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Abstract

Our aim is to introduce the grand Bochner–Lebesgue space in the spirit of Iwaniec–Sbordone spaces,
also known as grand Lebesgue spaces, and prove some of its properties. We will also deal with the associate
space for grand Bochner–Lebesgue spaces.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

In 1992 T. Iwaniec and C. Sbordone [17], in their studies related with the integrability proper-
ties of the Jacobian in a bounded open set Ω , introduced a new type of function spaces, Lp)(Ω),
called grand Lebesgue spaces. A generalized version of them, Lp),θ (Ω) appeared in L. Greco,
T. Iwaniec and C. Sbordone [15]. Harmonic analysis related to these spaces and their associate
spaces (called small Lebesgue spaces), were intensively studied during last years due to various
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applications, we mention e.g. [3,6,9–12,18,22,25] and continue to attract attention of various
researchers. For example, in the theory of PDE’s it turned out that these are the right spaces in
which some nonlinear equations have to be considered (see [13,15]).

Also noteworthy to mention the extension of the ideas regarding grand Lebesgue spaces into
the framework of the so-called grand Morrey spaces, e.g. [19–21,23,24].

2. Preliminaries

2.1. Bochner integral

In this subsection we want to recall some basic properties of integrals of vector-valued
functions with respect to scalar measures. We will follow, almost verbatim, [7]. From now on
(X,A ,μ) will stand for a finite measure space and B for a Banach space.

Definition 2.1. A function s : X → B is simple if there exist x1, x2, . . . , xn ∈ B and E1,E2, . . . ,

En ∈ A such that s = ∑n
k=1 xkχEk

, where χE stands for the characteristic function of the set E,
and we will denote this set as S(X,μ,B). For the simple function s we define the integral as´
X s(t)dμ(t) := ∑n

k=1 xkμ(Ek).
A function f : X → B is called μ-measurable (sometimes also referred as strong measurable)

if there exists a sequence of simple functions (sn)n∈N with limn→∞ ‖sn − f ‖ = 0 μ-almost
everywhere.

Definition 2.2. A μ-measurable function f : X → B is called Bochner integrable if there exists
a sequence of simple functions (sn)n∈N such that

lim
n→∞

ˆ

X

‖sn − f ‖dμ = 0.

The Bochner integral was introduced by S. Bochner [2]. It is also worth mentioning that equiva-
lent definitions were given by T. Hildebrandt [16] and N. Dunford (the D0-integral) [8]. For this
reason, the Bochner integral is sometimes called Dunford’s first integral.

We will cite some theorems that will be used, for the proofs, see e.g. [7].

Theorem 2.3 (Dominated Convergence Theorem). Let (X,A ,μ) be a finite measure space and
(fn) be a sequence of Bochner integrable B-valued functions on X. If limfn = f in μ-measure
(i.e. limn μ({ω ∈ X | ‖sn − f ‖ � ε}) = 0 for every ε > 0) and if there exists a real-valued
Lebesgue integrable function g on X with ‖fn‖ � g μ-almost everywhere, then f is Bochner
integrable and limn

´
E

fn dμ = ´
E

f dμ for each E ∈ A . In fact, limn

´
X ‖f − fn‖dμ = 0.

Since we have the failure of the Radon–Nikodým Theorem for the Bochner integral, we will
introduce the following property

Definition 2.4 (Radon–Nikodým property). A Banach space B has the Radon–Nikodým property
with respect to (X,A ,μ) if for each μ-continuous vector measure G : A → B of bounded
variation there exists g ∈ L1(μ,X) such that G(E) = ´

E
g dμ for all E ∈ A . A Banach space

B has the Radon–Nikodým property if B has the Radon–Nikodým property with respect to every
finite measure space.
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Lemma 2.5 (Exhaustion Lemma). Let G : A → B be a vector measure. Suppose P is a property
of G such that

(a) G has P on every μ-null set;
(b) if G has property P on E ∈ A , then G has property P on every A ∈ A contained in E;
(c) if G has property P on E1 and E2 (both members of A ), then G has property P on E1 ∪E2;

and
(d) every set A ∈ A of positive μ-measure contains a set B ∈ A of positive μ-measure such

that G has property P on B.

Then there exists a sequence (An) of disjoint members of A such that X = ⋃∞
n=1 An and such

that G has property P on each An.

3. Grand and small Bochner–Lebesgue spaces

In this section we will introduce grand and small Bochner–Lebesgue spaces as well as some
of their most important properties with respective proofs.

Definition 3.1 (Grand Bochner–Lebesgue spaces). Let (X,A ,μ) be a finite measure space,
1 < p < ∞ and ϕ : (0,p − 1) → R+ be a finite non-decreasing function with limt→0 ϕ(t) = 0.
The grand Bochner–Lebesgue space, denoted by Lp),ϕ(X,μ,B), is the set of all Banach-valued
measurable functions for which

‖f ‖Lp),ϕ(X;B) := sup
0<ε<p−1

ϕ(ε)

(ˆ

X

∥∥f (x)
∥∥p−ε

B
dμ(x)

) 1
p−ε

< ∞.

From now on, all of the above conditions will be tacitly assumed whenever we speak of grand
Bochner–Lebesgue spaces.

Remark 3.2. Recently, in [4], it was shown that the assumption on ϕ is essentially optimal in the
sense that even if ϕ is non-decreasing, the space constructed by ϕ can be characterized by a new
function Φ , which is non-decreasing.

Remark 3.3. Almost all papers where grand spaces are dealt with, the definition is somewhat
different, the integral

´
is replaced by the integral average

ffl
, but since we are working on a

finite measure space, there is no essential difference. Taking

ϕ(x) = x
1

p−x + χ[0,1]�
(
1 − x

1
p−x

)
(1)

the induced Lebesgue measure in a bounded subset of the Euclidean space and B as the one-
dimensional Euclidean space, we recover the space introduced by T. Iwaniec and C. Sbordone in

[17] and we get the space introduced in [15] when ϕ(x) = x
θ

p−x + χ[0,1]�(1 − x
θ

p−x ).

The grand Bochner–Lebesgue space has a very interesting property, let us call it the nesting
property, namely
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Lemma 3.4 (Nesting property). If 1 < p < ∞, for all ε ∈ (0,p − 1) we have

Lp(X,μ,B) ⊂ Lp),ϕ(X,μ,B) ⊂ Lp−ε(X,μ,B). (2)

Proof. The embedding Lp),ϕ(X,μ,B) ⊂ Lp−ε(X,μ,B) simply follows from the definition of
supremum, the fact that (X,A ,μ) is a finite measure space and the condition on ϕ.

To see the other inclusion, we note that by Hölder’s inequality we have

ϕ(ε)

( 

X

∥∥f (x)
∥∥p−ε

B
dμ(x)

) 1
p−ε

� ϕ(ε)

( 

X

∥∥f (x)
∥∥p

B
dμ(x)

) 1
p

where
ffl

E
f dx := 1

μ(E)

´
E

f dx stands for the integral average of the function f in E, and we
are done. �
Remark 3.5. The left inclusion in (2) can be strict depending on the measure space. For example,

on the interval [0,1], the function f (x) = x
− 1

p ∈ Lp),φ([0,1]) (with φ defined in (1)) but does
not belong to Lp([0,1]).

Theorem 3.6. The space Lp),ϕ(X,μ,B) is complete.

Proof. Let (fn)n∈N be a Cauchy sequence in Lp),ϕ(X,μ,B). Then for fixed η and arbitrary
ε ∈ (0,p − 1), exists N(η) such that, whenever n,m > N(η) we have

ϕ(ε)

(ˆ

X

∥∥fn(x) − fm(x)
∥∥p−ε

B
dμ(x)

) 1
p−ε

< η/3.

Therefore (fn)n∈N is a Cauchy sequence in Lp−ε(X,μ,B) for arbitrary ε ∈ (0,p −1), as a result
we define f∞ as its limit in Lp−ε(X,μ,B) for every ε ∈ (0,p − 1) (suppose the contrary that
there are ε1 and ε2, ε1 < ε2, such that fn converges to f1 in Lp−ε1 and fn converges to f2 in
Lp−ε2 . If f1 	= f2, then we have that fn has two different limits in Lp−ε2 because Lp−ε1 ↪→
Lp−ε2 ). Taking n > N(η) and using the definition of the supremum, there exists positive ε0(n)

less than p − 1 such that

‖f∞ − fn‖Lp),ϕ(X,μ,B)

� ϕ
(
ε0(n)

)(ˆ

X

∥∥f∞(x) − fn(x)
∥∥p−ε0(n)

B
dμ(x)

) 1
p−ε0(n) + η/3.

We also have that there exists N1 ∈ N such that for m > N1 we have

ϕ
(
ε0(n)

)(ˆ ∥∥f∞(x) − fm(x)
∥∥p−ε0(n)

B
dμ(x)

) 1
p−ε0(n)

� η/3.
X
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Collecting the previous results, we get

‖f∞ − fn‖Lp),ϕ(X,μ,B)

� ϕ
(
ε0(n)

)(ˆ

X

∥∥fn(x) − fm(x)
∥∥p−ε0(n)

B
dμ(x)

) 1
p−ε0(n) + η/3

+ ϕ
(
ε0(n)

)(ˆ

X

∥∥f∞(x) − fm(x)
∥∥p−ε0(n)

B
dμ(x)

) 1
p−ε0(n)

� η

for n > M and m > N1. From this we obtain the desired result. �
Theorem 3.7. Let S(X,μ,B) =: S be the set of simple functions (see Definition 2.1). Its closure
[S]Lp),ϕ(X,μ,B) consists of functions f ∈ Lp),ϕ(X,μ,B) such that

lim
ε→0

ϕ(ε)

ˆ

X

∥∥f (x)
∥∥p−ε

B
dμ(x) = 0. (3)

Proof. Taking an element from the closure, there exists a sequence (sn) of functions belonging
to S(X,μ,B) such that ‖f − sn‖Lp),ϕ(X,μ,B) → 0 when n → ∞. Then, for fixed δ > 0, we can
choose n(δ) for which ‖f − sn(δ)‖Lp),ϕ(X,μ,B) < δ/2. By Hölder’s inequality we have that

ϕ(ε)

( 

X

∥∥sn(δ)(x)
∥∥p−ε

B
dμ(x)

) 1
p−ε

� ϕ(ε)

( 

X

∥∥sn(δ)(x)
∥∥p

B
dμ(x)

) 1
p → 0

when ε → 0. We can now take an ε0 > 0 such that, whenever 0 < ε < ε0 we have

ϕ(ε)

( 

X

∥∥sn(δ)(x)
∥∥p−ε

B
dμ(x)

) 1
p−ε

< δ/2.

Defining I := ϕ(ε)(
ffl
X ‖f (x)‖p−ε

B dμ(x))
1

p−ε and gathering all, we have

I � ϕ(ε)

( 

X

∥∥f (x) − sn(δ)(x)
∥∥p−ε

B
dμ(x)

) 1
p−ε + ϕ(ε)

( 

X

∥∥sn(δ)(x)
∥∥p−ε

B
dμ(x)

) 1
p−ε

� ‖f − sn(δ)‖Lp),ϕ(X,μ,B) + δ/2

� δ

when 0 < ε < ε0, obtaining the result. �
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Remark 3.8. The previous theorem has been proved by L. Greco in [14] for the case of finite
measurable sets in R

n, see also M. Carozza and C. Sbordone [5]. In this case it is possible to
prove that the closure of simple functions is not dense, for example, in Lp),φ([0,1]) with φ as

in (1). Let us take the function f (x) = x
− 1

p in Lp),φ[(0,1)] and we obtain that f ∈ Lp),φ\[S]Lp) ,

since (ε
´ 1

0 |f (t)|p−ε dt)
1

p−ε = p
1

p−ε � 0 as ε → 0.

3.1. Associate space

By [X]′ we denote the associate space of X understood in the sense of Banach function space
theory, see [1] for the notion of associate space.

It is a well-known fact that the associate space for Lp space is isometrically isomorphic to
Lp′

, where p′ is the conjugate exponent. The same is also true in the more general case when
Lp = Lp(X,A ,μ,B) represents the Lebesgue space of the functions with the values in the
separable B-space and Lp′ = Lp′

(X,A ,μ,B∗) is the Lebesgue space of the functions with the
values in the separable space B∗ dual with B.

Our aim is to extend these results to the grand Lebesgue space framework. To deal with the
associate space for grand Bochner–Lebesgue spaces, we first introduce the auxiliary Banach
space L(p′,ϕ(X,μ,B∗).

Definition 3.9. Let (X,A ,μ) be a finite measure space and 1 < p < ∞ and ϕ : (0,p −1) →R+
be a non-decreasing function with limt→0 ϕ(t) = 0. By L(p′,ϕ(X,μ,B∗) we denote the set of
all functions g ∈ M0(X,μ,B∗) as the set of all B∗-valued μ-measurable functions for which
the ‖ · ‖B∗ -value is finite a.e. in X which can be represented in the form g(x) = ∑∞

k=1 gk(x)

(convergence a.e.) and such that the following norm

‖g‖
L(p′,ϕ(X,μ,B∗) = inf

g=∑∞
k=1 gk

{ ∞∑
k=1

inf
0<ε<p−1

1

ϕ(ε)

(ˆ

X

∥∥gk(x)
∥∥(p−ε)′
B∗ dμ(x)

) 1
(p−ε)′

}
,

is finite.

If f : X → B and g : X → B∗, we define 〈f,g〉(x) on X by

〈f,g〉(x) = g(x)
((
f (x)

))
, for x ∈ X. (4)

With the previous definition taken into account, we note that a Hölder type inequality is valid,
namely

Theorem 3.10 (Hölder’s type inequality). Let f ∈ Lp),ϕ(X,μ,B) and g ∈ L(p′,ϕ(X,μ,B∗), then

ˆ

X

〈f,g〉(x)dμ(x) � ‖f ‖Lp),ϕ(X,μ,B)‖g‖
L(p′,ϕ(X,μ,B∗). (5)

Proof. Let us take a decomposition of g = ∑∞
k=1 gk . For each k and for each 0 < ε < p − 1 we

have
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∣∣∣∣
ˆ

X

〈f,gk〉(x)dμ(x)

∣∣∣∣ �
ˆ

X

∣∣〈f,gk〉(x)
∣∣dμ(x)

�
ˆ

X

∥∥f (x)
∥∥
B

∥∥gk(x)
∥∥
B∗ dμ(x)

�
(ˆ

X

∥∥f (x)
∥∥p−ε

B
dμ(x)

) 1
p−ε

(ˆ

X

∥∥gk(x)
∥∥(p−ε)′
B∗ dμ(x)

) 1
(p−ε)′

� ϕ(ε)

(ˆ

X

∥∥f (x)
∥∥p−ε

B
dμ(x)

) 1
p−ε 1

ϕ(ε)

(ˆ

X

∥∥gk(x)
∥∥(p−ε)′
B∗ dμ(x)

) 1
(p−ε)′

� ‖f ‖Lp),ϕ(X,μ,B)

1

ϕ(ε)

(ˆ

X

∥∥gk(x)
∥∥(p−ε)′
B∗ dμ(x)

) 1
(p−ε)′

which entails

ˆ

X

〈f,gk〉(x)dμ(x) � inf
0<ε<p−1

1

ϕ(ε)

(ˆ

X

∥∥gk(x)
∥∥(p−ε)′
B∗ dμ(x)

) 1
(p−ε)′ ‖f ‖Lp),ϕ(X,μ,B)

from which we get

ˆ

X

〈f,g〉(x)dμ(x) �
ˆ

X

∥∥f (x)
∥∥
B

∥∥∥∥∥
∞∑

k=1

gk(x)

∥∥∥∥∥
B∗

dμ(x)

�
∞∑

k=1

ˆ

X

∥∥f (x)
∥∥
B

∥∥gk(x)
∥∥
B∗ dμ(x)

�
∞∑

k=1

inf
0<ε<p−1

1

ϕ(ε)

(ˆ

X

∥∥gk(x)
∥∥(p−ε)′
B∗ dμ(x)

) 1
(p−ε)′ ‖f ‖Lp),ϕ(X,μ,B)

and we obtain (5). �
We can obtain the following inclusions

Lp′+ε(X,μ,B) ⊂ L(p′,ϕ(X,μ,B) ⊂ Lp′
(X,μ,B)

for all ε > 0, giving in particular that L∞(X,μ,B) ⊂ L(p′,ϕ(X,μ,B).
After introducing the auxiliary function space L(p′,ϕ(X,μ,B), we introduce the notion of

small Bochner–Lebesgue spaces, namely

Definition 3.11 (Small Bochner–Lebesgue spaces). The small Bochner–Lebesgue space is de-
fined by



2132 V. Kokilashvili et al. / Journal of Functional Analysis 266 (2014) 2125–2136
Lp)′,ϕ(X,μ,B) := {
g ∈ M0

∣∣ ‖g‖
L p)′,ϕ(X,μ,B)

< ∞}
where

‖g‖
L p)′,ϕ(X,μ,B)

= sup
0<‖ψ‖B�‖g‖B

ψ∈L(p′,ϕ(X,μ,B)

‖ψ‖
L(p′,ϕ(X,μ,B)

.

The next theorem follows from Theorem 3.10

Theorem 3.12. Let 1 < p < ∞. The following Hölder inequality holds

ˆ

X

∣∣〈f,g〉(x)
∣∣dμ(x)(x) � ‖f ‖Lp),ϕ(X,μ,B)‖g‖

L p)′,ϕ(X,μ,B∗) (6)

for all f ∈ Lp),ϕ(X,μ,B) and g ∈ Lp)′,ϕ(X,μ,B∗).

Proof. For f ∈ Lp),ϕ(X,μ,B) and any g ∈M0(X,μ,B∗) we have

ˆ

X

∣∣〈f,g〉∣∣(x)dμ(x) = sup
0<‖ψ‖B∗�‖g‖B∗
ψ∈L∞(X,μ,B∗)

ˆ

X

〈f,ψ〉(x)dμ(x)

� sup
0<‖ψ‖B∗�‖g‖B∗
ψ∈L(p′,ϕ(X,μ,B∗)

ˆ

X

〈f,ψ〉(x)dμ(x)

� sup
0<‖ψ‖B∗�‖g‖B∗
ψ∈L(p′,ϕ(X,μ,B∗)

‖f ‖Lp),ϕ(X,μ,B)‖ψ‖
L(p′,ϕ(X,μ,B∗)

� ‖f ‖Lp),ϕ(X,μ,B)‖g‖
L p)′,ϕ(X,μ,B∗)

and we have (6). �
We will first show that Lp)′,ϕ(X,μ,B∗) is isometrically contained in the space [Lp),ϕ(X,

μ,B)]′ and then we will show that they coincide whenever we impose a certain restriction on B∗.

Theorem 3.13. For 1 < p < ∞ we have that Lp)′,ϕ(X,μ,B∗) is isometrically contained in
[Lp),ϕ(X,μ,B)]′.

Proof. Let g ∈ Lp)′,ϕ(X,μ,B∗) and (gn) be a sequence of simple functions in Lp)′,ϕ(X,μ,B∗)
converging a.e. to g. Taking 〈f,g〉(x) as in (4) and f ∈ Lp),ϕ(X,μ,B) we have that 〈f,gn〉(x)

is measurable for each n and also that limn〈f,gn〉(x) = 〈f,g〉(x), which shows that 〈f,g〉(x) is
measurable, see [7]. By Hölder’s type inequality (6), we get that

ˆ ∣∣〈f,g〉(x)
∣∣dμ(x)(x) � ‖f ‖Lp),ϕ(X,μ,B)‖g‖

L p)′,ϕ(X,μ,B∗),
X
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showing that the function g belongs to [Lp),ϕ(X,μ,B)]′ whose norm is not greater than
‖g‖

L p)′,ϕ(X,μ,B∗).
We will show that the reverse inequality is true (‖g‖[L p),ϕ(X,μ,B)]′ � ‖g‖

L p)′,ϕ(X,μ,B∗)). Let
ε > 0 and suppose first that g(·) = ∑

i�1 x∗
i (·)χEi

(·), where (x∗
i ) is a sequence in B∗ and (Ei) is

a countable partition of X by elements of A with μ(Ei) > 0 for all i.
We choose h � 0 in Lp),ϕ(X,μ,R) such that 0 < ‖h‖Lp),ϕ(X,μ,R) � 1 and such

‖g‖
L p)′,ϕ(X,μ,B∗) − ε/2 <

ˆ

X

∥∥g(x)
∥∥
B∗h(x)dμ(x). (7)

We will now take xi ∈ B with ‖xi‖B = 1 and such that

∥∥x∗
i

∥∥
B∗ − ε/2‖h‖1 < x∗

i (xi). (8)

Taking f as f (·) = ∑∞
i=1 xihχEi

(·) we have that f ∈ Lp),ϕ(X,μ,B) with ‖f ‖Lp),ϕ(X,μ,B) =
‖h‖Lp),ϕ(X,μ,R) � 1. We now have

ˆ

X

〈f,g〉(x)dμ(x) =
ˆ

X

h(x)

∞∑
i=1

x∗
i (xi)χEi

(x)dμ(x)

�
ˆ

X

h(x)

∞∑
i=1

(∥∥x∗
i

∥∥
B∗ − ε

2‖h‖1

)
χEi

(x)dμ(x)

�
ˆ

X

h(x)
∥∥g(x)

∥∥
B∗ dμ(x) − ε

2

´
X h(x)dμ(x)

‖h‖1

� ‖g‖
L p)′,ϕ(X,μ,B∗) − ε,

where we took (7) and (8) into account. Therefore ‖g‖[L p),ϕ(X,μ,B)]′ = ‖g‖
L p)′,ϕ (X,μ,B∗) when

g ∈ Lp)′,ϕ(X,μ,B∗) is countably-valued. By a limiting argument we get the result for general
g ∈ Lp)′,ϕ(X,μ,B∗) (see [7, p. 98]). �

We now deal with the associate space of grand Bochner–Lebesgue space, namely

Theorem 3.14. Let (X,A ,μ) be a finite measure space, 1 < p < ∞ and B be a Banach space.
Then [Lp),ϕ(X,μ,B)]′ = Lp)′,ϕ(X,μ,B∗), if and only if B∗ has the Radon–Nikodým property
with respect to μ.

We would like to stress that the condition on B∗ in Theorem 3.14 steams from the fact that
Radon–Nikodým property fails, in general, for the Bochner integral.

Proof of Theorem 3.14. Sufficiency. We have Lp)′,ϕ(X,μ,B∗) ⊂ [Lp),ϕ(X,μ,B)]′ isometri-
cally. We now assume that B∗ has the Radon–Nikodým property. For F ∈ [Lp),ϕ(X,μ,B)]′ we
define G : A → B∗ by
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G(E)(x) = F(xχE)

for E ∈ A .
Since |F(xχE)| � ‖F‖‖xχE‖Lp),ϕ(X,μ,B) = ‖F‖‖x‖B‖χE‖Lp),ϕ(X,μ,B) we have that G is

countably additive and has its values in B∗. To see that |G|(X) < ∞, let {E1, . . . ,En} be a
partition and x1, . . . , xn be in the closed unit ball of B. Then

∣∣∣∣∣
n∑

i=1

G(Ei)(xi)

∣∣∣∣∣ =
∣∣∣∣∣F

(
n∑

i=1

xiχEi

)∣∣∣∣∣
� ‖F‖

∥∥∥∥∥
n∑

i=1

xiχEi

∥∥∥∥∥
Lp),ϕ(X,μ,B)

� ‖F‖
∥∥∥∥∥

n∑
i=1

χEi

∥∥∥∥∥
Lp),ϕ(X,μ,B)

, since ‖xi‖ � 1,

� ‖F‖M

where M = (1 + μ(X)) · sup0<ε<p−1 ϕ(ε). It follows that G is of bounded variation after taking
appropriate suprema.

Since B∗ has the Radon–Nikodým property, there is a Bochner integrable function g : X → B∗
such that G(E) = ´

E
g dμ(x) for all E ∈ A . If f ∈ Lp),ϕ(X,μ,B) is a simple function, then

F(f ) = ´
X〈f,g〉(x)dμ(x). Take an expanding sequence (En) in A such that

⋃
n En = X and

such that g is bounded on each En. Fix n0 and note that
´

En0
〈·, g〉(x)dμ(x) is a bounded linear

functional on Lp),ϕ(X,μ,B) which agrees with F on all simple functions supported on En0 . We
have that

F(f χEn0
) =

ˆ

X

〈f,gχEn0
〉(x)dμ(x)

for all f ∈ Lp),ϕ(X,μ,B). Moreover, since gχEn0
is bounded, one has gχEn0

∈ Lp)′,ϕ(X,μ,B∗)
and ‖gχEn0

‖
L p)′,ϕ(X,μ,B∗) � ‖F‖. By the fact that this last inequality is obtained for each n0, the

Monotone Convergence Theorem guarantees that g ∈ Lp)′,ϕ(X,μ,B∗). With the above consid-
erations and the Hölder inequality, we have that

F(f ) = lim
n

ˆ

X

〈f χEn, g〉(x)dμ(x) =
ˆ

X

〈f,g〉(x)dμ(x),

for all f ∈ Lp),ϕ(X,μ,B). Therefore the space [Lp),ϕ(X,μ,B)]′ coincides with Lp)′,ϕ(X,μ,B∗)
proving the sufficiency.

Necessity. Suppose that [Lp),ϕ(X,μ,B)]′ = Lp)′,ϕ(X,μ,B∗) and let G : A → B∗ be a
μ-continuous vector measure of bounded variation. We shall show that if E0 ∈ A has posi-
tive μ-measure, then G has a Bochner integrable Radon–Nikodým derivative on a set D ∈ A ,
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D ⊆ E0 with μ(D) > 0. Invoking the Exhaustion Lemma 2.5 will then complete the proof. Thus
let E0 ∈ A have positive μ-measure. Applying the Hahn decomposition theorem to the scalar
measures |G| and kμ for a sufficiently large positive integer k produces a subset D of E0, D ∈ A ,
μ(D) > 0 such that |G|(E) � kμ(E) for all E ∈ A with E ⊆ D. Define for a simple function
f = ∑n

i=1 xiχEi
, where xi ∈ B, Ei ∈ A , and Ei ∩ Ej = ∅ for i 	= j ,

F(f ) =
n∑

i=1

G(Ei ∩ D)(xi).

Then

∣∣F(f )
∣∣ =

∣∣∣∣∣
n∑

i=1

G(Ei ∩ D)(xi)

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

G(Ei ∩ B)

μ(Ei ∩ B)

(
μ(Ei ∩ D)xi

)∣∣∣∣∣
�

n∑
i=1

k
∥∥μ(Ei ∩ D)xi

∥∥ � k‖f ‖1

� kC
(
1 + μ(X)

)‖f ‖Lp),ϕ(X,μ,B),

where the last inequality comes from Hölder’s inequality and the definition of grand spaces,
where we can take C = 1/ϕ((p − 1)/2) < +∞.

Since F is linear on the simple functions in Lp),ϕ(X,μ,B), this shows that F is continuous
on the simple functions in Lp),ϕ(X,μ,B) and therefore has a bounded linear extension to all of
Lp),ϕ(X,μ,B). By hypothesis, there is g ∈ Lp)′,ϕ(X,μ,B∗) such that

F(f ) =
ˆ

X

〈f,g〉(x)dμ(x), for all f ∈ Lp),ϕ(X,μ,B).

But one has G(E ∩ D)(x) = F(xχE) = ´
E
〈x,g〉(x)dμ(x) for all x ∈ B and E ∈ A . Since each

g ∈ Lp)′,ϕ(X,μ,B∗) is Bochner integrable, we get

G(E ∩ D)(x) =
(ˆ

E

g dμ(x)

)
(x), for all x ∈ B and E ∈ A .

As a result, G(E ∩ D) = ´
E

g dμ(x), for all E ∈ A . �
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