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The main aim of this paper is to study a general multisublinear operators generated 
by quasi-concave functions between weighted Banach function lattices. These 
operators, in particular, generalize the Hardy–Littlewood and fractional maximal 
functions playing an important role in harmonic analysis. We prove that under 
some general geometrical assumptions on Banach function lattices two-weight weak 
type and also strong type estimates for these operators are true. To derive the 
main results of this paper we characterize the strong type estimate for a variant 
of multilinear averaging operators. As special cases we provide boundedness results 
for fractional maximal operators in concrete function spaces.
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1. Introduction

Recently, much attention has been paid to the study of the boundedness of various types of operators 
between weighted Lp-spaces playing an important role in analysis, in particular, in harmonic analysis and 
its applications in partial differential equations (PDE). For this purpose the Hardy–Littlewood maximal 
function defined for any f ∈ L1

loc(Rn) by

Mf(x) = sup
Q�x

1
|Q|

∫
Q

|f | dy, x ∈ R
n,
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where the supremum is taken over all cubes with sides parallel to the coordinate axes, has proved to be a tool 
of great importance. One of the important related operators is the so-called fractional maximal function Mλ

(0 < λ < 1) defined by

Mλf(x) = sup
Q�x

1
|Q|λ

∫
Q

|f | dy, x ∈ R
n

for any f ∈ L1
loc(Rn). It is well-known that Mλ is deeply connected to the Riesz potential operator Iα

(0 < α < n), given by

Iαf(x) =
∫
Rn

f(y)
|x− y|n−α

dy, x ∈ R
n

(with α = n(1 − λ)), which play an important role in the theory of Sobolev’s embeddings (see, e.g., [10]).
Multisublinear maximal operators appeared naturally in connection with multilinear Calderón–Zygmund 

theory. A multisublinear maximal operator that acts on the product of m-Lebesgue spaces and is smaller 
than the m-fold product of the Hardy–Littlewood maximal function was studied in [8]. It was used to obtain 
a precise control on multilinear singular integral operators of Calderón–Zygmund type and to build a theory 
of weights adapted to the multilinear setting. For the boundedness and other properties of multisublinear 
fractional maximal operators in (weighted) Lebesgue spaces we refer to [11,12].

The main aim of this paper is to study more abstract multisublinear maximal operators between weighted 
Banach function lattices which, in particular, generalize fractional maximal functions. We believe our results 
will find further important applications in the study of multilinear Riesz potential operators, in the way 
fractional maximal function did in the study of the Riesz potential operators.

We use standard definitions and notation from the theory of Banach lattices (see, e.g., [7,9]). Let (Ω, Σ, μ)
be a complete σ-finite measure space and let L0(μ) = L0(Ω, μ) denote the space of all equivalence classes of 
μ-a.e. finite real-valued measurable functions on Ω with the topology of convergence in measure on μ-finite 
sets. Let L̃0(μ, Ω) denote the space of extended real-valued measurable functions on Ω. A linear subspace E
of L0(μ) is said to be an ideal if f ∈ E and |g| ≤ |f | in L0(μ), then g ∈ E. By E+ we denote the collection 
of non-negative functions in E.

Let E ⊂ L0(Ω1, μ1) be an ideal and let T : E → L0(Ω2, μ2) be a positive operator. Suppose that there 
exists a map T×: L0(Ω2, μ2) → L̃0(Ω1, μ1)+ such that for all f ∈ E+ and all g ∈ L0(Ω2, μ2)+ we have∫

Ω2

(Tf)g dμ2 =
∫
Ω1

f
(
T×g

)
dμ1,

then the linear map T ′ acting from F := {g ∈ L0(Ω2, μ2); T×(|g|) ∈ L0(Ω1, μ1)} to L0(Ω1, μ1) by T ′g =
T×g+ −T×g− for g ∈ F is called an adjoint of T . It is easy to see that T ′ is a positive linear map such that∫

Ω2

(Tf)g dμ2 =
∫
Ω1

f
(
T ′g

)
dμ1, (f, g) ∈ E+ × F+.

Notice that this definition is motivated by the well-known fact which we will use later: if K ∈ L0(Ω2 ×
Ω1, μ2 × μ1)+ and E = {f ∈ L0(Ω1, μ1); 

∫
Ω1

K(·, t)|f(t)| dμ1 < ∞ μ1-a.e.}, then it follows by Tonelli’s 
theorem that for the integral operator defined by

Tf(s) :=
∫

K(s, t)f(t) dμ1 f ∈ E, s ∈ Ω2,
Ω1
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we have F = {g ∈ L0(Ω2, μ2); 
∫
Ω2

K(s, t)|g(s)| dμ2 < ∞ μ1-a.e.} and the adjoint T ′ of T is the integral 
operator T ′ : F → L0(Ω1, μ1) given by the formula T ′g(t) =

∫
Ω2

k(s, t)g(s) dμ2 for all g ∈ F , t ∈ Ω1.
A Banach (function) lattice (X, ‖ · ‖X) on (Ω, Σ, μ) is an ideal of L0(μ) which is complete with respect 

to the norm ‖ · ‖X . We also assume that the support of the space X is Ω (supp(X) = Ω), that is, there is 
an element u ∈ X with u > 0 μ-a.e. on Ω.

Let X be a Banach lattice. X is called minimal if the closed linear span {χA; μ(A) < ∞} is dense 
in X, where χA is the characteristic function of a set A. It is said that X has the Fatou property (or X is 
maximal) if for any f ∈ L0, fn ∈ X+ such that fn ↑ f a.e. and sup ‖fn‖X < ∞, we have that f ∈ X and 
‖fn‖X → ‖f‖X . We say that X has the weak Fatou property whenever if fn, f ∈ X+, fn ↑ f a.e., then 
‖fn‖X → ‖f‖X .

The Köthe dual space X ′ of a Banach lattice X on (Ω, Σ, μ) is the space of all f ∈ L0(μ) such that ∫
Ω
|fg| dμ < ∞ for every g ∈ X. It is a Banach lattice on (Ω, Σ, μ) when equipped with the norm

‖f‖X′ = sup
‖g‖X≤1

∫
Ω

|fg| dμ, f ∈ X ′.

Let us remark that the Köthe dual X ′ of X is a maximal Banach lattice on (Ω, μ), as for a number of 
classical spaces such as Lebesgue spaces Lp, 1 ≤ p ≤ ∞, Orlicz spaces or more general Musielak–Orlicz 
spaces. It is well known that a Banach lattice X is maximal if and only if X = X ′′ := (X ′)′ with equality 
of norms (see, e.g., [7]).

In what follows we will use the following well-known fact that the Köthe dual X ′ identified in a natural 
way with a subspace of the Banach dual X∗ is a norming subspace, i.e.,

‖f‖X = sup
‖g‖X′≤1

∣∣∣∣ ∫
Ω

fg dμ

∣∣∣∣, f ∈ X,

if and only if X has the weak Fatou property (see [7]).
If X is a Banach lattice on (Ω, Σ, μ) and w ∈ L0(μ) is strictly positive a.e., then we define X(w) to be 

the Banach lattice of all f ∈ L0(μ) such that fw ∈ X, equipped with the norm ‖f‖X(w) = ‖fw‖X . In what 
follows we will use the following easily verified formula, which holds with equality of norms

X(w)′ = X ′(w−1).
If T : X → Y is a bounded operator between Banach spaces, then we say that T is of strong type (or has 
strong type). Let X be a Banach space and Y be a Banach lattice on (Ω, μ). Then a map T : X → L0(μ)
is said to be of weak type (X, Y ) (or has weak type (X, Y )) if there exists a constant C > 0 such that for 
all λ > 0,

‖χ{ω∈Ω; |Tx(ω)|>λ}‖Y ≤ Cλ−1‖x‖X , x ∈ X.

Throughout the paper, we consider Rn equipped with the Lebesgue measure denoted by μ. The family 
of all cubes in Rn with edges parallel to the coordinate axes is denoted by B. We denote by P the set of all 
increasing functions ϕ : [0, ∞) → [0, ∞) with ϕ(0) = 0. The maximal function Mϕ generated by ϕ ∈ P is 
defined by

Mϕf(x) := sup
Q�x

1
ϕ(|Q|)

∫
|f | dμ, x ∈ R

n

Q
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for any f ∈ L1
loc := L1

loc(Rn), where the supremum is taken over all cubes Q ∈ B. Here, as usual, |Q| := μ(Q). 
Notice that in the case when ϕ(t) = t for all t ≥ 0, we obtain the classical Hardy–Littlewood maximal 
operator M.

We denote by Q̄ := {Qi} a countable subfamily of B satisfying the condition Q◦
i ∩ Q◦

j = ∅ for i �= j, 
where Q◦ denotes the interior of a cube Q.

Given a function ϕ ∈ P, for any subfamily Q̄ in B, we define the averaging operator TQ̄ relative to Q̄
and ϕ by

TQ̄f =
∑
i

(
1

ϕ(|Qi|)

∫
Qi

f dμ

)
χQi

, f ∈ L1
loc.

In the case when Q̄ contains only one cube Q, we write TQ instead of TQ̄.
In what follows if X is a Banach space, Y is a Banach lattice on (Rn, μ) and S is a map from a subspace E

of X to Y , then we put ‖S‖X→Y := sup{‖Sx‖Y ; x ∈ X∩E, ‖x‖X ≤ 1}. If ‖S‖X→Y < ∞ and there is no mis-
understanding, we say for short that S is a bounded operator from X to Y . Note that in the paper we consider 
the case E =

∏m
k=1 L

1
loc and X =

∏m
k=1 Xk equipped with the norm ‖(x1, . . . , xm)‖X := max1≤k≤m ‖xk‖Xk

, 
where X1, . . . , Xm are Banach latices on (Rn, μ) and S : E → L0(Rn, μ) is a multi(sub)linear operator.

The following statement is well known (see [5]).

Proposition 1.1. Let (X(w), Y (v)) be a pair of weighted Banach lattices on (Rn, μ). Then for any ϕ ∈ P the 
following statement is true:

A := sup
{
‖TQ‖X(w)→Y (v); Q ∈ B

}
< ∞

if and only if (w, v) ∈ Aϕ(X, Y ), i.e.,

C0(ϕ,w, v) := sup
Q∈B

1
ϕ(|Q|)‖vχQ‖Y

∥∥w−1χQ

∥∥
X′ < ∞.

Moreover we have A = C0(ϕ, v, w).

We need the following definition: A pair (X, Y ) of Banach lattices on (Rn, μ) is said to have the property 
G(B) ((X, Y ) ∈ G(B) for short) if there is a constant C1 = C1(B, X, Y ) such that

∑
i

‖xχQi
‖X‖yχQi

‖Y ′ ≤ C1‖x‖X‖y‖Y ′ , (x, y) ∈ X × Y

for any family {Qi; Qi ∈ B} of disjoint cubes. If the above inequality holds for any family {Qi} of pairwise 
disjoint Lebesgue measurable sets, then we write (X, Y ) ∈ G.

The following result is due to Berezhnoi [1].

Theorem 1.1. Let w and v be weights on Rn and let (X, Y ) be a pair of maximal Banach lattices in G(B). 
If ϕ ∈ P, then supQ̄ ‖TQ̄‖X(w)→Y (v) < ∞ if and only if (w, v) ∈ Aϕ(X, Y ). Moreover we have

sup
Q̄

‖TQ̄‖X(w)→Y (v) ≤ C0(ϕ,w, v)C1(B, X, Y ).
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2. Multilinear case

Motivated by the results mentioned in the previous section, we aim to study the boundedness of the 
natural variants of multilinear averaging and maximal operators from the product of weighted Banach 
lattices to a weighted Banach lattice.

We begin with a brief discussion and definitions. For an m tuple 	ϕ := (ϕ1, . . . , ϕm) ∈ Pm and subfamily 
Q̄ = {Qi} in B, we define the multilinear averaging operator TQ̄ and the maximal operator M�ϕ, respectively, 
by

TQ̄
	f =

∑
i

(
m∏

k=1

1
ϕk(|Qi|)

∫
Qi

fk dμ

)
χQi

,

respectively,

M�ϕ
	f(x) = sup

Q�x

m∏
k=1

1
ϕk(|Q|)

∫
Q

fk dμ, x ∈ R
n

for all 	f = (f1, . . . , fm) ∈
∏m

k=1 L
1
loc. Note that if ϕj(t) = t for every t ≥ 0 and each 1 ≤ j ≤ m, we obtain 

the multisublinear Hardy–Littlewood maximal operator studied in [8].
We need to define also a mutlilinear variant of G(B)-property. Let X1, . . . , Xm, Y be Banach lattices on 

(Rn, μ). We write (X1, . . . , Xm, Y ) ∈ G(m)(B) if there exists a constant C0 = C0(B, X1, . . . , Xm, Y ) such 
that for any family {Qi; Qi ∈ B} of disjoint cubes,∑

i

‖x1χQi
‖X1 · · · ‖xmχQi‖Xm

‖yχQi
‖Y ′ ≤ C‖x1‖X1 · · · ‖xm‖Xm

‖y‖Y ′

holds for all xj ∈ Xj (1 ≤ j ≤ m) and y ∈ Y ′.
If the above estimate holds for any family {Qi} of pairwise disjoint Lebesgue measurable sets, then 

we write (X1, . . . , Xm, Y ) ∈ G(m). For example, if X1 = Lp1 , . . . , Xm = Lpm and Y = Lr with 1 ≤
p1, . . . , pm, r < ∞, then (X1, . . . , Xm, Y ) ∈ G(m) provided that 1/p1 + · · · + 1/pm + 1/r′ ≥ 1, where 
1/r + 1/r′ = 1.

It is easy to see that if X1, . . . , Xm and Y are Banach lattices on (Rn, μ) such that (Xk1 , . . . , Xkn
, Y ) ∈

G(n)(B) with 1 ≤ kj < m for 1 ≤ j ≤ n, then (X1, . . . , Xm, Y ) ∈ G(m)(B).
In what follows we will work with a variant of Morrey spaces. For a given ϕ ∈ P we denote by Mϕ the 

space of all f ∈ L0(Rn, μ) such that

sup
Q∈B

1
ϕ(|Q|)

∫
Q

|f | dμ < ∞.

It is easy to verify that Mϕ is a Banach lattice on (Rn, μ) with the Fatou property when equipped with the 
norm

‖f‖Mϕ
= sup

Q∈B

1
ϕ(|Q|)

∫
Q

|f | dμ.

Proposition 2.1. Let 	ϕ = (ϕ1, ϕ2) ∈ P × P be such that t 
→ ϕ2(t)/t is a non-increasing function. Assume 
that X(w) and Y (v) are weighted Banach lattices on (Rn, μ). If the maximal operator M�ϕ is bounded from 
X(w) ×Mϕ2 to Y (v), then (w, v) ∈ Aϕ1(X, Y ).
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Proof. Our hypothesis on the boundedness of M�ϕ implies that there exists a constant C > 0 such that

I :=
∥∥M�ϕ(f, g)

∥∥
Y (v) ≤ C‖f‖X(w)‖g‖Mϕ2

, (f, g) ∈ X(w) ×Mϕ2 .

Fix Q ∈ B and take g = ϕ2(|Q|)
|Q| χQ. Since t 
→ ϕ2(t)

t is a non-increasing function, it is easily to see that 
g ∈ Mϕ2 with ‖g‖Mϕ2

≤ 1. Hence, we conclude that for all f in the unit ball of X(w) we have

I ≥
(

1
ϕ1(|Q|)

∫
Q

|f | dμ
)(

1
ϕ2(|Q|)

∫
Q

|g| dμ
)
‖vχQ‖Y

=
(

1
ϕ1(|Q|)

∫
Q

|f | dμ
)
‖vχQ‖Y ,

and so this gives the desired statement that (w, v) ∈ Aϕ1(X, Y ). �
Now under some conditions we give a characterization of the boundedness of the multilinear averaging 

operator TQ̄ from the product of weighted Banach lattices to weighted Banach lattices.

Theorem 2.1. Let X1(w1), . . . , Xm(wm), Y (v) be weighted Banach lattices on (Rn, μ) such that (X1, . . . ,
Xm, Y ) ∈ G(m)(B). Suppose that Y has the weak Fatou property. Then the multilinear averaging operator 
TQ̄ generated by 	ϕ = (ϕ1, . . . , ϕm) ∈ Pm is uniformly bounded with respect to a subfamily Q̄ = {Qi} of B
from X1(w1) × · · · ×Xm(wm) to Y (v), i.e., the inequality

sup
Q̄

‖TQ̄‖X1(w1)×···×Xm(wm)→Y (v) < ∞

holds if and only if (w1, . . . , wm, v) ∈ A�ϕ(X1, . . . , Xm, Y ), i.e.,

C1 := sup
Q∈B

‖vχQ‖Y
m∏

k=1

1
ϕk(|Q|)

∥∥w−1
k χQ

∥∥
X′

k
< ∞.

Proof. Necessity follows in the same way as in the linear case by using the obvious inequality supQ̄ ‖TQ̄‖ ≥
supQ∈B ‖TQ‖ and choosing appropriate test functions.

To prove sufficiency assume that C1 < ∞. Fix g ∈ Y (v)′ with ‖gv−1‖Y ′ ≤ 1. Applying Hölder’s inequality 
and G(m) property for (X1, . . . , Xm, Y ) we conclude that for any 	f = (f1, . . . , fm) ∈

∏m
k=1 Xk(wk),

∫
Rn

TQ̄(	f)g dμ =
∑
i

(
m∏

k=1

1
ϕk(|Qi|)

∫
Qi

(fkwk)w−1
k dμ

)(∫
Qi

(
gv−1)v dμ)

≤
∑
i

‖vχQi
‖Y

(
m∏

k=1

1
ϕk(|Qi|)

∥∥w−1
k χQi

∥∥
X′

k

)

×
(

m∏
k=1

‖fkwkχQi
‖Xk

)∥∥gv−1χQi

∥∥
Y ′

≤ C1C(B, X1, . . . , Xm, Y )
m∏

‖fk‖Xk(wk).

k=1
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Since g was arbitrary, it follows from the weak Fatou property of Y (v) that TQ̄ is uniformly bounded as an 
operator from the product X1(w1) × · · · ×Xm(wm) to Y (v) with

sup
Q̄

‖TQ̄‖ ≤ C1C(B, X1, . . . , Xm, Y ). �

Following [1], we show general examples of Banach lattices X1, . . . , Xm, Y such that (X1, . . . , Xm, Y ) ∈
G(m)(B). To do this we recall that a Banach lattice X on (Ω, μ) is said to be p-convex (1 < p ≤ ∞), 
respectively, q-concave (1 ≤ q < ∞), if there exists a constant C > 0 such that

∥∥∥∥∥
(

n∑
k=1

|xk|p
)1/p∥∥∥∥∥

X

≤ C

(
n∑

k=1

‖xk‖pX

)1/p

,

respectively,

(
n∑

k=1

‖xk‖qX

)1/q

≤ C

∥∥∥∥∥
(

n∑
k=1

|xk|q
)1/q∥∥∥∥∥

X

,

for any choice of elements x1, . . . , xn in X and n ∈ N. If in the above definitions elements x1, . . . , xn are 
pairwise disjoint, then X is said to satisfy an upper p-estimate and lower q-estimate, respectively. Clearly, 
p-convexity implies upper p-estimate, and q-concavity implies lower q-estimate of a Banach lattice X. More 
properties may be found in the book [9].

It is easy to check that if X satisfies a lower p-estimate, then the Köthe dual X ′ satisfies an upper 
p′-estimate. This immediately gives the following observation: if X1, . . . , Xm, Y are Banach lattices on 
(Rn, μ) such that Xk satisfies a lower pk for each 1 ≤ k ≤ m and Y satisfies an upper q-estimate with 
1/p1 + · · · + 1/pm + 1/q′ ≥ 1, then (X1, . . . , Xm, Y ) ∈ G(m)(B).

Applying the well-known results on p-convex and q-concave Orlicz spaces (see, e.g., [9]) or the Lorentz 
spaces (see [6]), based on the above remark we obtain concrete general examples of Banach lattices for which 
we have (X1, . . . , Xm, Y ) ∈ G(m)(B).

2.1. Weak type inequality

Below we state and prove a theorem which gives a characterization of the generalized weak type inequality 
for the maximal multisublinear operator M�ϕ from the product of weighted Banach lattices to the weighted 
Banach lattice satisfying the G(m) property. In what follows if E1, . . . , Em are Banach spaces and F is 
a Banach lattice on (Ω, ν), then a mapping T : E1 × · · · × Em → L0(μ) is said to be of weak type 
(E1, . . . , Em, F ) if

sup
λ>0

λ‖χ{ω∈Ω; |T (x1,...,xn)(ω)|>λ}‖F ≤ ‖x1‖E1 · · · ‖xm‖Em

for all (x1, . . . , xm) ∈ E1 × · · · × Em.

Theorem 2.2. Let X1(w1), . . . , Xm(wm), Y (v) be weighted Banach lattices on (Rn, μ) such that (X1, . . . ,
Xm, Y ) ∈ G(m)(B). Then the multisublinear operator M�ϕ generated by 	ϕ = (ϕ1, . . . , ϕm) ∈ Pm is of weak 
type (X1(w1), . . . , Xm(wm), Y (v)) if and only if (w1, . . . , wm, v) ∈ A�ϕ (X1, . . . , Xm, Y ).

Proof. Necessity is a direct consequence of Theorem 2.1, the pointwise estimate M�ϕ
	f ≥ TQ̄

	f which holds 
for any m-tuple 	f = (f1, . . . , fm) ≥ 0 of locally integrable functions on Rn and subfamily Q of B.
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To prove sufficiency we use Besicovitch covering lemma (see [2, pp. 2–3]). Thus for a fixed 0 ≤ 	f =
(f1, . . . , fm) ∈ X1(w1) × · · · ×Xm(wm) we can assume that

{
x ∈ R

n; M�ϕ
	f(x) > λ

}
⊂

⋃
Qji,

where the first index j ∈ {1, . . . , 4n + 1}, Q◦
jk ∩Q◦

ji = ∅ for each i �= k and

n∏
k=1

1
ϕk(|Qji|)

∫
Qji

fk dμ > λ.

This implies (
n∏

k=1

1
ϕk(|Qji|)

∫
Qji

fk dμ

)
χQji

> λχQji
,

and hence we obtain the following estimates with Q̄j := {Qij}i

‖χ{x∈Rn; M�ϕ
�f(x)>λ}‖Y (v) ≤ ‖χ⋃

Qji
‖Y (v) ≤

∥∥∥∥∑
i,j

χQji

∥∥∥∥
Y (v)

≤ 1
λ

∥∥∥∥∥∑
i,j

(
n∏

k=1

1
ϕk(|Qji|)

∫
Qji

fk dμ

)
χQji

∥∥∥∥∥
Y (v)

≤ 1
λ

4n+1∑
j=1

∥∥∥∥∥∑
i

(
n∏

k=1

1
ϕk(|Qji|)

∫
Qji

fk dμ

)
χQji

∥∥∥∥∥
Y (v)

= 1
λ

4n+1∑
j=1

‖TQ̄j

	f‖Y (v) ≤
C

λ

m∏
k=1

‖fk‖Xk(wk),

which completes the proof. �
2.2. Strong type estimate

In the remaining part of the paper, we investigate the boundedness of a bisublinear maximal operatorM�ϕ. 
We need some definitions. If ϕ ∈ P is such that there exists C ≥ 1 with

ϕ(s + t) ≤ C
(
ϕ(s) + ϕ(t)

)
, s, t > 0, (2.1)

then we write ϕ ∈ P̃. Note that the condition (2.1) implies that ϕ(t)/t ≤ Cϕ(s)/s for all 0 < s < t. Since ϕ
is non-decreasing, the function ϕ̃ given by ϕ̃(t) := infs>0(1 + t/s)ϕ(s) for t > 0 and ϕ̃(0) = 0 is concave on 
[0, ∞) and satisfies C−1ϕ(t) ≤ ϕ̃(t) ≤ 2ϕ(t) for all t ≥ 0 and so, in particular, ϕ̃ is a quasi-concave function 
on [0, ∞), i.e., ϕ̃ ∈ P and t 
→ t/ϕ̃(t) is a non-decreasing function on (0, ∞).

In what follows we will use the following simple observation (see [1]): for any ϕ ∈ P̃, then there exist 
γ, α ∈ (0, 1) such that for all s, t > 0

ϕ(s)
ϕ(t) ≤ γ implies s

t
≤ α. (2.2)



664 V. Kokilashvili et al. / J. Math. Anal. Appl. 421 (2015) 656–668
Theorem 2.3. Let 	ϕ = (ϕ1, ϕ2) ∈ P̃ × P̃ and let X1 and Y be minimal Banach lattices on (Rn, μ), where 
Y has the Fatou property. Let (X1, Y ) ∈ G(B). Suppose that the Hardy–Littlewood maximal operator M is 
bounded in the weighted Banach lattice X1(w1). Then the M�ϕ is bounded from X1(w1) × Mϕ2 to Y (v) if 
and only if (w1, v) ∈ Aϕ1(X1, Y ).

Proof. Necessity is a consequence of Proposition 2.1. Now we prove sufficiency. As we noticed, ϕ̃ is equivalent 
to ϕ for any ϕ ∈ P̃. Now since ϕ̃ is quasi-concave, without loss of generality we can assume that both ϕ1

and ϕ2 are quasi-concave functions on [0, ∞) by the relation M(ϕ̃1,ϕ̃2)f ∼ M(ϕ1,ϕ2)f for all f ∈ L1
loc. Then 

ϕ := ϕ1ϕ2 is also quasi-concave and so it satisfies the inequality (2.1) with C = 1. We fix t > 0 so that

γ >
ρ(2n)
t

, (2.3)

where γ is given in described fact for ϕ1 (see (2.2)) and ρ ∈ P is a submuliplicatve function (i.e., ρ(st) ≤
ρ(s)ρ(t) for all s, t > 0) defined by

ρ(s) := sup
{
ϕ(st)/ϕ(t); t > 0

}
, s > 0.

Let B = D, i.e., let it be the family of all dyadic cubes in Rn with the side length less than or equal 
to 2k0 . Let 	f = (f1, . . . , fm) ≥ 0 and let

Ωk =
{
s ∈ R

n; M�ϕ
	f(s) > tk

}
, k ∈ Z.

It is easy to see similarly as in the case M that Ωk is the union of certain family Sk := {Qki; i ∈ Ik} of 
cubes in D (see [1] for details).

For each k ∈ Z, in the family Sk we choose a maximal subfamily S̄k := {Qki; i ∈ Īk} so that every cube 
in S̄k is not contained in any other cube of Sk. Since the side length of dyadic cubes in D is bounded by 2k0 , 
we have that

Q◦
ki ∩Q◦

kj = ∅, i, j ∈ Īk, i �= j,⋃
i∈Ik

Qki =
⋃
i∈Īk

Qki.

For each k ∈ Z and i ∈ Īk we let Eki := Qki \Ωk+1. We claim that

|Eki| > (1 − α)|Qki|, (2.4)

where α is defined by (2.2). Indeed, if Jk := {j ∈ Īk+1; Qk+1j ⊂ Qki} then by the maximality of the family 
S̄k we have

tkϕ1
(
2n|Qki|

)
ϕ2

(
2n|Qki|

)
≥

( ∫
Qki

f1 dμ

)( ∫
Qki

f2 dμ

)

≥
∑
j∈Jk

ϕ1(|Qk+1j |)
ϕ1(|Qk+1j |)

ϕ2(|Qk+1j |)
ϕ2(|Qk+1j |)

( ∫
Qk+1j

f1 dμ

)( ∫
Qk+1j

f2 dμ

)

≥ tk+1
∑

(ϕ1ϕ2)
(
|Qk+1j |

)
≥ tk+1(ϕ1ϕ2)

( ∑
|Qk+1j |

)
.

j∈Jk j∈Jk
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This gives

(ϕ1ϕ2)
(
2n|Qki|

)
≥ t(ϕ1ϕ2)

(
|Qki ∩Ωk+1|

)
and so

t−1ρ
(
2n

)
≥ (ϕ1ϕ2)(|Qki ∩Ωk+1|)

(ϕ1ϕ2)(|Qki|)
.

Combining (2.2) and (2.3) we conclude that (2.4) holds.
Now we prove that M�ϕ(f1, f2) ∈ Y (v),

∥∥M�ϕ(f1, f2)
∥∥
Y (v) ≤

∥∥∥∥∑
k∈Z

tk+1 χΩk\Ωk+1

∥∥∥∥
Y (v)

≤ t

∥∥∥∥ ∑
k∈Z, j∈Īk

(
1

ϕ1(|Qkj |)

∫
Qkj

f1 dμ

)(
1

ϕ2(|Qkj |)

∫
Qkj

f2 dμ

)
χEkj

∥∥∥∥
Y (v)

= t
∥∥T0(f1, f2)

∥∥
Y (v),

where

T0(f1, f2) :=
∑

k∈Z, j∈Īk

(
1

ϕ1(|Qkj |)

∫
Qkj

f1 dμ

)(
1

ϕ2(|Qkj |)

∫
Qkj

f2 dμ

)
χEkj

.

Here we have used the obvious estimate for all x ∈ Ωk \Ωk+1, k ∈ Z

sup
Q∈B, Q�x

(
1

ϕ1(|Q|)

∫
Q

f1 dμ

)(
1

ϕ2(|Q|)

∫
Q

f2 dμ

)
≤ T0(f1, f2)(x).

Now we prove that T0 is bounded as an operator from X1(w) ×X2 to Y (v). For this we will need to show 
that the operator T (ϕ1)

0 defined by

T
(ϕ1)
0 f =

∑
k∈Z, j∈Īk

(
1

ϕ1(|Qkj |)

∫
Qkj

f dμ

)
χEkj

is bounded from X1(w) to Y (v) whenever (w1, v) ∈ Aϕ1(X, Y ). Following [1] let us define on L1
loc two 

operators T (ϕ1)
1 , T (ϕ1)

2 by

T
(ϕ1)
1 f =

∑
k∈Z j∈Īk

(
1

|Qkj |

∫
Qkj

f dμ

)
χEkj

,

T
(ϕ1)
2 f =

∑
k∈Z j∈Īk

(
1

ϕ1(|Qkj |)

∫
Ekj

f dμ

)
χEkj

, f ∈ L1
loc.

It is easy to see that the adjoints of these operators are given by

(
T

(ϕ1)
0

)′
g =

∑
k∈Z, j∈Ī

(
1

ϕ1(|Qkj |)

∫
g dμ

)
χQkj

,

k Eki
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(
T

(ϕ1)
1

)′
g =

∑
k∈Z j∈Īk

(
1

|Qkj |

∫
Ekj

g dμ

)
χQkj

,

(
T

(ϕ1)
2

)′ = T
(ϕ1)
2 .

Since (T (ϕ1)
0 )′ is a positive linear operator, to prove the boundedness of T (ϕ1)

0 from X1(w1) to Y (v) it is 
enough to show that (T (ϕ1)

0 )′ maps Y (v)′ to X(w)′.
Let 0 ≤ g. Then applying the estimate |Eki| > (1 − α)|Qki| for each k ∈ Z and i ∈ Īk proved above, we 

obtain

(
T

(ϕ1)
0

)′
f =

∑
k∈Z, j∈Īk

(
1

ϕ1(|Qkj |)

∫
Ekj

g dμ

)
χQkj

=
∑

k∈Z, j∈Īk

(
|Qki|

|Ekj |ϕ1(|Qkj |)|Qkj |

∫
Ekj

( ∫
Ekj

g dμ

)
dμ

)
χQkj

≤ 1
1 − α

∑
k∈Z, j∈Īk

(
1

|Qkj |

∫
Ekj

( ∑
m∈Z, n∈Īk

1
ϕ1(|Qmn|)

∫
Emn

g dμ

)
χEmn

dμ

)
χQkj

= 1
1 − α

(
T

(ϕ1)
1

)′
T

(ϕ1)
2 g.

Observe that |T (ϕ1)
1 | ≤ M, where M is the Hardy–Littlewood maximal operator. Since M is bounded in 

X1(w1), (T (ϕ1)
1 )′ is bounded in X(w1)′ and so

∥∥(T (ϕ1)
0

)′
g
∥∥
X1(w1)′

≤ (1 − α)−1 ∥∥T (ϕ1)
1

∥∥
X1(w1)→X1(w1)

∥∥T (ϕ1)
2 g

∥∥
X1(w1)′

.

Since T (ϕ1)
2 is the averaging operator generated by the family {Ekj}, we conclude that (see also [1]) T (ϕ1)

2
is bounded from X1(w1) to Y (v) if (w1, v) ∈ Aϕ1(X1, Y ) and (X1, Y ) ∈ G(B). Hence

∥∥(T (ϕ1)
0

)′∥∥
Y (v)′→X(w)′ ≤ (1 − α)−1 C0(ϕ1, w1, v)‖M‖X1(w1)→X1(w1).

We also have

∥∥T0(f1, f2)
∥∥
Y (v) ≤

∥∥∥∥ ∑
k∈Z, j∈Īk

(
1

ϕ1(|Qkj |)

∫
Qkj

f1 dμ

)(
1

ϕ2(|Qkj |)

∫
Qkj

f2 dμ

)
χEkj

∥∥∥∥
Y (v)

≤
∥∥T (ϕ1)

0 f1
∥∥
Y (v)‖f2‖X2

≤ (1 − α)−1C0(ϕ1, w1, v)‖M‖X1(w1)→X1(w1)‖f1‖X1(w1)‖f2‖X1 .

Combining with the previously shown inequality∥∥M�ϕ(f1, f2)
∥∥
Y (v) ≤

∥∥T0(f1, f2)
∥∥
Y (v),

we complete the proof for the dyadic maximal operator.
Now let M(k0,t)

(ϕ1,ϕ2)
	f be the bisublinear maximal function of 	f = (f1, f2) constructed with respect to cubes 

with side length less than or equal to 2k0 and dyadic cubes Q − t. Then it is easy to see that the theorem 
is true for M(k0,t)

(ϕ1,ϕ2)
	f . Taking now into account that M(k0,t)

(ϕ1,ϕ2)
	f ↑ M(∞,t)

(ϕ1,ϕ2)
	f (as k0 → ∞), the assumption 

that X1 and Y are minimal and that Y satisfies the Fatou property, we see that the theorem is true for 
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the operator M(∞,t)
(ϕ1,ϕ2)

	f with bound independent of t. Since (ϕ1ϕ2)(2nt) ≤ C(ϕ1ϕ2)(t) for all t > 0, we can 
conclude that the theorem holds for the maximal operator defined with respect to any cubes. �

We finish the paper with some corollaries. First we introduce the definition: if 1 ≤ p < ∞ and ϕ ∈ P, 
then Mp

ϕ denotes the Banach lattice of all f ∈ L0(Rn) equipped with the norm

‖f‖Mp
ϕ

= sup
Q∈B

|Q|1/p′

ϕ(|Q|)

(∫
Q

|f |p dμ
)1/p

.

The following corollary is a consequence of Theorem 2.3, (X1, Y ) ∈ G(B) and the continuous inclusion 
Mp

ϕ ↪→ Mϕ with norm equal to 1, which follows from Hölder’s inequality.

Corollary 2.1. Let 	ϕ = (ϕ1, ϕ2) ∈ P̃ × P̃. Suppose that X1 = Lp1(Rn), X2 = Mp2
ϕ2

and Y = Lq(Rn), where 
1 < p1 ≤ q < ∞, 1 < p2 < ∞. Then the inequality∥∥vM�ϕ(f1, f2)

∥∥
Lq ≤ ‖w1f1‖Lp2‖f2‖Mp2

ϕ2
, (f1, f2) ∈ X1 ×X2

holds if

sup
Q∈B

1
ϕ1(|Q|)‖vχQ‖Lq

∥∥w−1
1 χQ

∥∥
Lp′1 < ∞,

where 1/p1 + 1/p′1 = 1.

In the case when ϕ1(t) = tα for all t ≥ 0, we obtain the following corollary:

Corollary 2.2. Let 1 < p1 ≤ q < ∞, r, p2 ∈ (1, ∞). Suppose that ϕ1(t) = tα, α ∈ (0, 1), and ϕ2(t) = t1/p
′
2

for all t ≥ 0, where 1/p2 + 1/p′2. If

sup
Q∈B

1
|Q|α ‖vχQ‖Lp

∥∥w−1χQ

∥∥
Lp′1 < ∞,

then the operator M(ϕ1,ϕ2) is bounded from Lp1(w1) ×Mr
ϕ2

to Lq(v).

We conclude the paper with the following remark that some weighted estimates for multilinear fractional 
integrals in Morrey spaces were derived in the papers [3,4].
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