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Abstract
The paper is devoted to weighted inequalities for positive kernel operators in variable
exponent amalgam spaces. In particular, a characterization of a weight v governing
the boundedness/compactness of the weighted kernel operators Kv andKv , defined
on R+ and R, respectively, under the log-Hölder continuity condition on exponents
of spaces is established. These operators involve, for example, weighted variable
parameter fractional integrals. The results are new even for constant exponent
amalgam spaces.
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1 Introduction
In the paper, we derive necessary and sufficient conditions on a weight function v govern-
ing the boundedness/compactness of the positive kernel operators

Kvf (x) = v(x)
∫ x


k(x, t)f (t)dt, x > ,

(Kvf )(x) = v(x)
∫ x

–∞
k(x, t)f (t)dt, x ∈R

in variable exponent amalgam spaces (VEAS) under the log-Hölder continuity condition
on exponents of spaces. It should be emphasized that the results are new even for constant
exponent amalgam spaces.
Historically, the boundedness problem for the two-weighted Hardy transform

(Hv,wf )(x) = v(x)
∫ x
 f (t)w(t)dt from Lp(·) to Lq(·) was studied in the papers [, ] in different

terms on weights (see also [] for related topics). In [], the authors explored also the com-
pactness problem forHv,w. The boundedness for fractional integral operators in (weighted)
variable exponent Lebesgue spaces defined on Euclidean spaces was investigated by many
authors (see, e.g., the papers [–], etc.). The compactness (resp. non-compactness) of
fractional and singular integrals in weighted Lp(·) spaces was studied in []. We refer also
to the monograph [] for related topics.
The space Lp(·) is a special case of the Musielak-Orlicz space (see [, ]). The first sys-

tematic study of modular spaces is due to Nakano [].
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Variable exponent Lebesgue and Sobolev spaces arise, e.g., in the study of mathematical
problems related to applications to mechanics of the continuummedium (see [, ] and
references cited therein).
The manuscript consists of four sections. In Section , we recall some well-known facts

about variable exponent Lebesgue spaces Lp(·). In Section , we recall the definition, his-
tory and some essential properties of amalgam spaces with a constant exponent, and also
known results about the boundedness of some integral operators in these spaces; bound-
edness criteria for the operatorsKv andKv in VEAS are also established. The compactness
of positive kernel operators in VEAS is studied in Section .
Throughout the paper, constants (often different constants in the same series of inequal-

ities) will mainly be denoted by c or C; by the symbol p′(x), we denote the function p(x)
p(x)– ,

 < p(x) < ∞; the relation a ≈ bmeans that there are positive constants c and c such that
ca ≤ b≤ ca.

2 Preliminaries
We begin this section by the definition and essential properties of variable exponent
Lebesgue spaces.
Let E be a measurable set in R with positive measure. We denote

p–(E) := inf
E
p, p+(E) := sup

E
p

for a measurable function p on E. Suppose that  < p–(E) ≤ p+(E) < ∞. Denote by ρ a
weight function on E (i.e., ρ is an almost everywhere positive measurable function). We
say that a measurable function f on E belongs to Lp(·)ρ (E) (or to Lp(x)ρ (E)) if

Sp(·),ρ(f ) =
∫
E

∣∣f (x)∣∣p(x)ρ(x)dx < ∞.

It is a Banach space with respect to the norm (see, e.g., [–])

‖f ‖Lp(·)ρ (E) = inf
{
λ >  : Sp(·),ρ(f /λ)≤ 

}
.

If ρ ≡ const, then we use the symbol Lp(·)(E) (resp. Sp(·)) instead of Lp(·)ρ (E) (resp. Sp(·),ρ ). It
is clear that ‖f ‖Lp(·)ρ (E) = ‖f (·)ρ/p(·)(·)‖Lp(·)(E).
In the sequel, wewill denote byZ andZ– the set of all integers and the set of non-positive

integers, respectively.
To prove the main results, we need some known statements.

Proposition A ([–]) Let E be a measurable subset of R. Suppose that  < p–(E) ≤
p+(E) < ∞. Then

(i)

‖f ‖p+(E)Lp(·)(E) ≤ Sp(f χE) ≤ ‖f ‖p–(E)Lp(·)(E), ‖f ‖Lp(·)(E) ≤ ;

‖f ‖p–(E)Lp(·)(E) ≤ Sp(f χE)≤ ‖f ‖p+(E)Lp(·)(E), ‖f ‖Lp(·)(E) ≥ ;

http://www.journalofinequalitiesandapplications.com/content/2013/1/173
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(ii) Hölder’s inequality

∣∣∣∣
∫
E
f (x)g(x)dx

∣∣∣∣≤
(


p–(E)

+


(p+(E))′

)
‖f ‖Lp(·)(E)‖g‖Lp′(·)(E)

holds, where f ∈ Lp(·)(E), g ∈ Lp′(·)(E).

Proposition B ([–]) Let  ≤ r(x) ≤ p(x) and let E be a bounded subset of R. Then the
following inequality

‖f ‖Lr(·)(E) ≤
(|E| + 

)‖f ‖Lp(·)(E)
holds.

Definition . We say that p satisfies the weak Lipschitz (log-Hölder continuity) condi-
tion on E ⊂ R (p ∈ WL(E)), if there is a positive constant A such that for all x and y in E
with  < |x – y| < / the inequality

∣∣p(x) – p(y)
∣∣≤ A/

(
– ln |x – y|)

holds.

Lemma A ([]) Let I be an interval in R. Then p ∈ WL(I) if and only if there exists a
positive constant c such that

|J|p–(J)–p+(J) ≤ c

for all intervals J ⊆ I with |J| > .Moreover, the constant c does not depend on I .

For the next statement we refer to [] in the case of finite interval, and [] for infinite
interval.

Proposition C Let p and q be measurable functions on I := (a,b) (–∞ < a < b ≤ +∞) sat-
isfying the condition  < p–(I) ≤ p(x) ≤ q(x) < q+(I) < ∞, x ∈ I . Let p,q ∈ WL(I). Suppose
also that if b = ∞, then p(x) ≡ pc ≡ const, q(x) ≡ qc ≡ const outside some large inter-
val (a,d). Then there is a positive constant c depending only on p and q such that for all
f ∈ Lp(·)(I), g ∈ Lq′(·)(I) and all sequences of intervals Sk := [xk–,xk+), where [xk ,xk+) are
disjoint intervals satisfying the condition

⋃
k[xk ,xk+) = I , the inequality

∑
k

‖f χSk‖Lp(·)(I)‖gχSk‖Lq′(·)(I) ≤ cCa,b‖f ‖Lp(·)(I)‖g‖Lq′(·)(I)

holds. Moreover, the value of Ca,b is defined as follows: Ca,b = [(b – a) + ] if b < ∞ and
Ca,∞ = [(d – a) + ] +  if b = ∞.

Let v and w be a.e. positive measurable function on [a,b), –∞ < a < b≤ ∞, and let

(
H (a,b)

v,w f
)
(x) = v(x)

∫ x

a
f (t)w(t)dt, x ∈ [a,b).

http://www.journalofinequalitiesandapplications.com/content/2013/1/173
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Further, we denote

(Hv,wf )(x) = v(x)
∫ x


f (t)w(t)dt, x > ,

(Hv,wf )(x) = v(x)
∫ x

–∞
f (t)w(t)dt, x ∈R.

Let us recall the two-weight criterion for the Hardy operator in classical Lebesgue
spaces:

Theorem A ([, ]) Let r and s be constants such that  < r ≤ s < ∞. Suppose that  ≤
a < b ≤ ∞. Let v and w be non-negative measurable functions on [a,b). Then the Hardy
inequality

(∫ b

a
v(x)

(∫ x

a
f (t)dt

)s

dx
)/s

≤ c
(∫ b

a
w(t)

(
f (t)

)r dt)/r

, f ≥ ,

holds if and only if

A := sup
a≤t≤b

(∫ b

t
v(x)dx

)/s(∫ t

a
w–r′ (x)dx

)/r′

< ∞.

Moreover, if c is the best constant in the Hardy inequality, then there are positive constants
c and c depending only on r and s such that cA≤ c ≤ cA.

For the Hardy inequalities, we also refer the books [, ].
The following statement was proved in [] for finite interval and in [] for the case of

infinite interval, but we give the proof because of the upper and lower bound of the norm
of Hv,w.

Theorem B Let –∞ < a < b ≤ +∞ and let p and q be measurable functions on I := (a,b)
satisfying the conditions:  < p–(I) ≤ p(x) ≤ q(x) ≤ q+(I) < ∞, p,q ∈ WL(I). We assume
that p ≡ pc ≡ const, q ≡ qc ≡ const outside some large interval (a,d) if b = ∞. Then HI

v,w

is bounded from Lp(·)(I) to Lq(·)(I) if and only if

Aa,b ≡ sup
a<t<b

∥∥χ(t,b)(·)v(·)
∥∥
Lq(·)(I)

∥∥χ(a,t)(·)w(·)
∥∥
Lp′(·)(I) < ∞.

Moreover, there are positive constants c and c independent of the interval I such that

cAa,b ≤ ∥∥H (a,b)
v,w

∥∥
Lp(·)(I)→Lq(·)(I) ≤ cCa,bAa,b,

where the constant Ca,b is defined in Proposition C.

Proof Sufficiency. Let f ≥ . Suppose that b <∞ and that
∫ b
a f (t)dt ∈ [m , m+) for some

integer m. We construct a sequence {xk} so that

∫ xk

a
fw =

∫ xk+

xk
fw = k .

http://www.journalofinequalitiesandapplications.com/content/2013/1/173
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It is easy to check that (a,b) =
⋃

k[xk ,xk+). Let g be a function satisfying the condition
‖g‖Lq′(·)([a,b]) ≤ . Applying Hölder’s inequality for variable exponent Lebesgue spaces and
Proposition C we have that

∫ b

a
(Hv,wf )g ≤

∑
k

(∫ xk+

xk
gv
)(∫ xk+


fw
)

= 
∑
k

(∫ xk+

xk
gv
)(∫ xk

xk–
fw
)

≤ 
∑
k

∥∥χ(xk ,xk+)(·)g(·)
∥∥
Lq′(·)(I)

∥∥χ(xk ,xk+)(·)v(·)
∥∥
Lq(·)(I)

× ∥∥χ(xk–,xk )(·)f (·)
∥∥
Lp(·)(I)

∥∥χ(xk–,xk )(·)w(·)
∥∥
Lp′(·)(I)

≤ Aa,b
∑
k

∥∥χ(xk ,xk+)(·)g(·)
∥∥
Lq′(·)(I)

∥∥χ(xk–,xk )(·)f (·)
∥∥
Lp(·)(I)

≤ Ca,bAa,b
∥∥f (·)∥∥Lp(·)(I)∥∥g(·)∥∥Lq′(·)(I),

where Ca,b is the constant defined in Proposition C. Taking now the supremum with re-
spect to g , we have sufficiency for b < ∞.
Let now b = ∞. Then

∥∥H (a,∞)
v,w f

∥∥
Lq(·)((a,+∞)) ≤

∥∥∥∥v(x)
∫ x

a
fw
∥∥∥∥
Lq(·)((a,d))

+
∥∥∥∥v(x)

∫ x

a
fw
∥∥∥∥
Lqc ([d,+∞))

:= I + I.

By applying already used arguments, we have that I ≤ Ca,∞Aa,+∞, where Ca,∞ = [(d –
a) + ]. Further, due to Hölder’s inequality and Theorem A, we find that

I ≤
∥∥∥∥v(x)

∫ d

a
fw
∥∥∥∥
Lqc ([d,+∞))

+
∥∥∥∥v(x)

∫ x

d
fw
∥∥∥∥
Lqc ([d,+∞))

≤ ∥∥v(·)χ[d,+∞)(·)
∥∥
Lq(·)

∥∥w(·)χ[a,d)(·)
∥∥
Lp′(·)‖f ‖Lp(·)

+ Aa,+∞‖f ‖Lp(·)(I) ≤ Aa,+∞‖f ‖Lp(·)(I).

To get the lower bound for ‖H (a,b)
v,w ‖ is trivial by choosing the appropriate test function

f (x) = χ(a,t)(x), a < t < b in the boundedness of HI
v,w from Lp(·)(I) to Lq(·)(I). �

Corollary A Let p and q be defined on R+ and satisfy the conditions of Theorem B. Then
for all n ∈ Z,

∥∥∥∥v(x)
∫ x

n
f (t)w(t)dt

∥∥∥∥
Lq(·)([n ,n+])

≤ D‖f ‖Lp(·)([n ,n+]),

where D =max{c(d + ), } supn∈ZAn ,n+ , An ,n+ is defined in Theorem B and the con-
stant c depends only on p and q.

http://www.journalofinequalitiesandapplications.com/content/2013/1/173
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Proof By the hypothesis, p and q are constant outside some large interval (,d). Let d ∈
[m–, m ) for some integer m. Then by Theorem B for n≤ m, we have

∥∥H (n ,n+)
v,w

∥∥
Lp(·)([n ,n+))→Lq(·)([n ,n+)) ≤ c

(
n + 

)An ,n+

≤ c
(
m + 

)An ,n+

≤ c(d + ) sup
n∈Z

An ,n+ ,

where the positive constant c depends only on p and q. If n >m, then p and q are constants
on the intervals [n, n+). In this case taking the proof of Theorem B into account, we find
that

sup
n>m

∥∥H (n ,n+)
v,w

∥∥
Lp(·)([n ,n+])→Lq(·)([n ,n+]) ≤  sup

n∈Z
An ,n+ . �

TheoremC ([]) Let p(x) and q(x) bemeasurable functions on an interval I ⊆ R+. Suppose
that  < p–(I) ≤ p+(I) <∞ and  < q–(I)≤ q+(I) < ∞. If

∥∥∥∥k(x, y)∥∥Lp′(y)(I)∥∥Lq(x)(I) <∞,

where k is a non-negative kernel, then the operator

Kf (x) =
∫
I
k(x, y)f (y)dy

is compact from Lp(·)(I) to Lq(·)(I).

Lemma B (see, e.g. []) Let  < q < q̄ < ∞ and 
s =


q –


q̄ . Suppose that {un} and {vn} are

sequences of positive real numbers. The following statements are equivalent:
(i) There exists C >  such that the inequality

{∑
n∈Z

(|an|un)q
}/q

≤ C
{∑
n∈Z

(|an|vn)q̄
}/q̄

holds for all sequences {an} of real numbers.
(ii) {∑n∈Z(unvn–)s}/s <∞.

Lemma C (see e.g. []) Let p, q be constants such that  < p,q < ∞. Suppose that vk ≥ ,
wk > , k ∈ Z. Then there exists a constant c >  such that

{∑
n∈Z

( n∑
k=–∞

vnak

)q}/q

≤ c
(∑

n∈Z
(wnan)p

)/p

holds for all non-negative sequence {ak} ∈ lp{vpn}, if and only if
(i) in case  < p≤ q < ∞,

A := sup
m∈Z

( ∞∑
n=m

vqn

)/q( m∑
n=–∞

w–p′
n

)/p′

< ∞;

http://www.journalofinequalitiesandapplications.com/content/2013/1/173
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(ii) in case  < q < p < ∞,

A :=

{∑
m∈Z

( ∞∑
n=m

vqn

)r/q( m∑
n=–∞

w–p′
n

)r/q′

w–p′
m

}/r

< ∞,

where /r = /q – /p.

Definition . Let I = (,a),  < a ≤ ∞. We say that a kernel k : {(x, y) :  < y < x < a} →
(,∞) belongs to V (I) (k ∈ V (I)) if there exists a constant c such that for all x, y, t with
 < y < t < x < a the inequality

k(x, y)≤ ck(x, t)

holds.

Definition . Let r be a measurable function on I = (,a),  < a ≤ ∞ with values in
(, +∞). We say a kernel k belongs to Vr(·)(I) if there exists a positive constant c such that
for a.e. x ∈ (,a), the inequality

∥∥χ( x ,x)(·)k(x, ·)
∥∥
Lr(·)(I) ≤ cx


r(x) k

(
x,
x


)

is fulfilled.

Example . (Lemma  of []) Let I := (,a), where  < a ≤ ∞. Let α be a measurable
function on I satisfying the condition  < α–(I) ≤ α+(I) ≤ . Suppose that r is a function on
I with values in (, +∞) satisfying the condition r ∈WL(I). Suppose that r(x)≡ r ≡ const
outside some interval (,b) when a = +∞. Then k(x, t) = (x– t)α(x)– ∈ V (I)∩Vr(·)(I) when
r(x) < 

–α(x) .

The next examples of kernels can be checked easily:

Example . Let I := (,a), where  < a≤ ∞. Suppose that α is a measurable function on
I satisfying the condition  < α–(I) ≤ α+(I) ≤ . Let r be a function on I with the values in
(, +∞) satisfying the condition r, r̄ ∈ WL(I) where r̄(t) = r(t/σ ). Suppose that r(x) ≡ r ≡
const outside some interval (,b) when a = +∞. Then k(x, y) = (xσ – yσ )α(x)– ∈ V (I) ∩
Vr(·)(I) when r(x) < 

–α(x) and σ > .

Example . Let I := (,a),  < a ≤ ∞. Let r be a function on I with the values in (, +∞)
satisfying the condition r ∈ WL(I) and let r be increasing on I . Suppose that r(x) ≡ r ≡
const outside some interval (,b) when a = +∞. Further, let  < α–(I) ≤ α(x)≤  and α(x)+
β(x) >  – 

r(x) . Then k(x, y) = (x – y)α(x)– lnβ(x)– x
y ∈ V (I)∩Vr(·)(I).

For other examples of kernel k satisfying the condition k ∈ V (I)∩Vr(I), where r is con-
stant, we refer to [] (see also [], p.).

3 Boundedness on VEAS
This section is devoted to the boundedness of weighted kernel operators in VEAS.

http://www.journalofinequalitiesandapplications.com/content/2013/1/173
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3.1 Amalgam spaces
Let I beR orR+ and α = {In;n ∈ Z} be a cover of I consisting of disjoint half-open intervals
In, each of the form [a,a), whose union is I . Let

‖f ‖(Lp(·)u (I),lq)α
:=
(∑

n∈Z

∥∥χIn (·)f (·)
∥∥q
Lp(·)u (I)

)/q

,

we define the general amalgams with variable exponent

(
Lp(·)u (I), lq

)
α
=
{
f : ‖f ‖(Lp(·)u (I),lq)α

<∞}
.

If u≡ const, then (Lp(·)u (I), lq)α is denoted by (Lp(·)(I), lq)α .
Let p≡ pc ≡ const and u ≡ const. Then we have the usual irregular amalgam (see []);

if I = R and In = [n,n + ), then (Lpc (I), lq)α is the amalgam space introduced by Wiener
(see [, ]) in connection with the development of the theory of generalized harmonic
analysis.
We call (Lp(·)u (I), lq)α irregular weighted amalgam spaces with variable exponent. If In =

[n,n + ), then (Lp(·)u (I), lq)α will be denoted by (Lp(·)u (I), lq).
Let d = {[n, n+);n ∈ Z} and I =R+.We denote weighted dyadic amalgamwith variable

exponent by (Lp(·)u (I), lq)d . Some properties regarding general amalgams with variable ex-
ponent can be derived in the same way as for usual irregular amalgams (Lpu(R), lq)α , where
p is constant. Irregular amalgams were introduced in [] and studied in [].

Theorem D Let p be a measurable function on I with  < p–(I) ≤ p+(I) < ∞ and q be
constant with  < q < ∞. The irregular amalgams with variable exponent (Lp(·)(I), lq)α is a
Banach space whose dual space is (Lp(·)(I), lq)*α = (Lp′(·)(I), lq′ )α . Further,Hölder’s inequality
holds in the following form:

∣∣∣∣
∫
I
f (t)g(t)dt

∣∣∣∣≤ ‖f ‖(Lp(·)(I),lq)α‖g‖(L(p(·))′ (I),lq′ )α .

Proof Since Lp(·) is a Banach space and (Lp(·))* = Lp′(·) (see []), from general arguments
(see [, –]) we have the desired result. �

The next statement for more general case, i.e., when amalgams are defined with respect
to Banach spaces, can be found in [].

Theorem E Let p be measurable function on I and  ≤ q ≤ q, then

(
Lp(·)(I), lq

)
α

⊂ (
Lp(·)(I), lq

)
α
.

Other structural properties of amalgams are investigated, e.g., in [] and [].
The next statement is a generalization of Theorem  in [] for variable exponent amal-

gams with weights.

Proposition D Let p, q be measurable functions on I such that  ≤ q–(I) ≤ q(x) < p(x) ≤
p+(I) and  ≤ r < ∞. Then the space (Lp(·)w (I), lr)α is continuously embedded in (Lq(·)v (I), lr)α

http://www.journalofinequalitiesandapplications.com/content/2013/1/173
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if

S := sup
n∈Z

∫
In

(
v(x)
w(x)

) p(x)
p(x)–q(x)

dx <∞. (.)

Conversely, if  < q–(I) ≤ q+(I) < p–(I) ≤ p+(I) < ∞, then condition (.) is also necessary
for the continuous embedding of (Lp(·)w (I), lr)α into (Lq(·)v (I), lr)α .

Proof It is known (see []) that the continuous embedding Lp(·)w (I) ↪→ Lq(·)v (I) (q(x) < p(x))
holds if and only if

∫
I

(
v(x)
w(x)

) p(x)
p(x)–q(x)

dx < ∞.

Moreover, the estimate

‖(v/w)/(p(·)–q(·))‖Lq(·)v

‖(v/w)/(p(·)–q(·))‖Lp(·)w

≤ ‖Id‖Lp(·)w →Lq(·)v
≤ cmax

{
,‖v/w‖

L(p(·)/q(·))
′

w

}
(.′)

holds, where the positive constant c depends only on p and q; Id is the identity operator.
Let condition (.) hold. Then

‖Id‖Lp(·)w (In)→Lq(·)v (In)
≤ ‖Id‖Lp(·)w (I)→Lq(·)v (I) < ∞.

Hence, (Lp(·), lr)α ↪→ (Lq(·), lr)α .
Conversely, let the continuous embedding (Lp(·), lr)α ↪→ (Lq(·), lr)α hold and let  < q–(I) ≤

q+(I) < p–(I)≤ p+(I) < ∞. By taking functions supported in In we can derive the estimate

sup
n∈Z

‖Id‖Lp(·)(In) �→Lq(·)v (In)
≤ ‖Id‖(Lp(·)(I),lr )α �→(Lq(·)v (I),lr)α .

By applying the left-hand side inequality of (.′) and Proposition A, we conclude that
condition (.) is satisfied. �

3.2 General operators in VEAS
We begin this subsection by the following definition.

Definition . ([]) Let T be an operator defined on a set of real measurable functions
f on R. Define a sequence of local operators

(Tnf )(x) := T(f χ(n–,n+))(x), x ∈ (n – ,n + ),n ∈ Z.

Let us assume that there is a discrete operator Td satisfying the following conditions:
(i) There exists a positive constant c such that for all non-negative functions f ,

x ∈ (n,n + ) and arbitrary n ∈ Z the inequality

T(f χ(–∞,n–) + f χ(n+,∞))(x)≤ cTd
(∫ m

m–
f
)
(n)

holds.
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(ii) There is c >  such that for all sequences {ak} of non-negative real numbers and
n ∈ Z, the inequality

Td({ak})(n) ≤ cTf (y)

holds for all y ∈ (n,n + ) and all non-negative f , where
∫ m
m– f =: am,m ∈ Z. It is also

assumed that T satisfies the conditions

Tf = T |f |, T(λf ) = |λ|Tf , T(f + g) ≤ Tf + Tg, Tf ≤ Tg if f ≤ g.

We will say that an operator T satisfying all the above mentioned conditions is admissi-
ble on R.
For example, Hardy operators, Hardy-Littlewoodmaximal operators, fractional integral

operators, fractional maximal operators are admissible on R (see []). Carton-Leburn,
Heinig and Hoffmann [] established two weighted criteria for the Hardy transform
(Hf )(x) =

∫ x
–∞ f (t)dt in amalgam spaces defined on R (see also [, ] for related topics).

In [], the authors derived some sufficient conditions for the two-weight boundedness of
the kernel operator (Kf )(x) :=

∫ x
–∞ k(x, y)f (y)dy where k is non-decreasing in the second

variable and non-increasing in the first one. In the paper [], the two-weight problem for
generalizedHardy-type kernel operators including the fractional integrals of order greater
than one (without singularity) was solved.
General type results for the admissible operators read as follows.

Theorem F ([]) Let  < p, p̄,q, q̄ <∞, and let w and v be weight functions on R. Suppose
that T is an admissible operator on R. Then the inequality

‖vTf ‖(Lp(R),lq) ≤ c‖wf ‖(Lp̄(R),lq̄)

holds for all measurable f if and only if

(i) Td is bounded from lq̄({wn}) to lq({vn}), where wn := (
∫ n
n–w

–p̄′ )
–q̄
p̄′ , vn := (

∫ n+
n vp)

q
p .

(ii) (a) supn∈Z ‖Tn‖[Lp̄
wp̄

(n–,n+)→Lpvp (n–,n+)]
< ∞ for  < q̄ ≤ q < ∞.

(b) ‖Tn‖[Lp̄
wp̄

(n–,n+)→Lpvp (n–,n+)]
∈ ls, where 

s =

q –


q̄ for  < q < q̄ < ∞.

Our aim is to establish weighted characterization of the boundedness of kernel opera-
tors involving fractional integrals of variable parameter of order less than one in variable
exponent amalgam spaces. For the continuous part of amalgam spaces, we take variable
exponent Lebesgue spaces defined on I .
It should be emphasized that the following fact holds: by the change of variable z →

log x it is possible to get appropriate boundedness or compactness results from dyadic
amalgams (Lp(·)(R+), lq)d to amalgams defined on R.
Analyzing the proof of Theorem  of [], we can formulate the next statement and give

the proof for completeness.

Proposition . Let p̄(·), p(·) be measurable functions on R satisfying  < p–(R) ≤ p+(R) <
∞,  < p̄–(R) ≤ p̄+(R) < ∞. Suppose that q and q̄ are constants satisfying  < q, q̄ < ∞.

http://www.journalofinequalitiesandapplications.com/content/2013/1/173
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Assume that w and v are weight functions on R and that T is an admissible operator on R.
Then the inequality

‖vTf ‖(Lp(·)(R),lq) ≤ c‖wf ‖(Lp̄(·)(R),lq̄) (.)

holds if
(i) Td is bounded from lq̄({w̄n}) to lq({v̄n}) where w̄n := ‖χ(n–,n)(·)w–(·)‖–q̄

Lp̄′(·) ,
v̄n := ‖χ(n,n+)(·)v(·)‖qLp(·) .

(ii) (a) supn∈Z ‖Tn‖[Lp̄(·)
wp̄(·) (n–,n+)→Lp(·)

vp(·) (n–,n+)]
< ∞ for  < q̄ ≤ q <∞.

(b) ‖Tn‖[Lp̄(·)w (n–,n+)→Lp(·)v (n–,n+)] ∈ ls with 
s =


q –


q̄ for  < q < q̄ < ∞.

Conversely, let (.) hold. Then
() conditions (ii) are satisfied;
() condition (i) is satisfied for w ≡ const or for p and p̄ being constants outside some

large interval [–m,m],m ∈ Z.

Proof Let (i) and (ii) hold. We have

‖vTf ‖(Lp(·)(R),lq) ≤ c
{∑
n∈Z

∥∥T[f (χ(–∞,n–) + χ(n+,∞))
]
v(·)∥∥qLp(·)(n,n+)

}/q

+ c
{∑
n∈Z

‖vTnf ‖Lp(·)(n,n+)
}/q

=: S + S.

Let am :=
∫ m
m– f . By the hypothesis and Hölder’s inequality for variable exponents p(·)

and p′(·), we have that

S ≤ c
{∑
n∈Z

(
Td({am})(n))q‖χ(n,n+)v‖qLp(·)(n,n+)

}/q

≤ c
{∑
n∈Z

aq̄n
∥∥χ(n–,n)w–∥∥–q̄

Lp̄′(·)

}/q̄

≤ c‖wf ‖(Lp̄(·)(R),lq).

Let us estimate S. Suppose that  < q̄ ≤ q < ∞. Since the operators Tn are uniformly
bounded, we find that

S ≤ c
{∑
n∈Z

‖fw‖qLp̄(·)(n–,n+)
}/q

≤ c
{∑
n∈Z

‖fw‖q̄Lp̄(·)(n–,n+)
}/q̄

≤ c‖fw‖(Lp̄(·)(R),lq̄).

If  < q < q̄ <∞, then by using Hölder’s inequality we derive

S ≤ c
{∑
n∈Z

‖Tn‖q
[Lp̄(·)

wp̄
(n–,n+)→Lp(·)vp (n–,n+)]

‖χ(n–,n+)fw‖qLp̄(·)
}/q

≤ c
[{∑

n∈Z
‖Tn‖

qq̄
q̄–q

} q̄–q
q
{∑
n∈Z

‖χ(n–,n+)fw‖q̄Lp̄(·)
} q

q̄
]/q

≤ c‖fw‖(Lp̄(·)(R),lq̄).
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Conversely, suppose that (.) holds. Let n ∈ Z and let f be a non-negative function
supported in (n – ,n + ). Then

‖fw‖(Lp̄(·)(R),lq̄) ≤ ‖fwχ(n–,n+)‖(Lp̄(·)(R)).

On the other hand,

‖vTf ‖(Lp(·),lq) ≥ ‖vχ(n–,n+)Tf ‖Lp(·)
≥ ‖vχ(n–,n+)Tnf ‖Lp(·)
= ‖vTnf ‖Lp(·) .

Now due to inequality (.), we conclude that (a) of (ii) holds. Let us now show that if
 < q < q̄ <∞, then (b) of (ii) is satisfied.
Since ‖Tn‖[Lp̄(·)

wp̄(·)→Lp(·)
vp(·) ]

= sup{f :‖wf ‖Lp̄(·)=} ‖vTnf ‖Lp(·) , we have that for each n, there ex-

ists a non-negative measurable function fn, with the support in (n – ,n + ) and with
‖wχ(n–,n+)fn‖Lp̄(·) = , such that ‖Tn‖[Lp̄(·)

wp̄(·)→Lp(·)
vp(·) ]

< ‖vTnfn‖Lp(·) + 
|n| . Thus, it is sufficient

to prove that ‖vTnfn‖Lp(·) ∈ ls.
Let {an} be a sequence of non-negative real numbers and f =

∑
n anfn. For each n ∈ Z,

f (x) > anfn(x) and then Tf (x)≥ anTnfn(x) for all x ∈ (n – ,n + ).
Consequently,

‖vTf ‖(Lp(·)(R),lq) ≥
{∑
n∈Z

caqn‖χ(n–,n+)vTnf ‖qLp(·)
}/q

= c
{∑
n∈Z

aqn‖vTnfn‖qLp(·)
}/q

.

Hence, inequality (.) yields that

{∑
n∈Z

aqn‖vTnfn‖qLp(·)
}/q

≤ c
{∑
n∈Z

‖χ(n–,n+)wf ‖q̄Lp̄(·)
}/q̄

≤ c
{∑
n∈Z

aq̄n‖χ(n–,n+)wfn‖q̄Lp̄(·)
}/q̄

= c
{∑
n∈Z

aq̄n

}
.

Finally, by Lemma B, we see that (b) of (ii) holds.
Now let us prove that (i) holds when w ≡ const. If {am} is a sequence of non-negative

real numbers and

f =
∑
m∈Z

amχ(m–,m),

then
∫ m
m– f = am, and ‖χ(n,n+)f ‖q̄Lp̄(·) = aq̄n‖χ(n,n+)‖q̄Lp̄(·) = aq̄n and by the properties of T , we

have

‖vTf ‖(Lp(·),lq) =
{∑
n∈Z

‖χ(n,n+)vTf ‖qLp(·)
}/q

≥
{∑
n∈Z

∥∥∥∥χ(n,n+)vTd
(∫ m

m–
f
)∥∥∥∥

q

Lp(·)

}/q
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≥ c
{∑
n∈Z

Td(am)q(n)‖χ(n,n+)v‖qLp(·)
}/q

=
∥∥Td{am}∥∥lq{v̄qn}.

Applying the two-weight inequality, we find that

∥∥Td{am}∥∥lq{v̄qn} ≤ c
{∑
n∈Z

‖χ(n,n+)f ‖q̄Lp̄(·)
}/q̄

= c
{∑
n∈Z

aq̄n

}/q̄

= ‖an‖lq̄ .

Hence, (i) holds.
Suppose now that w is a general weight and there is a positive integer m such that p, p̄

are constants outside [–m,m]. Taking

f (x) =
∑
m∈Z

amχ(m–,m)(x)
(∫ m

m–
w–p̄′(y)(y)dy

)–

w–p̄′(x)(x),

it is easy to see that
∫ m
m– f = am. Moreover, by virtue of Proposition A and the fact that

∫ m

m–
w–p̄′(y)(y)dy ≤

∫ m

–m

w–p̄′(y)(y)dy <∞, [m – ,m] ⊂ [–m,m],

we have form ≤ m + ,

‖χ(m–,m)fw‖Lp̄(·) = am
(∫ m

m–
w–p̄′(y)(y)dy

)–∥∥χ(m–,m)w(–p̄′(·))∥∥
Lp̄(·)

≤ cam
(∫ m

m–
w–p̄′(y)(y)dy

)–/p̄+([m–,m))

,

where the positive constant c depends onm. Since

‖vTf ‖(Lp(·)(R),lq) ≥ C
∥∥v̄n(Td{am})(n)∥∥lq ,

using again Proposition A, we find that

∥∥v̄n(Td{am})(n)∥∥lq ≤ C
[∑

m
‖χ(m–,m)fw‖q̄Lp̄(·)(R)

]/q̄

≤ c
[∑

m
aq̄m

(∫ m

m–
w–p̄′(y)(y)dy

)–q̄/p̄+([m–,m))]/q̄
= ‖amw̄m‖lq̄ . �

Definition . LetT be an operator defined on a set of realmeasurable functions f onR+.
We say that an operator T is admissible on R+ if the conditions of Definition . are satis-
fied replacing n by n, n ∈ Z.

The next statement can be obtained in the similarmanner as Proposition . was proved;
therefore, we omit the proof.
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Proposition . Let p̄(·), p(·) be measurable functions on R+ satisfying  < p–(R+) ≤
p+(R+) < ∞,  < p̄–(R+) ≤ p̄+(R+) < ∞. Suppose that q and q̄ are constants satisfying
 < q, q̄ < ∞. Suppose also that w and v are weight functions on R+ and that T is an admis-
sible operator on R+.
Then the inequality

‖vTf ‖(Lp(·)(R+),lq)d ≤ c‖wf ‖(Lp̄(·)(R+),lq̄)d (.)

holds if
(i) Td is bounded from lq̄({w̄n}) to lq({v̄n}) where w̄n := ‖χ(n–,n)(·)w–(·)‖–q̄

Lp̄′(·) ,
v̄n := ‖χ(n ,n+)(·)v(·)‖qLp(·) .

(ii) (a) supn∈Z ‖Tn‖[Lp̄(·)
wp̄(·) (

n–,n+)→Lp(·)
vp(·) (

n–,n+)] < ∞ for  < q̄ ≤ q < ∞.

(b) ‖Tn‖[Lp̄(·)
wp̄(·) (

n–,n+)→Lp(·)
vp(·) (

n–,n+)] ∈ ls with 
s =


q –


q̄ for  < q < q̄ <∞.

Conversely, if (.) holds, then
() conditions (ii) are satisfied;
() condition (i) is also satisfied but for w≡ const or for p and p̄ satisfying the condition

p ≡ const, p̄≡ const outside some large interval [, m ],m ∈ Z.

Proposition . gives criteria for the boundedness ofHv,w in dyadic amalgams onR+ but
by the next statement we prove the two-weight inequality under slightly different condi-
tions.

Proposition . Let I := R+ and let  < p̄–(I) ≤ p̄(·) ≤ p(·) ≤ p+(I) < ∞. Let  < q̄,q < ∞.
Suppose that p, p̄ ∈ WL(R+) and that p ≡ pc ≡ const outside some large interval (,b).
Then the inequality

‖Hv,wf ‖(Lp(·)(I),lq)d ≤ c‖f ‖(Lp̄(·) ,lq̄)d

with a positive constant independent of f holds if
(i) in the case  < q̄ ≤ q <∞,

(a)

sup
m∈Z

{ ∞∑
n=m

∥∥χ[n ,n+)(·)v(·)
∥∥q
Lp(·)

}/q{ m∑
n=–∞

∥∥χ[n–,n)(·)w(·)
∥∥q̄′
Lp̄′(·)

}/q̄′

< ∞,

(b)

sup
n∈Z

sup
<α<

∥∥χ[n+α ,n+)(·)v(·)
∥∥
Lp(·)

∥∥w(·)χ(n ,n+α )(·)
∥∥
Lp̄′(·) < ∞;

(ii) in the case  < q < q̄ < ∞,
(a) {Cn} ∈ ls, where

Cn = sup
β∈(,)

∥∥χ[n+β ,n+)v(·)
∥∥
Lp(·)

∥∥w(·)χ[n ,n+β )
∥∥
Lp̄(·) ,
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(b)

{∑
n∈Z

( ∞∑
k=n

∥∥χ[k ,k+)v(·)
∥∥q
Lp(·)

)s/q( n∑
k=–∞

∥∥χ[k–,k )(·)w(·)
∥∥–q̄′
Lp̄′(·)

)s/q̄′

× ∥∥χ[n ,n+)v(·)
∥∥q
Lp(·)

}/s

<∞,

where 
s =


q̄ –


q .

Proof Let  < q̄ ≤ q <∞. Suppose that f ≥ . We represent:

(Hv,wf )(x) = v(x)
∫ n


f (t)w(t)dt + v(x)

∫ x

n
f (t)w(t)dt

=:
(
H ()

v,wf
)
(x) +

(
H ()

v,wf
)
(x), x ∈ [

n, n+
]
. (.)

We have

∥∥(Hv,wf )χ[n ,n+)(·)
∥∥
Lp(·) ≤ ∥∥v(·)χ[n ,n+)(·)

∥∥
Lp(·)

(∫ n


f (t)w(t)dt

)

+
∥∥∥∥v(x)

∫ x

n
f (t)w(t)dt

∥∥∥∥
Lp(·)([n ,n+))

=: S(n) + S(n) .

Let ak :=
∫ k
k– fw. Then by the discrete Hardy inequality (see Lemma C) and Hölder’s in-

equality with respect to the exponents p̄(·) and (p̄(·))′ we derive

(∑
n∈Z

(
S(n)

)q)/q

=

[∑
n∈Z

∥∥v(·)χ[n ,n+)(·)
∥∥q
Lp(·)

( n∑
k=–∞

∫ k

k–
f (t)w(t)dt

)q]/q

≤ c
[∑
n∈Z

(∫ n

n–
f (t)w(t)dt

)q̄∥∥w(·)χ[n–,n)(·)
∥∥–q̄
Lp̄′(·)

]/q

≤ c
[∑
n∈Z

∥∥χ[n–,n)(·)f (·)
∥∥q̄
Lp̄(·)

]/q̄
= c‖f ‖(Lp̄(·),lq̄)d .

Further, by Corollary A and Theorem E, we have that

(∑
n∈Z

(
S(n)

)q)/q

=
[∑
n∈Z

∥∥∥∥v(x)
∫ x

n
f (t)w(t)dt

∥∥∥∥
q

Lp(·)(n ,n+)

]/q

≤ c
[∑
n∈Z

∥∥f (·)χ(n ,n+)(·)
∥∥q
Lp̄(·)(n ,n+)

]/q

≤ c
[∑
n∈Z

∥∥f (·)χ(n ,n+)(·)
∥∥q̄
Lp̄(·)(n ,n+)

]/q̄

= c‖f ‖(Lp̄(·),lq̄)d .
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Let  < q < q̄ <∞. Using representation (.), we derive

∥∥(Hv,wf )
∥∥
(Lp(·)(R+),lq)d

≤
[∑
n∈Z

∥∥χ[n ,n+)H ()
v,wf

∥∥q
Lp(·)

]/q

+
[∑
n∈Z

∥∥χ[n ,n+)H ()
v,wf

∥∥q
Lp(·)

]/q

=: S + S.

We estimate S and S.

S =
[∑
n∈Z

∥∥χ[n ,n+)(·)v(·)
∥∥q
Lp(·)

(∫ n


fw
)q]/q

=

[∑
n∈Z

∥∥χ[n ,n+)(·)v(·)
∥∥q
Lp(·)

( n∑
k=–∞

∫ k

k–
fw

)q]/q

.

By the two-weight inequality for the discrete Hardy transform (see Lemma C), we have

S ≤ c
[∑
n∈Z

∥∥χ[n–,n)(·)w(·)
∥∥–q̄
Lp̄′(·)

(∫ n

n–
fw
)q̄]/q̄

≤ c
[∑
n∈Z

∥∥χ[n–,n)(·)w(·)
∥∥–q̄
Lp̄′(·)‖χ[n–,n)f ‖q̄Lp̄(·)‖χ[n–,n)w‖q̄

Lp̄′(·)

]/q̄

≤ c‖f ‖(Lp̄(·)(R+),lq̄)d .

Now we estimate S. Using Corollary A for intervals (n, n+] and Hölder’s inequality, we
find that

S ≤ c
{∑
n∈Z

Cq
n‖χ[n ,n+)f ‖qLp̄(·)

}/q

≤ c
{(∑

n∈Z
‖χ[n ,n+)f ‖q̄Lp̄(·)

)q/q̄(∑
n∈Z

C
qq̄
q̄–q
n

) q̄–q
q
}/q

≤ c
(∑

n∈Z
Cs
n

)/s

‖f ‖(Lp̄(·)(R+),lq̄)d . �

3.3 Kernel operators on amalgams (Lp(·)(R+), lq)d and (Lp(·)(R), lq)
The conditions of general-type statements (see Propositions . and .) are not easily ver-
ifiable for general kernel operators as well as for some concrete fractional integral opera-
tors such as the Riemann-Liouville fractional integral transform with variable parameter.
That is why we investigate mapping properties of general kernel operators independently
from general-type statements.
Let

(Kvf )(x) = v(x)
∫ x


f (t)k(x, t)dt, x > .

One of our aims is to characterize a class of weights v governing the boundedness of Kv

from (Lp̄(·), lq̄)d to (Lp(·), lq)d .
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We will use the notation:

B := sup
m∈Z

[ ∞∑
n=m

∥∥∥∥χ(n ,n+](x)k
(
x,
x


)
v(x)

∥∥∥∥
q

Lp(·)

]/q[ m∑
n=–∞

‖χ(n–,n]‖q̄
′

Lp̄′(·)

]/q̄′

; (.)

B := sup
n∈Z

sup
<α<

∥∥χ(n+α ,n+]k(x,x/)v(x)
∥∥
Lp(·)‖χ(n ,n+α ]‖Lp̄′(·) . (.)

Theorem . Let I :=R+,  < p̄–(I)≤ p̄(·)≤ p(·) ≤ p+(I) < ∞ and let p̄,p ∈WL(I). Suppose
that q̄ and q are constants such that  < q̄ ≤ q < ∞. Let p(x) ≡ pc ≡ const and p̄(x) ≡
p̄c ≡ const outside some large interval (, m ), m ∈ Z. Let k ∈ V (I) ∩ Vp̄′(·)(I). Then Kv is
bounded from (Lp̄(·)(I), lq̄)d to (Lp(·)(I), lq)d if and only if B < ∞, where B =max{B,B}.

Proof Sufficiency. Using the representation:

(Kvf )(x) = v(x)
∫ x/


k(x, t)f (t)dt + v(x)

∫ x

x/
k(x, t)f (t)dt

=:
(
K ()
v f

)
(x) +

(
K ()
v f

)
(x)

we have that

‖Kvf ‖(Lp(·),lq)d ≤ ∥∥K ()
v f

∥∥
(Lp(·),lq)d +

∥∥K ()
v f

∥∥
(Lp(·),lq)d .

Further, taking Proposition . and the condition k ∈ V (I) into account, we find that

∥∥K ()
v f

∥∥
(Lp(·)(I),lq)d ≤ c

∥∥∥∥v(x)k
(
x,
x


)∫ x


f (t)dt

∥∥∥∥
(Lp(·),lq)d

≤ cB‖f ‖(Lp̄(·)(I),lq)d .

Now observe that by the condition k ∈ Vp̄′(·)(I), Proposition A and Lemma A we obtain

∥∥K ()
v f

∥∥
(Lp(·)([,m+)),lq)d

≤
[ +∞∑
k=–∞

∥∥∥∥χ(k ,k+](x)v(x)
(∫ x

x/
f (t)k(x, t)dt

)∥∥∥∥
q

Lp(x)

]/q

≤
[ +∞∑
k=–∞

∥∥χ(k ,k+](x)v(x)
∥∥χ(x/,x)(·)f (·)

∥∥
Lp̄(·)

∥∥χ(x/,x)k(x, ·)
∥∥
Lp̄′(·)

∥∥q
Lp(x)

]/q

≤
[ +∞∑
k=–∞

∥∥χ(k ,k+](x)v(x)x


p̄′(x) k(x,x/)
∥∥q
Lp(x)

∥∥χ(k–,k+)(·)f (·)
∥∥q
Lp̄(·)

]/q

≤ c

[ +∞∑
k=–∞

kq/(p̄)
′(k )∥∥χ(k ,k+](x)v(x)k(x,x/)

∥∥q
Lp(x)

∥∥χ(k–,k+)(·)f (·)
∥∥q
Lp̄(·)

]/q

≤ cB̄

[ +∞∑
k=–∞

∥∥χ(k–,k )(·)f (·)
∥∥q
Lp̄(·)

]/q

+ cB̄

[ +∞∑
k=–∞

∥∥χ(k ,k+)(·)f (·)
∥∥q
Lp̄(·)

]/q

≤ cB̄‖f ‖(Lp̄(·)(R+),lq̄)d ,
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where

B̄ := sup
n∈Z

∥∥∥∥χ(n ,n+](x)k
(
x,
x


)
v(x)

∥∥∥∥
Lp(x)

/(p̄n)
′
,

p̄n :=

⎧⎨
⎩p̄(n), n≤ m,

p̄c, n >m.

Let us now observe that by Proposition A and Lemma A, B̄ ≈ Ā≤ cB, where

Ā := sup
k∈Z

∥∥v(·)k(x,x/)χ(k ,k+]
∥∥
Lp(·)

∥∥χ(k–,k ](·)
∥∥
Lp̄′(·) . (.)

Necessity. Let p̄n be the sequence defined above. Considering the test function fn =
χ(n ,n+]–n/p̄n in the boundedness of Kv from (Lp̄(·)(I), lq̄)d to (Lp(·)(I), lq)d and taking the
condition k ∈ V (I) into account we have that

In :=
∥∥χ(n ,n+](x)v(x)k(x,x/)

∥∥
Lp(x) ≤ c–n/(p̄n)

′
. (.)

It is easy to see that
(i)

∞∑
n=m

In ≤ c
(
–m/p̄′() + –m/p̄′

c
)

(.)

for m ≤ m;
(ii)

∞∑
n=m

In ≤ c–m/p̄′
c (.)

for m ≥ m + .
Denoting Sm := [

∑∞
n=m Iqn]/q[

∑m–
n=–∞ ‖χ(n ,n+]‖q̄Lp̄′(·) ]/q̄ and taking (.), Proposition A

and Lemma A into account we have form ≤ m,

Sm ≤
[ ∞∑
n=m

Iqn

]/q

m/p̄′() ≤ [
–m/p̄′() + –m/p̄′

c
]
m/p̄′()

≤  + m/p̄′()–m/p̄′
c ≤  + m/p̄′()–m/p̄′

c < ∞.

Similarly ifm ≥ m + , then by (.),

Sm ≤
[ ∞∑
n=m

Iqn

]/q[
m/p̄′() + m/p̄′

c
]≤ –m/p̄′

c
[
m/p̄′() + m/p̄′

c
]

≤  + m/p̄′()–m/p̄′
c <∞.

Hence, B < ∞.
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Let now f be a function supported in (m, m+]. Then due to the boundedness of Kv

from (Lp̄(·)(I), lq̄)d to (Lp(·)(I), lq)d and the condition k ∈ V (I) we have that
∥∥∥∥χ(m ,m+]v(x)k(x,x/)

(∫ x

m
f (y)dy

)∥∥∥∥
(Lp(·)(I),lq)d

≤ c‖χ(m ,m+]f ‖(Lp̄(·)(I),lq̄)d ,

where the positive constant c does not depend on n. Using Theorem B with respect to
the intervals [m, m+) and the weight pair (v̄,w), where v̄(x) = v(x)k(x,x/) χ(m ,m+] and
w̄≡ const, it follows that B < ∞. �

Remark . We have noticed in the proof of Theorem . that B ≈ Ā, where Ā is defined
in the same proof.

Now we formulate the boundedness criteria for the kernel operator

(Kvf ) = v(x)
∫ x

–∞
k(x, t)f (t)dt, x ∈R,

on amalgams defined on R.
Let k(x, y) be a kernel on {(x, y) : y < x} and v, p, p̄ be defined onR. For the next statement

we define k̃, ṽ, p and p̄ as follows:

k̃(x, t) :=
(
t–/p̄′(log t)

x/p(log x)

)
k(log x, log t),

ṽ(x) := v(log x),

p̄(x) := p̄(log x), p(x) := p(log x).

Theorem . Let  < p̄–(R) ≤ p̄(x)≤ p(x) ≤ p+(R) < ∞ and let p̄,p ∈WL(R+). Let q̄ and
q are constants such that  < q̄ ≤ q < ∞. Assume that p̄(x) ≡ p̄c ≡ const and p(x) ≡ pc ≡
const outside some large interval (–∞,b). Let k̃ ∈ V (R+)∩V(p̄(·))′ (R+).ThenKv is bounded
from (Lp̄(·)(R), lq̄) to (Lp(·)(R), lq) if and only if

D := sup
m∈Z

[ ∞∑
n=m

∥∥∥∥χ[n ,n+)(x)k̃
(
x,
x


)
ṽ(x)

∥∥∥∥
q

Lp(·)(R+)

]/q

×
[ m∑
n=–∞

‖χ[n–,n)‖q̄
′

L(p̄(·))′ (R+)

]/q̄′

<∞,

D := sup
n∈Z

sup
<α<

∥∥∥∥χ[n+α ,n+)k̃
(
x,
x


)
ṽ(x)

∥∥∥∥
Lp(·)(R+)

‖χ[n ,n+α )‖L(p̄(·))′ (R+)
< ∞.

Proof The proof follows from Theorem . by the change of variable z → log t. �

Let

(Rα(·)f )(x) = v(x)
∫ x

–∞
t f (t)

(x – t)–α(x) dt,

where  < infα ≤ supα <  and x ∈ R+.
By virtue of Theorem . and Example . we can easily deduce the next statement.
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Corollary . Let p, p̄, q and q̄ be constants. Suppose that α is a measurable function on
R and that  < p̄ ≤ p < ∞,  < q̄ ≤ q < ∞, 

p̄ < α(x) < . Then the operator Rα(·) is bounded
from (Lp̄, lq̄) to (Lp, lq) if and only if

D̃ = sup
m∈Z

[ ∞∑
n=m

(∫ n+

n

(
u
) p
p̄ vp(u)du

)q/p
]/q

m/p̄′
<∞,

D̃ = sup
n∈Z

sup
<β<

(∫ n+

n+β

(
u
) p
p̄ vp(u)du

)/p(
n
(
β – 

))/p̄′
< ∞.

Moreover, there are positive constants c and c depending on p, p̄, q, q̄ and α such that
cmax{D̃, D̃} ≤ ‖Rα(·)‖ ≤ cmax{D̃, D̃}.

4 Compactness of kernel operators on VEAS
In this section, we derive compactness necessary and sufficient conditions for kernel oper-
ators on VEAS. Since for the amalgam norm we have the property ‖fn‖(Lp(·)(I),lq)α ↓  when
fn ↓  a.e. (fn ∈ (Lp(·)(I), lq)α), therefore, the following statement holds (see [], Chap. XI).

Proposition . Let p, p̄ be measurable functions on I such that  < p̄,p < ∞. Let q, q̄ be
constants satisfying the condition  < q, q̄ < ∞. Then the set of all functions of the form

kn(s, t)≡
n∑
i=

ηi(s)λi(t), s, t ∈ I,

is dense in the mixed norm space (Lp(·)(I), lq)α[(Lp̄(·)(I), lq̄)α], where λi ≡ χBi , χBi ∈ (Lp̄(·)(I),
lq̄)α (Bi are measurable disjoint sets of I) and ηi ∈ (Lp(·)(I), lq)α ∩ L∞(I).

The next statement gives sufficient condition for the kernel operator to be compact on
amalgams defined on R+.

Proposition . Let p(x) and q(x) bemeasurable functions on an interval I ⊆ R+. Suppose
that  < p–(I) ≤ p+(I) < ∞,  < p̄–(I) ≤ p̄+(I) < ∞. Let q, q̄ be constants such that  < q̄,
q < ∞. If

M :=
∥∥∥∥k(x, y)∥∥(L(p̄(y))′ (I),l(q̄)′ )α∥∥(Lp(x)(I),lq)α <∞,

where k is a non-negative kernel, then the operator

Kf (x) =
∫
I
k(x, y)f (y)dy

is compact from (Lp̄(·)(I), lq̄)α to (Lp(·)(I), lq)α .

Proof By Proposition . the set of functions

km(s, t) =
m∑
i=

ηi(s)λi(t), s, t ∈ I,
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is dense in (Lp(·)(I), lq)α[(Lp̄
′(·)(I), lq̄′ )α]. ByHölder’s inequality for amalgam spaces (see The-

orem D), we have

∣∣Kf (x)∣∣ = ∣∣∣∣
∫
I
k(x, y)f (y)dy

∣∣∣∣≤ ‖f ‖(Lp̄(·)(I),lq̄)α
∥∥k(x, y)∥∥(L(p̄(·))′ (I),l(q̄)′ )α .

Hence,

‖Kf ‖(Lp(·)(I),lq)α ≤ ∥∥∥∥k(x, y)∥∥(L(p̄(y))′ (I),l(q̄)′ )α∥∥(Lp(x)(I),lq)α‖f ‖(Lp̄(·)(I),lq̄)α ≤ M‖f ‖(Lp̄(·)(I),lq̄)α .

This means that ‖K‖ ≤ M.
Now we prove the compactness of K . For each n ∈N, let

(Knφ)(x) =
∫
I
kn(x, y)φ(y)dy.

Note that

(Knφ)(x) =
∫
I
kn(x, y)φ(y)dy =

n∑
i=

ηi(x)
∫
I
λi(y)φ(y)dy =:

n∑
i=

ηi(x)bi,

where

bi =
∫
I
λi(y)φ(y)dy.

This means that Kn is a finite rank operator, i.e., it is compact. Further, let ε > . Using the
above-mentioned arguments, we have that there is N ∈N such that for n >N,

‖K –Kn‖ ≤ ∥∥∥∥k(x, y) – kn(x, y)
∥∥
(L(p̄(y))′ (I),l(q̄)′ )α

∥∥
(Lp(x)(I),lq)α

< ε.

Thus K can be represented as a limit of finite rank operators. Hence, K is compact. �

Theorem. Let  < p̄–(R+) ≤ p̄(x)≤ p(x)≤ p+(R+) < ∞ and let p̄,p ∈WL(R+). Let q̄ and
q be constants such that  < q̄ ≤ q < ∞. Assume that k ∈ V (R+)∩V(p̄(·))′ (R+). Suppose that
p̄(x) ≡ p̄c ≡ const and p(x) ≡ pc ≡ const outside some large interval (, m ). Then Kv is
compact from (Lp̄(·), lq̄)d to (Lp(·), lq)d if and only if

(i) B < ∞; B <∞,

(ii) lim
m→–∞B(m) = lim

m→+∞B(m) = ,

(iii) lim
n→–∞B(n) = lim

n→+∞B(n) = ,

where, B and B are defined by (.) and (.), respectively, and

B(m) :=
∥∥χ[m ,m+)k(x,x/)v(x)

∥∥
Lp(·)

m/p̄′();

B(m) :=

[ ∞∑
n=m

∥∥χ[n ,n+)k(x,x/)v(x)
∥∥q
Lp(·)

]/q[ m∑
n=–∞

∥∥χ[n–,n)(·)
∥∥(q̄)′
L(p̄(·))′

]/(q̄)′

,

B(n) := sup
<α<

∥∥χ[n+α ,n+)(x)v(x)k(x,x/)
∥∥
Lp(·)

∥∥χ(n ,n+α )(·)
∥∥
L(p̄(·))′ .
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Proof Sufficiency. Let k, n be integers such that k <m < n. Then we represent Kv as
follows:

(Kvf )(x) = χ[,k ](x)Kv(f χ[,k ))(x) + χ(k ,n )(x)Kv(f χ[,n ))(x)

+ χ[n ,∞)(x)Kv(f χ[,n–))(x) + χ[n ,∞)(x)Kv(f χ(n–,∞))(x)

=:
(
K ()
v f

)
(x) +

(
K ()
v f

)
(x) +

(
K ()
v f

)
(x) +

(
K ()
v f

)
(x).

It is clear that

(
K ()
v f

)
(x) =

∫
R+

k(x, y)f (y)dy,

where k(x, y) = v(x)χ(k ,n )(x)k(x, y) if y < x and k(x, y) =  if y≥ x. Then

∥∥∥∥k(x, y)∥∥(L(p̄)′(y)(I),l(q̄)′ )d∥∥(Lp(x)([k ,m )),lq)d

=

{n–∑
m=k

∥∥∥∥∥χ(m ,m+)(x)v(x)

( m∑
n=–∞

∥∥χ(n ,n+)k(x, y)
∥∥(q̄)′
L(p̄)′(y)

)/(q̄)′∥∥∥∥∥
q

Lp(x)

}/q

=: J(x).

Denoting I(x) :=
∑m

n=–∞ ‖χ(n ,n+)k(x, y)‖(q̄)
′

L(p̄)′(y) , x ∈ [m, m+), k ≤ m ≤ n – , we repre-
sent I(x) as

I(x) =
m–∑
n=–∞

∥∥χ(n ,n+)(y)k(x, y)
∥∥(q̄)′
L(p̄)′(y)

+
∥∥χ(m–,m)(y)k(x, y)

∥∥(q̄)′
L(p̄)′(y) +

∥∥χ(m ,x)(y)k(x, y)
∥∥(q̄)′
L(p̄)′(y)

=: I(x) + I(x) + I(x).

Now we estimate I(x), I(x) and I(x) separately

I(x) ≤ ck(q̄)
′
(
x,
x


) m–∑
n=–∞

∥∥χ[n ,n+)(y)
∥∥(q̄)′
L(p̄)′(·)

≤ ck(q̄)
′
(
x,
x


)[ m∑
n=–∞

∥∥χ[n ,n+)(·)
∥∥(q̄)′
L(p̄)′(·) +

m–∑
n=m+

∥∥χ[n ,n+)(y)
∥∥(q̄)′
L(p̄)′(y)

]

≤ ckq̄
′
(
x,
x


)[ m∑
n=–∞

(
n
)(q̄)′/(p̄)′() + n∑

m+

(
n
)(q̄)′/(p̄)′c]

≤ ck(q̄)
′
(
x,
x


)[(
m

)(q̄)′/(p̄)′() + (n)(q̄)′/(p̄)′c].
Further,

I(x) + I(x) ≤ 
∥∥χ(,x)k(x, y)

∥∥(q̄)′
L(p̄)′(y)

≤ c
∥∥χ(,x/)k(x, y)

∥∥(q̄)′
L(p̄)′(y) + c

∥∥χ(x/,x)k(x, y)
∥∥(q̄)′
L(p̄)′(y)

≤ k(q̄)
′
(
x,
x


)[∥∥χ(,m)(y)
∥∥(q̄)′
Lp̄(y) + x(q̄)

′/(p̄)′(x)].
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Considering separately the cases m ≤ m and m > m, by using Proposition A and
Lemma A we find that

I(x) + I(x)≤ ck(q̄)
′
(
x,
x


)[(
m

)(q̄)′/(p̄)′() + (m)(q̄)′/(p̄)′c].
Consequently, since k ≤ m < n – , we have

I(x)≤ ck(q̄)
′
(
x,
x


)[(
n

)(q̄)′/(p̄)′() + (n)(q̄)′/(p̄)′c] =: ck(q̄)′(x, x


)
Bn .

Since B < ∞ we find that

J(x)≤ B/(q̄)′
n

[n–∑
m=k

∥∥χ[n ,n+)k(x,x/)v(x)
∥∥q
Lp(·)

]/q

<∞.

So, by Proposition ., we conclude that K ()
v is a compact operator. Further, write K ()

v as
follows:

K ()
v f (x) =

∫
R+

k(x, y)f (y)dy,

where k(x, y) = k(x, y)χ(,n–)(y)χ[n ,∞)(x)v(x) if y < x and k(x, y) =  if y ≥ x. Then we
have

∥∥∥∥k(x, y)∥∥(L(p̄)′(y)(I),l(q̄)′ )d∥∥(Lp(x)(I),lq)d
=

{ ∞∑
m=n

∥∥∥∥∥χ(m ,m+)(x)v(x)

( n–∑
n=–∞

∥∥χ(n ,n+)(y)k(x, y)
∥∥(q̄)′
L(p̄)′(y)

)/(q̄)′∥∥∥∥∥
q

Lp(x)

}/q

≤
{ ∞∑
m=n

∥∥χ(m ,m+)(x)v(x)k(x,x/)
∥∥q
Lp(x)

}/q( n–∑
n=–∞

∥∥χ(n ,n+)(y)
∥∥(q̄)′
L(p̄)′(y)

)/(q̄)′

=:G.

Denoting F := (
∑n–

n=–∞ ‖χ(n ,n+)(y)‖(q̄)
′

Lp̄(·) )
/(q̄)′ and considering both cases whenm ≤ n –

andm > n –  separately, we derive as previously that

F ≤ c
[(
m

)(q̄)′/(p̄)′() + (n)(q̄)′/(p̄)′c]/(q̄)′ =: Bn,m ,

and since B <∞ we have

G ≤ Bn,m

[ ∞∑
m=n

∥∥χ[n ,n+)(x)k(x,x/)v(x)
∥∥q
Lp(x)

]/q

< ∞.

Hence, by Proposition ., K ()
v is compact.

Let us denote

Im :=
∥∥χ[m ,m+)(x)k(x,x/)v(x)

∥∥
Lp(·) . (.)
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Following the proofs of Theorems ., . and applying Proposition A and Lemma A, we
have that

∥∥K ()
v
∥∥
(Lp̄(·)(I),lq̄)→(Lp(·)(I),lq)d

≤ max

{
sup
n≤k

[ k∑
m=n

Iqm

]/q[ n∑
m=–∞

∥∥χ[m–,m)(·)
∥∥(q̄)′
L(p̄(·))′

]/(q̄)′

, sup
m≤k

B(m)

}

≤ cmax

{[
sup
m≤k

Imm/p̄′()
]
sup
n≤k

[ ∞∑
m=n

–m/p̄′()
][ n∑

m=–∞
m/p̄′()

]
, sup
m<k

B(m)

}

≤ cmax
{
sup
m≤k

Imm/p̄′(), sup
m<k

B(m)
}

→ 

as k →  because limm→–∞ B(m) = limm→–∞ B(m) = . Further, applying Theorem .,
we find that

∥∥K ()
v
∥∥
(Lp̄(·)(I),lq̄)→(Lp(·)(I),lq) ≤ max

{
sup
m≥n

B(m), sup
m≥n

B(m)
}

→ 

as n → +∞.
Hence,

∥∥Kvf –K ()
v f –K ()

v f
∥∥≤ ∥∥K ()

v f
∥∥ + ∥∥K ()

v f
∥∥→ 

as B(m) → , Bi(m) →  , i = , . Hence Kv is compact, since it is the limit of compact
operators.
Necessity. First we show that limm→–∞ B(m) = . Let fn = χ(n–,n+)–n/p̄n , where p̄n is

defined in the proof of Theorem .. Then fn →  weakly in (Lp̄(·)(I), lq̄)d as n → –∞.
Indeed, let φ ∈ (L(p̄(·))′ (I), l(q̄)′ )d . Then

∣∣∣∣
∫ ∞


fn(y)φ(y)dy

∣∣∣∣ ≤ (‖χ(n–,n]‖q̄Lp̄(·) + ‖χ(n ,n+]‖q̄Lp̄(·)
)/q̄–n/p̄c

× (‖φχ(n–,n]‖q̄L(p̄(·))′ + ‖φχ(n–,n]‖q̄L(p̄(·))′
)/q̄

→ 

as n→ –∞.
Observe now that

‖Kvfn‖(Lp̄(·)(I),lq̄)d ≥ ∥∥χ(n ,n+)(x)v(x)k(x,x/)
∥∥
Lp(·)

n/p̄′
n , n ∈ Z. (.)

Hence, limn→–∞ B(n)→  because Kv is compact and p̄n = p̄() if n <m.
Further, (.) implies that

∥∥χ(n ,n+)(x)v(x)k(x,x/)
∥∥
Lp(·)

n/(p̄c)′ → 

as n→ +∞.
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To show that limn→+∞ B(n) →  we represent B(n) as follows:

B(n) =

( ∞∑
m=n

Iqm

)/q( n–∑
m=–∞

‖χ(m ,m+]‖q̄L(p̄(·))′
)/q̄

≤
( ∞∑

m=n
Iqm

)/q( m–∑
m=–∞

mq̄/(p̄())′
)/q̄

+

( ∞∑
m=n

Iqm

)/q( n–∑
m=m

mq̄/(p̄c)′
)/q̄

=: J ()n + J ()n ,

where n≥ m and Im is defined by (.). Observe now that

J ()n =

( ∞∑
m=n

Iqm

)/q

m/(p̄())′ → 

as n → +∞ because (
∑∞

m=n I
q
m)/q →  as n → +∞. The latter convergence follows from

the convergence of the series.
Further,

J ()n ≤ c sup
m≥n

(
Imm/(p̄c)′)–n/(p̄c)′n/(p̄c)′

≤ c sup
m≥n

Imm/(p̄c)′ → 

as n→ +∞ because Imm/(p̄c)′ →  asm → +∞ (see (.)). Hence, limm→+∞ B(m) = .
Further, it is easy to see that for  < α <  and fn,

‖Kvfn‖(Lp(·),lq)d ≥ –n/p̄n
∥∥χ(n ,n+)(x)v(x)k(x,x/)x

∥∥
Lp(·)

≥ n/(p̄n)
′∥∥χ(n ,n+)(x)v(x)k(x,x/)

∥∥
Lp(·)

≥ c
(
n
(
α – 

))/(p̄n)′∥∥χ(n+α ,n+)(x)v(x)k(x,x/)
∥∥
Lp(·) .

Hence,

‖Kvfn‖(Lp(·),lq)d ≥ sup
<α<

(
n
(
α – 

))/(p̄n)′∥∥χ(n+α ,n+)(x)v(x)k(x,x/)
∥∥
Lp(·) → 

as n→ +∞ or n → –∞.
The conditions B < ∞ and B < ∞ follow from the fact that every compact operator is

bounded. �

Now we formulate the compactness criteria for the kernel operator Kv defined on R.

Theorem . Let  < p̄–(R) ≤ p̄(x) ≤ p(x) ≤ p+(R) < ∞ and let p̄,p ∈ WL(R+). Let q̄
and q be constants such that  < q̄ ≤ q < ∞. Assume that p̄(x) ≡ p̄c ≡ const and p(x) ≡
pc ≡ const outside some large interval (–∞, m ). Let k̃ ∈ V (R+)∩V(p̄(·))′ (R+). Then Kv is
compact from (Lp̄(·), lq̄) to (Lp(·), lq) if and only if

(i) D = sup
m∈Z

D(m) < ∞; D = sup
n∈Z

D(n) < ∞,
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(ii) lim
m→–∞D(m) = lim

m→∞D(m) = ,

(iii) lim
n→–∞D(n) = lim

n→∞D(n) = ,

where

D(m) :=
∥∥χ[m ,m+)k̃(x,x/)ṽ(x)

∥∥
Lp(·)

m/p̄′
();

D(m) :=

[ ∞∑
n=m

∥∥χ[n ,n+)k̃(x,x/)ṽ(x)
∥∥q
Lp(·)

]/q

×
[ m∑
n=–∞

∥∥χ[n–,n)(·)
∥∥(q̄)′
Lp̄

′
(·)

]/(q̄)′

;

D(n) := sup
<α<

∥∥χ[n+α ,n+)(x)k̃(x,x/)ṽ(x)
∥∥
Lp(·)

∥∥χ(n ,n+α )(·)
∥∥
L(p̄(·))′ ;

k̃, ṽ and p and p̄ are defined in Section .

Proof The proof follows from Theorem . by the change of variable z → log t. �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors carried out the proof. All authors conceived of the study, and participated in its design and coordination. All
authors read and approved the final manuscript.

Author details
1Department of Mathematical Analysis, A. Razmadze Mathematical Institute, I. Javakhishvili Tbilisi State University,
2 University Str., Tbilisi, 0186, Georgia. 2International Black Sea University, 3 Agmashenebeli Ave., Tbilisi, 0131, Georgia.
3Department of Mathematics, Faculty of Informatics and Control Systems, Georgian Technical University, 77 Kostava Str.,
Tbilisi, Georgia. 4Abdus Salam School of Mathematical Sciences, GC University, 68-B New Muslim Town, Lahore, Pakistan.

Acknowledgements
The first and second authors were supported by the Shota Rustaveli National Science Foundation grant (Contract
No. D/13-23). The part of this work is carried out at Abdus Salam School of Mathematical Sciences, GC University, Lahore.
The second and third authors are thankful to the Higher Education Commission, Pakistan for the financial support. The
authors are grateful to the anonymous referees for their remarks and suggestions.

Received: 28 August 2012 Accepted: 1 April 2013 Published: 16 April 2013

References
1. Edmunds, DE, Kokilashvili, V, Meskhi, A: On the boundedness and compactness of the weighted Hardy operators in

Lp(x) spaces. Georgian Math. J. 12(1), 27-44 (2005)
2. Kopaliani, TS: On some structural properties of Banach function spaces and boundedness of certain integral

operators. Czechoslov. Math. J. 54(3), 791-805 (2004)
3. Cruz-Uribe, D, Mamedov, FI: On a general weighted Hardy type inequality in the variable exponent Lebesgue spaces.

Rev. Mat. Complut. 25(2), 335-367 (2012)
4. Samko, S: Convolution type operators in Lp(x) (Rn). Integral Transforms Spec. Funct. 7(3-4), 261-284 (1998)
5. Edmunds, DE, Meskhi, A: Potential-type operators in Lp(x) spaces. Z. Anal. Anwend. 21, 681-690 (2002)
6. Diening, L: Riesz potentials and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp(·) andWk,p(·) .

Math. Nachr. 268, 31-43 (2004)
7. Capone, C, Cruz-Uribe, D, Fiorenza, A: The fractional maximal operator on variable Lp spaces. Rev. Mat. Iberoam. 3(23),

747-770 (2007)
8. Cruz-Uribe, D, Fiorenza, A, Martell, JM, Perez, C: The boundedness of classical operators on variable Lp spaces. Ann.

Acad. Sci. Fenn. Math. 31, 239-264 (2006)
9. Kokilashvili, V, Samko, S: Maximal and fractional operators in weighted Lp(x) spaces. Rev. Mat. Iberoam. 20(2), 493-515

(2004)
10. Kokilashvili, V, Samko, S: On Sobolev theorem for Riesz-type potentials in Lebesgue spaces with variable exponent.

Z. Anal. Anwend. 22(4), 899-910 (2003)

http://www.journalofinequalitiesandapplications.com/content/2013/1/173


Kokilashvili et al. Journal of Inequalities and Applications 2013, 2013:173 Page 27 of 27
http://www.journalofinequalitiesandapplications.com/content/2013/1/173

11. Kokilashvili, V, Meskhi, A: Weighted criteria for generalized fractional maximal functions and potentials in Lebesgue
spaces with variable exponent. Integral Transforms Spec. Funct. 18(9), 609-628 (2007)

12. Kokilashvili, V, Meskhi, A: Two-weight inequalities for fractional maximal functions and singular integrals in Lp(·)

spaces. J. Math. Sci. 173(6), 656-673 (2011)
13. Kokilashvili, V, Meskhi, A, Sarwar, M: One and two weight estimates for one-sided operators in Lp(·) spaces. Eurasian

Math. J. 1(1), 73-110 (2010)
14. Kokilashvili, V, Meskhi, A, Sarwar, M: Potential operators in variable exponent Lebesgue spaces: two-weight estimates.

J. Inequal. Appl. (2010). doi:10.1155/2010/329571
15. Meskhi, A: Measure of Non-Compactness for Integral Operators in Weighted Lebesgue Spaces. Nova Science

Publishers, New York (2009)
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