 < 1, such that

puB(z,mr) < nopB(z,7),

for all z € R™ and r > 0.
It is easy to check that if u € DC(R"), then p € RDW(R).

We shall need some lemmas giving Carleson-Hérmandar type inequalities.

Lemma 2.1 ([52]). Let 1 < p < r < oo and let p7" € RDD(R"), where p is a
weight function on R™. Then there is a positive constant C such that for all non-
negative [ the inequality

AR
7

> ([rrwa) " [rww) <o [ (f(x)p(:c))pdw)%
Q Q

QeD(R") R™

holds.
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Lemma 2.2 ([50], [53]). Let u(x) > 0 on R™; {Q;}ica is a countable collection of
dyadic cubes in R™ and {a;}ica, {bi}ica be positive numbers satisfying

(1) /u(:p)dx < Ca, for all i€ A;
Qi
(i1) > b < Ca for all i € A.
J: QiCQi
Then A N
(Zezlbl(a%Q/g(x)u(x)daz) )p <G, (HJ gp(:c)u(x)da:) ’

forallg>0 onR" and 1 < p < 0.

3 Hardy-Littlewood one-sided maximal functions. One-
weight problem

In this section we discuss the one-weight problem for the one-sided Hardy—Littlewood
maximal operators.
We begin with the following statement:

Lemma 3.1 ([13]). Let I be a bounded interval and let (1) hold on I. If p € P(I),
then there is a positive constant depending only on p such that for all f, || f|lsc) ) <
1, the inequality

(M f)"™ < € (L MH(f170) (2)
holds.

Now we formulate the main results of this section.

Theorem 3.1. Let I be a bounded interval in R and let 1 < p_ < p, < o0.
(i) If p € P+(I) and a weight function w satisfies the condition w(-)*") € A (I),

then for all f € Lﬂ(')([) the inequality

[N Fwll ooy < Cllw fll ey (12)

holds, where N = M.
(ii) Let p € P_(I) and let w(-)*") € A; (I). Then inequality (12) holds for all

fe Lfv(')(l), where N = M~ .

The result similar to Theorem 3.1 has been derived in [30], [31] for Mg, where
Q2 Cc R" is a bounded domain.
In the case of unbounded intervals we have the next statement:

Theorem 3.2. Let [ = Ry and let 1 < p_ < p, < oo. Suppose that there is a
positive number a such that p(x) = p. = const outside (0, a).

(i) If p € P+(I) and w(-)?Y) € Al (I), then (12) holds for N = M.

(ii) If p € P_(I) and w(-)?") € A5 (I), then (12) holds for N = M~.

P
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Theorem 3.1 yields the following corollaries:

Corollary 3.1. Let p be increasing function on an interval I = (a,b) such that
1 < p(a) < p(b) < oo. Suppose that w is increasing positive function on I. Then the
one-weight inequality

[ PO )Moy < el F Ol o
holds.

Corollary 3.2. Let p be decreasing function on an interval I = (a,b) such that
1 < p(b) < pla) < co. Suppose that w is decreasing positive function on I. Then the
one-weight inequality

[ PO (M=)l or iy < ellw PO (] sy
holds.

Now we prove Theorems 3.1 and 3.2.
Proof of Theorem 3.1. Since the proof of the second part is similar to the first
one, we prove only (i). It is enough to show that

Sp (wM*(f/w)) <C

for f satisfying the condition || f|| zc) ) < 1.

First we prove that S (%) < 00, where p*(z) = 22

By using Holder’s inequality we find that

5 (L) = [/ @ar < ([ rwpeas)
( / w(x)p(xxl—(p)')dx) Dy o,

because w?t)(-) € A¥ (I).
Thus Lemma 3.1 might be applied for p*. Consequently,

Sp(w(M* f/w)) = / {M ) (i) <x>r(m) W™ (z)d

:/([M* (f/w) (x)]p*(w)>p’ W@ (z)dx

") werta

< C/I (1 MY <’£
<c [y ac | (M+ (]g ”*”) m)p P ()
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<C+ C/ }f/w}p(x)wp(z)(:c)d:c <C. O
I

Proof of Theorem 3.2. First we prove (i). Without loss of generality we can
assume that M ™" f(a) < oco. Since M7 is sub-linear operator it is enough to prove
that S, ., (M™f) < oo, whenever S, ,(f) < oo. We have

/R (M )" (2)w(ep@de < c{ /0 ’ (M* fxpoa)™ (2)w(a)® da

n / (M (f o))" (@) ()Pl + / T (M (o)™ (@)w(@)"@da

+/ (M+fX[a,oo))p(m)(x)w(:p)p(x)d:p} =c[l1 + L+ I3+ L.

Since M* f(z) = MT(fXj0.4)(z) for z € [0,a], using the assumptions w(-)P*) €
Al ([0,a]), p+ € P1((0,a)) and Theorem 3.1 we find that I; < oco.

Further, the condition w(-)?") € A} (I) implies that w(-)*") € AF ((a,00)).
Consequently, since p = p. = const on (a, o), by Theorem F we have I; < oo.

Now observe that M™(fxp,q)(x) =0 when x € (a,c0). Therefore I3 = 0.

[t remains to estimate I. For this notice that if z € (0,a), then

1 x+h
M (F o) @) =510 [ F(0) W ()
h>0 T
1 x+h
= s 5 [ W) )y
h>a—x a
1 a+(z+h—a) N
< - <M .
<sw e [ e )y < M () < o0

Hence,
I, < c/ w(z)PPdr < oo
0
because w(-)P") is locally integrable on R,.

To prove (ii) we use the notation of the proof of (i) substituting M+ by M*. In
fact, the proof is similar to that of (i). The only difference is in the estimates of

I - / (M (f X)) (@) ()P

and
I = / (M~ (f - Xp0.) (2))" ()0 (2)P@ iz

Obviously, we have that I, = 0. Further, we represent I3 as follows:

I3 = /OO (M_(f . X[O,a])(:p))pc (x)w(x)Pedz
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-/ (M (F - xpu) (@) (@)w(a)Pede

T / T (M o) @) (@wla)ede = I + 12,

a

Observe that for z € (a, 2al,

M (f xoa)(@) < sup ——— / Oy M f@) < o

t—a<h<z @ — T+ h
Hence,
Y < (M~ f)"(a) / " () dr < oo
If x > 2a, then ' .
(1) @) < = [ Iflan

Therefore by using Holder’s inequality with respect to the exponent p(-) (see
proposition A) we find that

1< ([ wloy w—oy i) ([Csar)”

<o [ @y @-o ) ol el

a ([0 a])

= CJ1 . JQ . J3.
It is clear that Jo < oo. Further, since w(-)?") € A ((a,00)), by Holder’s
inequality we have that w(-)?() € A ((a, oo)) because p. > p_. Hence, by applying

Theorem F (for a = 0) we have that the operator M f := M~ (fX(a,0)) is bounded
in LP¢((a,00)). Consequently, the Hardy operator

H,f(z (t)|dt, x € (a,o0),

is bounded in LP¢((a, 00)). This implies (see, e.g., [20], [37]) that J; < co.
It remains to see that J; < oo. Indeed, Proposition B yields

-1 -1
e HL’Zfé{in < I+ a)lw o o)

< CHX{w*lZl}(') ( )HLP ) ( )([ a)) + ||X{w 1<1}( ) (')HL(P—)/([O,a])

()
< efxqw-rzn (w7 @) poor g + €

a 1/(p-)
Sc(/ wP@A=r-)) (g )dx) + c.
0

Thus 1" < . O
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4 Fractional maximal operators. One-weight problem

In this section we derive the one-weight inequality for one-sided fractional maximal
operators. Our main results are the following statements:

Theorem 4.1. Let I be a bounded interval and let 1 < p_ < p, < co. Suppose that
« is constant satisfying 0 < o < 1/py. Let q(x) = lfpo(;%:v)'
(i) If p € P+(I) and a weight w satisfies the condition w(-)?) € A (), then

the inequality

I(Naf)wllpar gy < Clwflleom, € L) (10)

holds for N, = M} .
N (ii)]wlft p € P_(I) and let w(-)?"0 € A, . (I). Then inequality (13) holds for

Theorem 4.2. Let [ =R, , 1 < p_ < p; < oo and let p(x) = p. = const outside

1_”;2296), where « s constant satisfying

some interval (0,a). Suppose that q(z) =

0<a<l1/p;.
(i) If p € Po(I) and w(-)1) € Al (I), then (10) holds for N, = M.
(ii) If p € P_(I) and w(-)?") € A (I), then (10) holds for N, = M.

Proof of Theorem 4.1. We prove (i). The proof of (ii) is the same. First we show
that the inequality

Mi(f/w)(x) < (M* (fp(')/s(-)wfq(-)/s(-))<x>)8($)/(I(£B) (/pr(y) (y)dy)(X’

holds, where s(z) =1+ q(z)/p ().

Indeed, denoting g(-) = (f(- )) (/O (w(-))790/50) we see that f(-)/w(-) =
(g(+))30)/PLat)/pt)=1 = (g ())1_0‘ sC)/pi)ra=ly,2al) By using Holder’s inequality
with respect to the exponent (1 — a)~! and the facts that s(-)/q(-) = 1 — a,
(s(y)/p(y) + o = 1)/ = s() we have

1
1 / @) 4,
h I (z,x+h) U}(’y)

1 l1-a . N a
< (E/ g(y)dy) (/ gCW/pW)+a—1)/ (y)wq(y)(y)dy>
I (z,z+h) I (z,z+h)

< (M+g(x))* @/ ( /1 ! (y)(y)wq(y)(y))a

o [
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Now we prove that S,(wMJ(f/w)) < C when S,(f) < 1. By applying the
above-derived inequality we find that

Sy (WM (/) < ¢ [ (MO a00) ) ) )

1
= ¢S, (MF(fPO/50qp=a0/50) )0 )/50)).

Observe now that the condition on the weight w is equivalent to the assumption
wi () € A (I). On the other hand, ||fp(')/s(')||Ls(.)(I) < 1. Therefore taking
Theorem 3.1 into account we have the desired result. U

Proof of Theorem 4.2. (i) Let f > 0 and let S, ,(f) < co. We have

Sqw(M f) = / (M;Lf)q(x) (z)w(x)?® dx

: CUO (M Fxioan ()™ (o))" @ da
* /Oa (M (f + Xfawo) ()™ (@)w ()7 da
+ /OO (M;L(f : X[O,a])(l‘))q(x) (x)w(x)q(m)dx

+ / b (M} (fXar00)) ()" (x)w(:p)q(x)dx} =l + I, + I + L.

It is easy to see that I; < oo because of Theorem 4.1 and the condition w?)(-) €
Al . ([0,a]). Further, it is obvious that I3 < oo because M} (fx0,q)(x) = 0 for
x > a. Further, observe that

I, < c/ w(z)"@dz < oo,
0

where the positive constant depends on «, f, p, a.
It is easy to check that by Holder’s inequality with respect to the power

((pe)'/ac) / ((p=)'/a-)

the condition w(-)% € Af . ([a,00)) implies w(-)% € A} ([a,00)). Hence, by using
Theorem F we find that I, < oo.

(il) We keep the notation of the proof of (i) but substitute M by M, . The only
difference between the proofs of (i) and (ii) is in the estimates of I, and I3.

It is obvious that I = 0, while for I3 we have

L= (M (F - xoa) (@) (@)w() @ da

" / (M2 (F - xpou) (2))* ()wla)ieds = I + 12,

a
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If x > a, then

M) < swp k[ Ifldy < e fia)

r—a<h<z
Consequently,
2a
[?El) < c(Maf(a))qc/ (w(z))*dr < cc.

Now observe that when x > a we have the following pointwise estimates:
M (fxpap) (@) < (z—a)* / [fW)ldy < (z = a)* Ml fwll oo qo.ap ™ e go,a)
0

= (x—a)* ;- .
Hence,

1< ([ - ooty ) or -

a

It is obvious that .J; < co. Further,
T2 < Jlw ™ ()Xw-151O) ooy + 107 Oxw1<1() o o
=S+ I,
It is clear that J2(2) < 00. To estimate JQ(I) observe that by Proposition B we have
1 <+ )l sl o < 1+ @)l O sl o)

< (1 + a) ||w*q(')/q‘ ||Lp7([07a]) < Q.

Since M is bounded from LP¢([a,00)) to L%([a,00)) we have the Hardy
inequality

([ =ae e [ o) ar " ([

From this inequality it follows that (see, e.g., [20], [37])

1/pc
pcwpc(:c)d:v) :

/200(;1: —a) @ Ve (y(2)) P de < co. O

a

5 Generalized fractional maximal operators. Two-weight
problem

Let I = [a,b] be a bounded interval and let I := [b,2b — a); [~ := [2a — b, a).
Let Q =1, x I x --- x I, be a cube in R™. We denote:

Qt=L'xIy x---xIt, Q :=1I xIy x-xI .

n



86 V. Kokilashvili, A. Meskhi, M. Sarwar

Let a be a measurable function on R”, 0 < a_ < a(z) < ay < n. Let us define
dyadic fractional maximal functions on R"™:

Q3x
QeD(R™)

(M) @)= sup @PM@/V )ldy:

d
(MCV(() )f) (.T) = QSS:C P 1 a(ac) / ‘f |dy
QeD Rn)

If a(x) = 0, then we have Hardy-Littlewood dyadic maximal functions M@,
M@,

In the paper [39] the two-weight weak-type inequality was proved in the classical
Lebesgue spaces for one-sided dyadic Hardy-Littlewood maximal functions defined
on R"™.

Theorem 5.1. Let p be constant and let 1 <p<q-  <qr <0, 0<a_<a, <n

where q and a are measurable functions on R™. Suppose that w7 € RD@(R™).
Then M+( is bounded from LP (R™) to Ly )(R") if and only if
04() 1

A= HXQ ()@

Q’Q ')HLq(»)(Rn)HXQ+w_1HLp’(Rn) < 0. (11)

Proof. Necessity. Assuming f = yo+w ™ (Q € D(R") ) in the inequality

HM;F(()d fHLZ(')(]R") < C”fHLPw(Rn) (12)

we have that

-

U(-—MQ|@“)HMWW(/wﬂ@m@
LIV(R

Q+

d) o P
< M o < €( w7 )"
Q+
Thus, to show that (11) holds it remains to prove that for all dyadic cubes Q,
Sg = fw p y)dy < oco. Indeed, suppose the contrary that Sg = oo for some cube

Q. Then Sq = llw™ | 1w gy = oo. This implies that there is a non-negative function
g such that ¢ € LP(Q) and [ g(y)w ' (y)dy = oo. Further, let Q = Q*, where

_ Q
Q € D(R™). Then taking f = yggw ™' we have

Hmmmz(/meY<w;

Q+
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Iy = eI g [ 1)
Q+

a()

— eI ey [ swdts) s = oo,
o+
This contradicts (12).
Sufficiency. For every x € R"™ we take @, € D(R") ( Q. 3 z) so that

Q1% [1ldy> 5 (V@) (13)

Assume that f be non-negative bounded with compact support. Then it is easy
to see that we can take maximal cube @, containing = for which (13) holds. Let
@ € D(R™) and let us introduce the set

(T 1
Fo = {z € Q : Q is maximal for which |Q\£z)1/ fly)dy > = M;r(()d)f( )}
Q+

Dyadic cubes have the following property: if )1, Q2 € D(R™), and 651 N 652 #0,
then Q1 C Q2 or Q3 C @)1, where () denotes the inner part of a cube Q.
Now observe that Fg, () Fg, # 0 if Q1 # Q. Indeed, if Q1 Q2 = 0, then it is

clear. If 651 ﬂég # (0, then Q1 C Q2 or Q2 C Q1. Let us take x € Fy, () Fg,. Then
T € @1, x € Qs and

o 3 (W) 1o (a°1) )

1 2

If Q1 C @, then @3 would be the maximal cube for which (13) holds.
Consequently x ¢ Fg, and = € Fp,. Analogously we have that if Q2 C @)1, then
x € Fp, and = & Fy,.

Further, it is clear that Fy C @ and U Fgo =R" where D,,(R") = {Q :

QEDm(R™)
Q € D(RY), Fy # 0},
Suppose that [|f][zz@r) < 1 and that 7 is a number satisfying the condition
p <r < q_. We have

a2 o 1) gy = 0] 0 (3575 ) (@)

Rn

where the supremum is taken over all functions h, ||Al] ( )/ < 1. Now for such
L\ (@)

an h, using Lemma 2.1, we have that

/ v"(x)(M;((@f)r(x)h(x)dx: > / (M;(;;“ ) (2)h(z)dz

QED (R™)



88 V. Kokilashvili, A. Meskhi, M. Sarwar

<c ¥ ([ea@ees i) ( | f(y)dy)r
! J

QEDm (R™)

¢ S ORI o 1 gy ([ S00)
Qt

QEDm, (R™)

-0 B 100 el oy, (] £0)

QED(R™) "

cca S forow) ( f(y)dy) < CA f 500
Qt Qt

QEDm, (R™)

In the last inequality we used also the fact that @t € D(R") if and only if
Q € D(R").

Let us pass now to an arbitrary f, where f € LP (R™). For such an f we take the
sequence fr, = fXQ(0,km)X{f<jm}> Where

Q0,ky) = {(x1, - ,xp) ¢ || <k, i=1,--+ ,n}.

and ky,, jm — o0 as m — oo. Then it is easy to see that f,, — f in L2 (R") and also
pointwise. Moreover, f,,(z) < f(z). On the other hand, {M;L(’_()d)fm} is a Cauchy

sequence in Lg(')(R”), because

HMa(~)fm_ Moy f; HM ( f]) <0Hfm—fjHL{;(Rn)'

Since LI (R™) is a Banach space, there exists g € LI (R") such that
| (Mo fin) — gHLg('>(Rn) — 0.

Taking Proposition A into account we can conclude that there is a subsequence
Moy fm, which converges to g in Lg(')(R”) and also almost everywhere. But f,,
converges to f in LP (R™) and almost everywhere. Consequently,

191l o0 gy < ClIf 8 @n), (14)

where the positive constant C' does not depend on f. Now observe that since f,,, is
non-decreasing, for fixed z € Q, @) € D(R"), we have that

Q1 [ sy =t (@ [ fu ()
QT QT
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and the last limit exists because it converges to g almost everywhere. Hence,

(M;L(’_()d)f> (#) < lim (MI(’-S”‘)fmk) () = 9(x).

for almost every z. Finally, (14) yields

M7 ]300 gy < CIF Ny

O

The proof of the next statement is similar to that of Theorem 4.1; therefore it is
omitted.

Theorem 5.2. Let 1 <p<q_ < qy <o00,0<a_ <ay <n, where p is constant

and q, o are measurable functions on R™. Suppose that w™? € RD@(R™). Then
M;(’_()d) is bounded from from LE (R™) to Lg(')(Rn) if and only if

a() 1

s @OIRE 0O o 7 Oxem ()l g < 0

Q,QeD(R™
Let us now consider the case when p = g = const.

Theorem 5 3. Let 1 < p < 0o, where p is constant. Suppose that 0 < a_ < oy < n.
Then M\" is bounded from LP P(R™) to LP(R™) if and only if

a()
/vp(a:)<M+(()d)(w XQ) ) daz<C’/ z)dr < 00,

]Rn
for all dyadic cubes Q C R™.

Proof. For sufficiency it is enough to show that the inequality
|2 )

holds if for all @ € D(R"),

(15)

ur f‘

LP(R™) ‘ LP(R™)

where
(40 1)) = 28 (0) o)

To prove (15) we argue in the same manner as in the proof of Theorem 4.1. Let
us construct the set Fy for () € D(R™). We have
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/ vP(z) (M;(’_gfg )p@) dx

< QPQGZDm /v” (|Q\1 = /f y) dx
_ CQ%; ({v” \Q|(“)1pdaz>(/f )
-3 ([ / 1010 o) (u(@*))”(u(é+)Q[ Pt

Taking Lemma 1.2 into account it is enough to show that

Si= ) (/vp(x)}Q;\(af)l)pdx>up(Qj) SC’/u(z)dm.
Q

Jj:Q;CQ

FQj_;réO) Q;

QjED(R™)
Indeed, we have

s= 3 / vp(x)(}ijaf)‘l / u(y)dy)pdx

i1 Q;CQ

FQ;¢9) FQ; Qj
Q;ED(RM)
< Z / 0P (2) (M) (u xg) (x)) da
7 Q;CQ Fo
rgs Q;
QjeD(EM)
= / vp(x)(MJ“(d) (u XQ)(:L‘))pd:L‘
UQJCQ Q;
< /vp(x)(M+’(d) (u XQ)(x))pdx < C/u(y)dy.
R™ Q

Necessity. Taking the test function fg = XQw’p/ in the two-weight inequality

Jo (1257 1)

and observing that [w™ (y)dy < oo for every Q € D(]R ) we have the desired
Q

LP(R™) P(R™)

result. O
The proof of the next statement is similar to that of the previous theorem. The
proof is omitted.
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Theorem 5.4. Suppose that 1 < p < oo, where p is constant. Then Ma_(’_()d) 18

bounded from LP (R™) to L2(R™) if and only if there is a positive constant C such
that for all Q € D(R™),

/ WP (z) (Ma(’_()d) (w_p,XQ>)p(x)dx <C / w¥ (z)dz < co.
Q

Rn

Let us now discuss the two—weight problem for the one-sided maximal functions

M;L(.), M;(.) defined on R.

Recall that by M;r(’_()d) and Ma_(’_()d) we denote one-sided dyadic maximal functions.
Now we assume that they are defined on R.
Together with these operators we need the following maximal operators:

x+h

_ 1

(1) @) = s s [ 1l
x-l—%

r—

(0) @) = s s [ 1)l

h>0

h
2

z—h
z+27
—~ 1
+ _
(1)@ = s sy [ @l
r+2i—1

To prove the next statements we need some lemmas.

Lemma 5.1. Let f € Lj,.(R). Then the following pointwise estimates hold:

20é+—1

(M) f) () < T 9ar 1 (MSf)(@);

2a+—1

(Moj(-)f) (z) < 1 — 9a4-1 (M;()f) (x) (16)

for every x € R.
Proof. Observe that

z+h $+% z+h

1 1 1
) |f(t)|dt = Tia(e) |f(t)|dt+m | f(t)]at
T T er%
x-l—% z+h

W / |f(t)|dt+2a<$>—1(h/2)%a(w) / £ ()|dt

x+%

— 2@(2:)— 1
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<2207 (M L f) (@) + 207N (M f) ().
Hence,

(M ) () < 227N (M F) () + 20O (M f) ().

Consequently,

(1 o 20{(:13)71) (M+

o

5 (@) < 2207 (M ) (),
which implies

a(z)—1 B ap—1 B
(M) 1) (@) < oot (W15, 0) < s (W15, 1) )

Analogously the inequality (16) follows. O
Lemma 5.2. The following inequality
(M, f)(x) < C(M ) (2) (17)
holds with a positive constant C' independent of f and x.

Proof. Let us take h > 0. Then h € [277! 27) for some j € Z. Consequently,

x-l—% 427
1 1
aw | Ol s Gy 1Ol
z+h 1.+2j—2
42771 Y
1 1
= 3G Dia@ [F @)1t + Sy £ (t)|dt
:B+2j_2 x+2j—l
T —1 " .
1 +27 204(35)—1 427
= 3G-20-a@) / FOldE + S5hamawmy / £ (£)]dt
T+2772 r+42i—1

< (M) (@) + 227 (M f) (@) = (L4271 (M, f) ().
Hence, (17) holds for C' = 1 4 22+~1, O

Lemma 5.3. There exists a positive constant C' depending only on o such that for
all f, f € Line(R), and x € R,

(M), /) (@) < C (M7 f) (). (18)
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Proof. Let h = 27 for some integer j. Suppose that I and I’ are dyadic intervals
such that I J I’ is again dyadic, |[I| = |I'| =27  and [z + 2%, 2+ h) C (IUI’). Then
x e (IYI')~, where (I|JI')” is dyadic and

z+h
[ 1wl [ 17 < 200 (010 ),
x+% ygr

whence -
(M f) (@) < 27 (M7 F) ().

If 7JI' is not dyadic, then we take I; € D(R) with length 2/ containing I’.
Consequently, x € (I;)~, where I is dyadic. Observe that x € I~, where I~ is also
dyadic. Consequently,

z+h

[ irtwnde< [ 1= /|f |dt+/|f (Bldt < C W= (M £) a),
:1:+h IJUn
with positive constant C' independent of j. Finally, we have (18). O

Lemma 5.4. There exists a positive constant C' depending only on o such that
d
(M ) () < C (M, ) ) (19)
forall f, f € Lio(R), z € R.

Proof. Let x € I, I € D(R). Denote I = [a,b). Then It = [b,2b — a). Let h =
2b — a — x. We have

z+h
21 a(z)
|I|1 a(x)/‘f ‘dt |]UI+|1 a(z) /|f |dt

z+h
— 1 — -
< 2! m/lf(tﬂdtgl M f(@).

Since I is arbitrary dyadic cube containing x, then (19) holds for C' = 2'"*-. O
Summarizing Lemmas 5.1-5.4, we have the next statement:

Proposition 5.1. There exists positive constants C; and C5 such that for all f,
f € Lie(R) and = € R the two-sided inequality

d
CL(MJ) 1) @) < (M7 1)) < Co (M £) ()
holds.
Now Theorem 5.1 (for n = 1) and Proposition 5.1 yield the following theorem:
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Theorem 5.5. Let p, q and o be measurable functions on I =R, 1 < p_ < q_ <
¢ < 00, 0 < a_ < ay < 1. Suppose also that p € G(I). Further assume that
w=P-)" € RDW(I). Then M is bounded from LE(T) to V(1) if
B := sup || X(a—na () H*0!

a€R

h>0

w_lHL(p*)/(R) < 0.

Proof. By using Theorem 5.1 we have that the condition B < oo implies

+,(d
155 Fl oy < Cllfwllr- @

Now Propositions C and 5.1 complete the proof. U
Analogously the next statement can be proved:

Theorem 5.6. Let p, g and o be measurable functions on I =R, 1 < p_ < q_ <
¢y < 00,0 < a_ <a, < 1. Suppose also that p € G(I) and that w=®-)" € RDW(I).
Then M, is bounded from L7,(I) to Lg(')(l) if

By = Slel? HX(a,ﬁh)(')hQ(-)il

h>0

U(')HLq(-)(j)HX(a*hva)wilHL(L)/(I) < 00.

The results of this section deduce the following corollaries:

Corollary 5.1. Let I :=R and 1 <p<q_ <qs <00, 0 <a_ < ay <1, where
p is constant. Assume that w™? € RDD(R). Then MY . is bounded from L? (I) to

a()
Lg(')([) if and only if

SUp [ X(an () A0 W | gy < 00

h>0

Corollary 5.2. Let I :== R and let 1 < p < q_ < g+ < o0, where p is constant.
Suppose that o is measurable function on R satisfying 0 < a_ < ay < 1. Suppose
also that w=®-)" € RDW(I). Then M,y is bounded from from Li,(I) to L1 (1) if
and only if

Sup [[xa.atm) (VR0 s gy [ Xana ™ | oy < 00

h>0

Corollary 5.3. Let =R, 1 <p_ < q_. <qy <00, 0 < a_ < a; < 1. Suppose
that p_ = p(c0) and p € Puo(I). Assume that w=?-)" € RDW(R). Then:
(i) M is bounded from LE(I) to LYI) if B < oo;

)

(i) My, is bounded from Ly, (I) to Lg(')(I) if By < 0.

Proof of Corollary 5.1. Sufficiency is a direct consequence of Theorem 5.5.
Necessity follows immediately by applying the two-weight inequality for the test

function f(2) = X(aa+n (2)w P (z) (see also necessity of the proof of Theorem 5.1

for the details). O

Proof of Corollary 5.2. Similar to that of Corollary 5.1. U
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Proof of Corollary 5.3. (i) The result follows from Theorem 4.5 because the
condition p € Py (I) implies that

/ FP@p(e0) /() -p(00)| 1 < o0

Hence, by using the assumption p(co) = p_ we have that p € G(I).

The second part of the theorem is obtained in a similar manner; therefore it
omitted.

The next statement gives the boundedness of M7 () in the diagonal case p = ¢
const.

i o

Theorem 5.7. Let I := R and let 1 < p < oo, where p is constant. Suppose that
0<a- <a; <oo. Then M;r(_) is bounded from LP (1) to LE(I) if and only if there
s a positive constant C' such that for all bounded intervals J C R,

/ WP () (M;(_) <w XJ) ) dr < C / 2)da < 0.

Proof. Sufficiency follows from Proposition 5.1 and Theorem 5.3 for n = 1. For
necessity we take f = y; w” in the two weight inequality

Hv MT

iy S C J|lw fHLg(J)

and we are done. 0
Analogously the following theorem follows:

Theorem 5.8. Let [ := R and let 1 < p < oo, where p is constant. Suppose that
0 <a- <ay <oo.. Then My is bounded from LY (1) to Li(I) if and only if

[ v (3, () 0)) x<c/ )iz < o0

for all bounded intervals J C R.

Finally we mention that the results similar to those of this section were derived
in [24] for generalized two-sided fractional maximal functions and Riesz potentials.

6 Fefferman—Stein type inequality

In this section we derive Fefferman—Stein type inequality for the operators M;(_),
M;L(_). Notice that this inequality for the classical Riesz potentials for the diagonal

case was established by E. Sawyer (see, e.g., [49]).
The main statement of this section reeds as follows:
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Theorem 6.1. Let o, p and q be measurable functions on I = R. Suppose that
l<p . <qg <qgr<ooand0<a_ <ay <1/p_. Suppose that p € G(I). Then the
following inequalities hold:

loC AL O o < ell F OO o (20)
loC) (M, O a0y < ell F R0 oo, (21)

where

(Nogyv) (= z) =suph” Yo ( YA OX @by (W a0 @y,

(NJF() )( ) = SuPh 1/p- |v(-)h® )X(xx-‘rh)( )HLQ(')(R)-

Proof. We prove (20). The proof of (21) is the same. First we show that the
inequality

+, e
)OS Y oy < el FE N0 Ol
holds.
Repeating the arguments of the proof of Theorem 5.1 for one-dimensional dyadic
intervals J we construct the sets F;. Take h, ||h||L(q(.)/r)/(R) <1, where p_ <r <q_.
By using Lemma 2.1 and Proposition C we have

/R (@) (MED F@) ha)dr = Y / D P (@) h(w)da

JED (R)

LaC)/m(R)

v )OO X ()

V()T x ()

< r J(a(x)—l)rh d )( d )7"
<o Y (/FJv(a:)II () /ﬁf(t)t
<c Z
(IO xFJ<->]!Lq<.)(R)dw)
- J—T/(p)/(
I /ﬁf(x)
JEDm (R)
OO O < Cop(Ng o) @), w e L,

JEDm (R)
< 1)7’ .
<o 3 om0 e ([ 702)
| o)
JEDm(R) LQ(')”(R)( J*
> (Lo
JEDm
d:p)
L) (R)
JEDm (R)
<c J_T/(p)/(/ ) (N~ v xdx)
<c Y @)@
< el FO Ny 0) Ol @ < Al FON 0O 0 -
Here we used the inequality
which follows in the same manner as Lemma 5.4 was proved. Now Proposition 5.1
completes the proof. O

LQ(')(R)
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7 The trace inequality for one-sided potentials
Let
Ra(.)f(l‘) = / Ldt; reR,

xT

where « is a measurable function on R with 0 < - < ay < 1.
Here we establish criteria which guarantees the boundedness of R,.) and Wy,

from LPO(I) to LIV(1).

Theorem G ([|24]). Suppose that 1 < p < q_ < qy < 00, where p is constant. Let
0 <a_ <a; <1 Then the generalized Riesz potential

f(y)
R

is bounded from LP(R) to Lg(')(R) if and only if
su 3 IO o J 5 < 00, 22
sup s () M1l g0 (22)

where the supremum is taken over all bounded intervals J C R.

Now we prove the following statement:

Theorem 7.1. Let I := R and let measurable functions p, q, and « satisfy the
conditions 1 < p_ < q- < qp < 00, 0 < a_ < ay < 1. Further, suppose that

pegl).
If
1
su N NTEN gy | TP < o0,
JJI;HXJ() | /| HLU()(R)| |
where the supremum is taken over all bounded intervals J C R, then Ry and W,
are bounded from LPC)(I) to Lg(')(l).

Proof. The result is a direct consequence of the inequalities

(Rat)f)(2) < (Tarf) (2), (War f) (@) < (Tay f) (@) (f 2 0),
Theorem G and Proposition C. .

Theorem 7.2. Let I := R and let p,q and « satisfy the conditions of Theorem G.
Then the following conditions are equivalent:

(i) Racy is bounded from LP(I) to L& (I);

(ii) Wa(y is bounded from LP(I) to L (1);

(iii) condition (22) holds.
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Proof. The implications (iii) = (i), (ii) = (i) follow from Theorems 7.1 and G.
Let us now show that (i) = (iii). Let f(x) = X(aa+n) (%), where a € R and h > 0.

Then || f||zr@) = h¥. On the other hand,

e e =0

a—

LIV (®)

> Clxtaarn) (V|| o -
Hence, (i) implies that

HX(%Hh)(')hQ(')HLgm(R)h’% <C

for all @ € R and h > 0. This implies (iii). Analogously the implication (ii)=-(iii)
can be derived. O

8 Hardy-Littllewood type inequalities

The results of the previous section enable us to formulate necessary and sufficient
conditions governing the Hardy-Littlewood (see [17]) type inequalities for one-sided
potentials. For these inequalities in classical Lebesgie spaces we refer also to [46]. In
particular, we give necessary and sufﬁcient conditions on ¢, p and « for which R,
and W, are bounded from L? to L) where p is constant.

Theorem 8.1. Let [ = R and let p,q and « satisfy the conditions of Theorem G.
Then the following conditions are equivalent:

(i)  Ra() is bounded from LP(I) to L1)(I);

(ii) W) is bounded from LP(I) to L1)(1);

iii) su SRR J|7r < 00,

(iii) Jc%HXJ( | J|* HLq )(J| ‘

where the supremum is taken over all bounded intervals J in R.

9 Two-weight inequalities for monotonic weights

Let
(Towf) (@ /f y)dy, =€ R,

(T} f / f(y)w(y)dy, xe€R,.

In the sequel we will use the following notation:
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Let us fix a positive number a and let

o ~ | p(x), if v <a;
)= p (Oal). o) = { BOR

_ o~ p(®), if v < a;
p) =y (e )= { B0 s

I = 2871 2R+ ke Z I, = [2F, 2"4Y), ke Z,

where (0, z) and [0, z] are open and close intervals respectively.

Recall that a function p satisfies the Dini-Lipschitz condition on R, i.e, p €
DL(Ry) if (2) holds for z,y € R, satisfying the condition 0 < |z — y| < 1.

The following two statement are known (see [15]):

Theorem 9.1. Let 1 < p,(z) < p(x) < py < 00. Suppose that there exists a positive
number a such that p(x) = p. = const when x > a. If

> p(@) ([ ., (@
sup/ <v(x)) / w(y) P @y dr < 0o
t>0 Jt 0

then T, is bounded in LPO)(R,).

Theorem 9.2. Let 1 < p,(z) < p(x) < py < co. Suppose that there exists a positive
number a such that p(x) = p. = const, when x > a. If

t 00 —})(:/c)
_, @)
sup [ (o) ( [ wtw <f>dy) W e < oo,
0 t

>0
then T}, is bounded in LPO(Ry).
The next two lemmas will be useful for us.

Lemma 9.1 ([2]). Let 1 < p_ < p(z) < q(x) < ¢ < 00, p € DL(R,) and let
p(z) = p. = const, q(x) = q. = const when x > a for some positive number a. Then
there exist a positive constant ¢ such that

Z | fx ||LP(')(]R+)|| 9Xr ||Lq’(»)(R+)§ cll f ||LP(')(]R+)|| 9 ||Lq’(»)(R+)

for all fand g with f € LPO(R,) and g € LYO(R,).

Lemma 9.2 ([4]). Let p € DL(Ry). Then there exist a positive constant ¢ such that
for all open intervals I in R, satifying the condition | I |> 0 we have

Now we prove some lemmas.
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Lemma 9.3. Let 1 <p_ < po(z) < p(x) < p, < oo and let p(x) = p. = const if
x > a for some positive constant a. Suppose that v and w are positive increasing
functions on R, satisfying the condition

p(x)
00 () t _ ., 30) (2)
B = sup/ <v(x)>p (/ w(y)~ P (x)dy) U dr < o (23)
t 0

t>0 X

Then v(4x) < cw(zx) for all x > 0, where the positive constant c is independent of
x.

1;5?3 < oo follows from

[e’s) p(I) t ;(77)1
/ (v(:c)) (/ w(y)_(ﬁ’)'(”ﬁ)dy) o
t T 0

8t p(z) -
/ (v(4t)) . t(ﬁ’éﬁ/fz) 7 P@) g
4t w(t)

P_ 8t L, p_
> (U(4t)) / t%gﬁ 7 P@dr > ¢ (U(4t)) ;
w(t) at w(t)

where the positive constant ¢ is independent of a small positive number ¢.
Further, suppose that ¢ is a positive number such that v(4t) < (¢4 1)w(t) when
t <9.1If § <a, then for all § <t < a, we have that

Proof. First assume that 0 < ¢ < a. The fact that ¢ = W

the inequalities:

v

v(4t) < w(da) < cw(d) < cw(t),

where ¢ depends on v, w and J. Now it is enough to take ¢ = max{(¢+ 1),¢}.
Let now a <t < co. Then p(x) = p. = const for x > t and, consequently,

e sy ([ () ) ([l (58)

The lemma is proved. O
The proof of the next lemma is similar to that of the previous one; therefore we
omit it.

Lemma 9.4. Let 1 < p_ < pi(z) < p(z) < p, < oo, and let p(x) = p. = const
if x > a for some positive constant a. Suppose that v and w are positive decreasing
functions on R,. If

p(x)
~ t o0 = a0 (@)
B := sup / (v(z))P™ ( / (w(y))? <$>dy) U dr < oo, (24)
0 t

t>0

then v(x) < cw(4x), where the positive constant ¢ does not depend on x > 0.
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Theorem 9.3. Let 1 <p_ < p, < oo and let p € DL(Ry). Suppose that p(x) =
pe = const if € (a,00) for some positive number a. Let v and w be weights on R
such that

(a) T}, 5 is bounded in LPOR,);

(b) there exists a positive constant b such that one of the following two conditions

hold:

(i) ess sup v(y) < bw(x) for almost all x € Ry;
ye(g 4]

(ii) v(x) <b essinfw(y) for almost all x € R,.
y€[F47]

Then M~ is bounded from LZZ,(')(RJF) to L%j(')(R+).
Proof. Suppose that ||g[|;» g, < 1. We have

2k+1

[0 f@)eis < 3 [0 fute)gs

0 keZ

3 [ 08 @)l + Y [0 fua)egtonds=i+ 52+ i
k€Z k€EZ

where fix = f - Xpar-1) Sor = F Xt oo f3.6 = 0 X[or—1,26+2)
Ify € [0,2""!) and x € [2%, 28] then y < /2. Hence 2/2 < x—y. Consequently,
if h < /2, then for x € [2F71 2842 we have

1 [ 1 [
E/ | fir(y) | dy = E/ | Xpo,2r-1y | dy = 0.
z—h z—h

Further, if & > £, then

T

1 [" 1 [ 1
E/ | furly) [dy = E/ | f X1y | dy < ¢ —/ | f(y) | dy.
z—h z—h Xz

0

This yields that

xT

M~ fix(z) <c i/ | f(y) | dy for x € [2F 2.
0

Hence, due to the boundedness of Ty g in LP@®) (R, ) we have that

5 < /volm v(z)g(x)dx

< e M(Tooal FD) vlleer ey - 19l ro@yy < € lfwlleor e, )
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Observe now that Sy = because for, = f - X[or+2,o0- Let us estimate S3. By using
condition (i) of (b), boundedness of the operator M~ in LP()(R,) and lemma 9.1
we have that

Sy < ey (ess sup V)M fa (o) - N9CxEN 0w
k k

< ey (ess sup I Oxnlleo @y - 19C)xEN Lo @)
k

< e [fOw) o @y)-
If condition (ii) of (b) holds, then

v(z) < b essinfw(y) <b essinfw(y) < bw(z)
ye([542] ye(2k—1,2k+2)

for z € E;, and x € I;,. Hence,

ess sup w(y) < bw(x)
Ey

if x € I. Consequently, taking into account this inequality and the estimate of S
in the previous case we have the desire result for M. O

Theorem 9.4. Let 1 < p_ < p, < oo and let p € DL(Ry). Suppose that p(x) =
pe = const if x > a, where a is some positive number. Let v and w be weight functions
on Ry such that

(a) T, 5 is bounded in LPO(RL);

(b) there ezists a positive constant b such that one of the following two conditions
hold:

(i) ess sup v(y) < bw(x) for almost all x € Ry;
y€E[} 4z

(i) v(z) <bessinfw(y) foralmost all x € R;.
y€e[] 7]

Then M* is bounded from LA (R,) to LEV(R,).

Proof. Suppose that ||g[|;¢)g,) < 1. We have

[ar sy < 3 [ (0t fu@) @
0 kEZ 2t
+ Z/ (M* for(2))v(z)g(z)dz + Z /k (M7 f3(2))v(2)g(x)de:= S + S + Ss,

keZ

where f; 1, i = 1,2,3 are defined in the proof of the previous theorem. It is easy to
see that S; = 0. To estimate S, observe that

M*f. X[2h+1,00)(7) < € sup 277 / lf(y)|dy, =€ E, (25)

J>k42
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Indeed, notice that if y € (282 00) and o € By, then y — x > 281, Hence,

z+h
S VIV S BT

{y:y—z<h,y—x>2k+1}

for h < 28! and z € I,.

Let now h > 281 Then h € [27,2771) for some j > k + 1. If y — x < h, then it
is clear that y =y —x + o < h 4+ 2 < 271 4 2k+1 < 27+1 4 97 < 27+2 Consequently,
for such an h we have that

z+h z+h

1 1 1
F [ 1stlay = [ 1 ety [ 5@y
z z {yy—z<hy>2k+2}
j+1 |
Fwldy< 3 27 / @)y

=kl gy yei 22

1
< =
x

{y: yel2ht2,27+2]}
which proves inequality (25).

Taking into account estimate (25) and the boundedness of T} ; in LPO(R,) we

T s [ (e [
o (Jrn) (5 o)
o fro) £ (Joomn
“ey2 ( E/ i) / gl ) < 9> E/ sl / v()g(a)de ) dy
- / |f;y)\ o / w(o)gla)de )y = / v<x;g<x>( 7 )]y )

<c ||g||LP’(')]R+ ) ||ng(~),1/-f||LP(')]R+ < C||fw||LP(')R+'
To estimate S3 assume that condition (7) of (b) is satisfied. By Lemma 9.1 and
the boundedness of the operator AT in LP*)(R,) we conclude that

S3 < CZ(eSS;up M far (Ol o @) - 19COxBN 0 @4
k k

< ) (ess sup VI Oxallro e - lgOxE o)
k

< e lFOwxnOllrow,) - 19C)xal o e,
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< dlfOw)lzro@olldOllror,) < e lfGwl)moe,):
U

Theorem 9.5. Let 1 <p_ < po(xz) < p(zx) <p, <oo andletp € DL(Ry). Suppose
that p(x) = p. = const if x > a, where a is some positive constant. Assume that v
and w are positive increasing weights on (0,00). If condition (23) is satisfied, then
M~ is bounded from L (R) to LEO(R*).

Proof. Follows from Lemma 9.3 and Theorem 9.3. ]

Theorem 9.6. Let1 <p_ < pi(z) < p(x) < p, < oo, andletp € DL(R,). Suppose
that p(z) = p. = const if © > a, where a is some positive constant. Let v and w
be positive decreasing weights on (0,00). If condition (24) is satisfied, then M™ is
bounded from L5 (R*) to LAY (R*).

Proof. Follows immediately from Lemma 9.4 and Theorem 9.4. U
Let us discuss two—weight estimates for one-sided potentials defined on R, :

x o0

0 T
where x > 0 and 0 < o < 1.

The following statements were proved in [13]:

Theorem H. Let I = R, and let p € P (I). Suppose that there exists a positive
constant a such that p € Pu((a,00)). Suppose that « is a constant on I, 0 < a <

Pr
and q(x) = L)). Then W, is bounded from LPC)(I) to LIO)(I).

1—ap(z

Theorem 1. Let [ = R, and let p € Py (I). Let o be a constant on I, 0 < a < L

by
and let q(x) = 1_”;2296). Suppose that p € Pu((a,00)) for some positive number a.
Then Ry, is bounded from LPO(I) to LIO)(T).
Remark A. Theorems H and [ are true if we replace the condition p € Py ((a, 00))
by the condition: p is constant outside an interval (0, a) for some positive number a.

Our next statements regarding one-sided potentials read as follows:

Theorem 9.7. Let 1 < p_ < p, < o0, a < 1/py, q(x) = 1_”;2296), p € DL(R,).
Suppose that p(x) = p. = const if x > a, where a is some positive number. Let v
and w be a.e. positive measurable functions on R, satisfying the conditions:

(a) T,z is bounded in LPO(R,),

(b) there exists a positive constant b such that one of the following two conditions
hold:

(i) ess sup v(y) < bw(x) for almost all x € Ry;
y€[7 4]

(ii)  w(z) <bessinfw(y) for almost all v € R,.
y€e[F47]

Then R, is bounded from Lﬁ(')(RJF) to Lg(')(R+).



One and two weight estimates for one-sided operators in LP() spaces 105

Theorem 9.8. Let 1 < p_ < p; < o0, a < 1/py, q(x) = 5 p(ipzx), p € DL(Ry).
Suppose that p(z) = p. = const if x > a, where a is some positive number. Let v
and w be a.e. positive measurable functions on R, satisfying the conditions:

(a) T}, is bounded in LPO(R,),

(b) there exists a positive constant b such that one of the following two conditions
hold:

(i) ess sup v(y) < bw(x) for almost all x € Ry;
y€[] 4]

(ii))  w(x) <bessinfw(y) for almost all v € R,.
y€[ T 4a]

Then W, is bounded from LEO(R,) to LIV (R,).
Proof of Theorem 9.7. Let f > 0 and let |[g][;s()r,) < 1. It is obvious that

2k+1

/OOO (Raf(x))v(z)g(z)dr < Z/ (Rafix(z)) v(z)g(z)dz
+ (Rafou(z)) v( x)dxr + (Rafsp(z)) v(z)g(z)dz =
X o et ) NECEMEREY
:Sl+52+53’

where f; 1, ¢ =1,2,3 are defined in the proof of Theorem 8.3
If y € [0,2"1) and x € [2F, 2", then y < £. Hence

R file € 251 942,

By using Hoélder’s inequality, Theorem 9.1, Remark A we find that condition ()
guarantees the estimate

S < C”fw”LP(')(R)

Further, observe that if z € [2%,2¥1) then R, fox(7) = 0. Hence Sy = 0.
To estimate S3 we argue as in the case of the proof of Theorem 9.3. U
The proof of these theorems are based on the following lemmas which can be

derived easily by using monotonicity of the weights v, w and the fact that ¢(z) =
p(x)

1—ap(z)”
fhe proof of the next two lemmas are similar to that of Lemma 9.3; therefore
we omit it.

Lemma 9.5. Let the conditions of Theorem 9.9 be satisfied. Then there is a positive
constant ¢ such that for all t > 0 the inequality

v(4t) < cw(t)

18 satisfied.
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Lemma 9.6. Let the conditions of Theorem 9.10 be satisfied. Then there is a positive
constant b such that for all t > 0 the inequality

v(t) < bw(4t)
holds.

These lemmas and Theorems 9.7 and 9.8 immediately imply the following
statements:

Theorem 9.9. Let 1 < p_ < p, < 0o and let a be a constant satisfying the condition
a < 1/py. Suppose that q(z) = 1_”;2296) and p € DL(R,). Assume that p(z) = p. =
const outside some interval [0,al, where a is a positive constant. Let v and w be

positive increasing functions on Ry satisfying the condition

a(
00 t (Po) (=)

/ (00 (1))@ / w0 @ (3 dy d < oo,

t 0
Then R, is bounded from Lfv(')(]R) to Lg(')(R)_

Theorem 9.10. Let 1 < p_ < p. < oo and let o be a constant satisfying the
condition o < 1/py. Suppose that q(z) = 1—%2‘@) and p € DL(R}). Suppose also
that p(x) = p. = const outside some interval [0,a], where a is a positive constant

and that v and w are positive decreasing functions on Ry satisfying the condition

p(x)
¢ 00 _, )
[ (0 ( [ @™ @dy) U g < oo,
0 t

t>0

Then W, is bounded from L5 (R) to LI(R).
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