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Our goal is to present weighted inequalities for multilinear fractional in-
tegral operators in grand Lebesgue spaces. The theory of grand Lebesgue
spaces introduced by T. Iwaniec and C. Sbordone [14] is one of the in-
tensively developing directions of the modern analysis. It was realized the
necessity for the study of these spaces because of their rather essential role
and applications in various fields. These spaces naturally arise, for example,
in the integrability problems of the Jacobian under minimal hypothesis (see
[14] for the details).

Structural properties of grand Lebesgue spaces were investigated in the
papers [4], [2]. In [5] the authors proved that for the boundedness of the
Hardy–Littlewood maximal operator defined on [0, 1] in weighted grand

Lebesgue spaces L
p)
w ([0, 1]) it is necessary and sufficient that the weight

w satisfies the Muckenhoupt’s Ap condition on the interval [0, 1].
The same phenomenon was noticed for the Hilbert transform in [22]. We

refer also to [17], [16], [28] for one–weight results regarding maximal and
singular integrals of various type in these spaces.

In [25] the boundedness criteria for fractional integral operators in weigh-
ted grand Lebesgue spaces from the one–weight viewpoint were established.
In particular, in that paper the author determined values of the second
parameter for grand Lebesgue spaces governing the boundedness of frac-
tional integral operator in these spaces, and established criterion for which
inequality (8) (see below) holds in the linear case (see also [23] for related
topics).
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In [21] trace inequality criteria for fractional integrals in grand Lebesgue
spaces defined on metric measure spaces were derived.

Multilinear fractional integrals were introduced and studied in the papers
by L. Grafakos [6], C. Kenig and E. Stein [15], L. Grafakos and N. Kalton [8].

For the boundedness and other properties of multi(sub)linear fractional
integrals in (weighted) Lebesgue spaces we refer, e.g., to [26], [27], [3], [29],
[18], [19].

Recently, in [20] the authors of this paper presented the one-weight in-
equality for the multi(sub)linear Hardy–Littlewood maximal and Calderón-
Zygmund operators defined on an SHT.

It should be stressed that the results of this paper are new even for Eu-
clidean spaces. In the most cases the derived conditions are simultaneously
necessary and sufficient for appropriate one-weight inequality in the linear
case (see, e.g., [23], [22], [21], [25]).

In the sequel the following notation will be used:

−→p := (p1, . . . , pm),

where pi ∈ (0,∞) for each 1 ≤ i ≤ m;
−→
f = (f1, . . . , fm),

where fi are µ− measurable functions defined on X;

1

p
:=

m∑
i=1

1

pi
dµ(−→y ), d−→y := dµ(y1) · · · dµ(ym);

ν−→w :=
m∏
j=1

w
p/pj

j , ν̃−→w :=
m∏
j=1

w
q/qj
j ;

Bxy := µ
(
B(x, d(x, y))

)
.

Let s ∈ [1,∞]. As usual we put s′ := s
s−1 if s ∈ (1,∞) and s′ := ∞ for

s = 1 and s′ := 1 for s = ∞;

Ap,q,α := q(1/p− α)

for 1 < p < q < ∞ and 0 < α < 1/p;
Let (X, d, µ) be a quasi-metric measure space with quasi-metric d and

measure µ. If µ satisfies the well-known doubling condition, then (X, d, µ)
is called space of homogeneous type (SHT).

Let 1 ≤ r < ∞. We denote by Lr(X,µ) the Lebesgue space on X with
an exponent r.

If w is a weight (locally integrable, µ-a.e. positive function on X), then
we denote the weighted Lebesgue spaces by Lr

w(X,µ), i.e., f ∈ Lr
w(X,µ) if

∥f∥Lr
w(X,µ) = ∥f∥Lr(X,wdµ) < ∞.

Let µ(X) < ∞, 1 < p < ∞ and let φ be a continuous positive function
on (0, p−1) such that it is non-decreasing on (0, σ) for some small positive σ
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and satisfies the condition lim
x→0+

φ(x) = 0. The generalized grand Lebesgue

space Lp),φ(X,µ) is the class of those f : X → R for which the norm

∥f∥Lp),φ(X,µ) = sup
0<ε<p−1

(
φ(ε)

∫
X

|f(x)|p−ε dµ(x)

)1/(p−ε)

is finite. If w is a weight on X, then the weighted grand Lebesgue space with

weight w is denoted by L
p),φ
w (X,µ) and coincides with the class

Lp),φ(X,wdµ). In this case we assume that ∥f∥
L

p),φ
w (X,µ)

= ∥f∥Lp),φ(X,wdµ).

If φ(x) = xθ, where θ is a positive number, then we denote Lp),φ(X,µ)

(resp., L
p),φ
w (X,µ)) by Lp),θ(X,µ) (resp. by L

p),θ
w (X,µ)).

The space Lp),θ(X,µ) is a Banach space.
It is easy to check that the following continuous embeddings hold:

Lp(X,µ) ↪→ Lp),θ1(X,µ) ↪→ Lp),θ2(X,µ) ↪→ Lp−ε(X,µ),

where 0 < ε ≤ p− 1 and θ1 < θ2.
It turns out that in the theory of PDEs the generalized grand Lebesgue

spaces are appropriate to the solutions of existence and uniqueness, and,
also, the regularity problems for various nonlinear differential equations.
The space Lp),θ (defined on bounded domains in Rn) for arbitrary positive
θ was introduced in the paper [12], where the authors studied the nonhomo-
geneous n-harmonic equation div A(x,∇u) = µ. If θ = 1, then Lp),θ(X,µ)
coincides with the Iwaniec–Sbordone space, which we denote by Lp)(X,µ).
The grand Lebesgue space is non-reflexive, non-separable and, in general,
is non-rearrangement invariant (see, e.g., [4]).

We define the class
∏m

j=1 Lpj),φ(X,µj) of vector functions
−→
f as follows:

−→
f ∈

∏m
j=1 Lpj),φ(X,µj) if

∥∥−→f ∥∥∏m
j=1 Lpj),φ(X,µj)

= sup
1<r<p

{
φ
( p

r′

) r
p

m∏
j=1

∥fj∥Lpj/r(X,µj)

}
=

= sup
1<r<p

{ m∏
j=1

φ
( p

r′

) r
pj ∥fj∥Lpj/r(X,µj)

}
< ∞.

The expression ∥
−→
f ∥∏m

j=1 Lpj),φ(X,µj)
can be rewritten as follows:

∥∥−→f ∥∥∏m
j=1 Lpj),φ(X,µj)

=

= sup
0<η<p−1

{ m∏
j=1

φ(η)
1

pj−ηj ∥fj∥Lpj−ηj (X,µj)
:

p

p− η
=

pj
pj − ηj

, j=1, . . . ,m

}
.
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It is easy to check that

m∏
j=1

Lpj),φ(X,µj) ↪→
m∏
j=1

Lpj),φ(X,µj),

in particular, ∥∥−→f ∥∥∏m
j=1 Lpj),φ(X,µj)

≤
∥∥−→f ∥∥∏m

j=1 Lpj),φ(X,µj)
.

This follows from the fact that if p
p−η =

pj

pj−ηj
, j = 1, . . . ,m, then η ≤ ηj

because 1
η =

∑m
j=1

1
ηj
.

When we deal with grand Lebesgue spaces we assume that µ(X) < ∞.
Let 1 < r < ∞. We say that a weight function w belongs to the Muck-

enhoupt class Ar(X) if

∥w∥Ar := sup
B

(
1

µ(B)

∫
B

w dµ

)(
1

µ(B)

∫
B

w1−r′ dµ

)r−1

< ∞.

Let us recall the definition of the vector Muckenhoupt condition (see [24]
for Euclidean spaces and [9] for metric measure spaces).

Definition A. Let 1 ≤ pj < ∞ for each 1 ≤ j ≤ m, and 0 < p < ∞. We
say that −→w satisfies the A−→p (X) condition (−→w ∈ A−→p ) if

∥−→w ∥A−→p := sup
B⊂X

(
1

µ(B)

∫
B

ν−→w (x)dµ(x)

)
×

×
m∏
j=1

(
1

µ(B)

∫
B

w1−p′

j (x) dµ(x)

)p/p′
j

< ∞,

where the supremum is taken over all balls B in X. For pj = 1, the expres-

sion
(

1
µ(B)

∫
B

w1−p′

j (x)dµ(x)
)1/p′

j is understood as (infB wj)
−1.

The expression ∥−→w ∥A−→p is called A−→p characteristic of −→w .

It is known (see [24]) that if −→w satisfies the condition A−→p (Rn), then
the boundedness of the multi(sub)linear Hardy–Littlewood and Calderón-
Zygmund operators defined on Rn from

∏m
j=1 L

pj
wj (Rn) to Lp

ν−→w
(Rn) holds,

where 1 < pj < ∞ for each 1 ≤ j ≤ m, and 1
p =

∑m
j=1

1
pj
.

In the linear case (m = 1) the class A−→p coincides with the well-known
Muckenhoupt class Ap.

Definition B (vector Muckenhoupt-Wheeden condition). Let (X, d, µ)
be a metric measure space, 1 ≤ pi < ∞ for i = 1, . . . ,m. Suppose that
p < q < ∞. Let w1, . . . , wm be a weight functions on X. We say that
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−→w = (w1, . . . , wm) satisfies A−→p ,q(X) condition (−→w ∈ A−→p ,q(X)) if

sup
B

(
1

µB

∫
B

( m∏
i=1

wi

)q

dµ

)1/q m∏
i=1

(
1

µB

∫
B

w
−p′

i
i dµ

)1/p′
i

< ∞,

where the supremum is taken over all balls B in X. For pj = 1, the expres-

sion
(

1
µ(B)

∫
B

w1−p′

j (x)dµ(x)
)1/p′

j is understood as (infB wj)
−1.

Theorem A ([26]). Let 1 < p1, . . . , pm < ∞, 0 < α < mn, 1
m < p < n

α .

Suppose that q is an exponent satisfying the condition 1
q = 1

p − α
n . Suppose

that wi are a.e. positive functions on Rn such that wpi

i are weights. Then
the inequality(∫

Rn

(∣∣Jα(
−→
f )(x)

∣∣ m∏
i=1

wi(x)
)q

dx

)1/q

≤ C
m∏
i=1

(∫
Rn

(
|fi(yi)|wi

)pi
dyi

)1/pi

,

holds, where

Jα(
−→
f )(x) =

∫
(Rn)m

f1(y1) · · · fm(ym)

(|x− y1|+ · · ·+ |x− ym|)mn−α
d−→y ,

holds, if and only if −→w ∈ A−→p ,q(Rn).

The next statement characterizes those weights v on Rn for which the
Iα :

∏m
j=1 L

pj (Rn) → Lq
v(Rn) holds, where p < q < ∞.

Theorem B ([18]). Let 1 < pi < ∞ for each 1 ≤ i ≤ m. Let p < q.
Then Jα is bounded from

∏m
j=1 L

pj (Rn) to Lq
v(Rn) if and only if

sup
Q

(∫
Q

v(x)(x) dx

)1/q

|Q|α−n/p < ∞

is satisfied, where the supremum is taken over all cubes Q in Rn.

This statement remains valid if we replace Rn by an interval in R, and
Jα by potential operator on an interval:

(Jαf)(x) =

1∫
0

f(t)

|x− t|1−α
dt, 0 < α < 1, x ∈ [0, 1]. (1)

Let 1 < p < ∞, 0 < α < 1/p and q be the Hardy–Littlewood–Sobolev
exponent, i.e., q = p

1−αp . It is known (see [25]) that the operator Jα and,

consequently, appropriate fractional maximal operator

(Mαf)(x) = sup
I∋x

1

|I|1−α

∫
I

|f(t)| dt, 0 < α < 1, x ∈ [0, 1]. (2)
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is bounded from Lp),θ1([0, 1]) to Lq),θ2([0, 1]) if θ2 ≥ qθ1
p . However, this

boundedness fails if θ2 < qθ1
p . Moreover, it was shown that the one-weight

inequality ∥∥Tα(fw
α)
∥∥
L

q),θq/p
w ([0,1])

≤ C∥f∥
L

p),θ
w ([0,1])

,

where Tα is Jα or Mα, 1 < p < 1
α , q = p

1−αp , θ > 0, holds if and only if

w ∈ A1+q/p′([0, 1]).
The next statement gives D. Adams type (see [1]) trace inequality charac-

terization for the fractional integrals and corresponding fractional maximal
functions defined by

(Tαf)(x) =
∫
X

f(y)

µ(Bxy)1−α
dµ(y), x ∈ X, 0 < α < 1,

(Mαf)(x) = sup
B∋x

1

µ(B)1−α

∫
B

|f(y)| dµ(y), 0 < α < 1,

where the supremum is taken over all balls B ⊂ X containing x.

Theorem C ([21]). Let 1 < p < q < ∞ and let 0 < α < 1/p. Suppose
that (X, d, µ) is an SHT and ν is an another finite measure on X. Let
θ > 0. Then the following conditions are equivalent:

(i) the operator Tα is bounded from Lp),θ(X,µ) to Lq),qθ/p(X, ν);
(ii) the operator Mα is bounded from Lp),θ(X,µ) to Lq),qθ/p(X, ν);
(iii) there is a positive constant C such that for all balls B in X the

inequality

ν(B) ≤ C
(
µ(B)

)Ap,q,α
(3)

holds, where

Ap,q,α := q
(1
p
− α

)
. (4)

1. The Main Results

In this section we the main results.

1.1. Unboundedness of Multilinear Fractional Integrals. Let
(X, d, µ) be an SHT and let

Mα(
−→
f )(x) = sup

B∋x

m∏
i=1

1

µ(B)1−α/m

∫
B

|fi(yi)| dµ(yi), 0 ≤ α < m;

Iα(
−→
f )(x) =

∫
Xm

f1(y1) · · · fm(ym)(
Bxy1 + · · ·+Bxym

)m−α dµ(−→y ),

defined, generally speaking, on an STH in the classical Lebesgue spaces.
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The following statement shows the range of the second parameter for
which the boundedness of the operator Mα (resp. Iα) from the product
space to grand Lebesgue space fails (for linear fractional integrals on an
interval see [25] and linear potentials on an SHT we refer to [21]).

Proposition 1. Let (X, d, µ) be an SHT with µ(X) < ∞. Suppose that
1 < pj < ∞, 1

p =
∑m

j=1
1
pj

and 1 < p < q < ∞. Let

lim inf
µ(B)→0

ν(B)µ(B)Ap,q,α ̸= 0,

where Ap,q,α is defined by (4). If 0 < θ2 < θ1q
p , then the operator Nα,

where Nα is either Mα or Iα, is not bounded from
∏m

j=1 LLpj),θ1 (X,µ) to

Lq),θ2(X, ν).

Corollary 1. Let (X, d, µ) be an SHT . Suppose that 0 < α < 1,
1 < pj < ∞ for each 1 ≤ j ≤ m, 1

p =
∑

j=1
1
pj

and 1/m < p < 1/α. We set

q = p
1−αp . Suppose that 0 < θ2 < θ1q

p . Then the operator Nα is not bounded

from
∏m

j=1 Lpj),θ1(X,µ) to Lq),θ2(X,µ), where Nα is Mα or Iα.

Let (X, d, µ) be an SHT . To formulate the next statement we need to
introduce the class M−→p ,q(X, ν, µ1, . . . , µm) (pj , q > 1, 1 ≤ j ≤ m) of m+1-
tuple of finite measures (ν, µ1, . . . , µm) defined on X.

Definition C. Let (X, d, µ) be an SHT and let µ1, . . . , µm, ν be measures
on X. A multilinear operator T belongs to the class M−→p ,q(X,µ1, . . . , µm, ν)

if T is bounded from
∏m

j=1 L
pj (X,µj) to Lq(X, ν).

If dµj = wjdµ for every 1 ≤ j ≤ m, dν = vdµ for some weight functions
w1, . . . , wm, v then we denote M−→p ,q(X,µ1, . . . , µm, ν) by M−→p ,q(X,w1, . . . ,
wm, v).

Let 1 < q < ∞, ε0 ∈ (0, q − 1) and η0 ∈ (0, a), where a is sufficiently
small positive number. Ne denote

g(x) :=
qε0(p− η0)x

η0(q − ε0)(p− x) + xε0(p− x)
, (5)

Ψ(x) :=Φ(g(x))
p−x

q−g(x) , (6)

with Φ ∈ R(0, σ), where R(0, σ) is the class of those increasing functions ϕ
an interval (0, σ), with small positive σ, such that lim

x→0
ϕ(x) = 0.

Theorem 1. Let (X, d, µ) be an SHT . Let 1 < pj < ∞ for each
1 ≤ j ≤ m. Let 1 < q < ∞. We set 1

p =
∑m

j=1
1
pj
. Let Ψ ∈ R(0, σ)

and Ψ is defined by (6). Suppose that a multilinear operator T satisfies
the condition T ∈ M−→p ,q(X,µ1, . . . , µm, ν) ∩M−→p /r,q/s(X,µ1, . . . , µm, ν) for

some r, s > 1. Then T is bounded from
∏m

j=1 Lpj),Ψ(X,µj) to Lq),Φ(X, ν).
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Now we reformulate the one-weight result for Iα and Mα, where X =
[0, 1] and dµ = dx is the Lebesgue measure (cf. Theorem A).

Let wj are weights on [0, 1] for 1 ≤ j ≤ m. In what follows we assume
that

Ñα,−→w
−→
f := Nα(f1w

α1
1 , . . . , fmwαm

m ),

where Nα is Iα or Mα. We put αj =
1
pj

− 1
qj

for each 1 ≤ j ≤ m and

α =
1

p
− 1

q
,

1

p
=

m∑
j=1

1

pj
,

1

q
=

m∑
j=1

1

qj
. (7)

Taking the version of Theorem B for bounded interval into account we
find that the next statement holds:

Proposition B. Let 1 < pj < ∞ for each 1 ≤ j ≤ m, and 1
m < p < 1

α ,

where 1
p =

∑m
j=1

1
pj
. We set q = p

1−αp . Let for weight functions wj, 1 ≤
j ≤ m,

ν̃−→w :=

m∏
j=1

w
q/qj
j .

Then the inequality∥∥Ñα,−→w

−→
f
∥∥
Lq

ν̃−→w ([0,1])

≤ C
m∏
j=1

∥fj∥Lpj
wj

([0,1])

holds if and only if −→w ∈ A−−−→
l(p,q)

([0, 1]), where
−−−→
l(p, q) := (1 + q1/p

′
1, . . . , 1 +

qm/p′m), i.e.

sup
I

(
1

|I|

∫
I

ν̃−→w (x) dx

)1/q m∏
j=1

(
1

|I|

∫
I

w
−p′

j/q

j (x) dx

)1/p′
j

< ∞,

where the supremum is taken over all subintervals I of [0, 1].

Theorem 2. Let 1/m < p < ∞, pi = mp for each 1 ≤ i ≤ m. We set
q = p

1−αp . Let 1
qj

= 1
pj

− α
m ≥ 0. Suppose that θ > 0. Then the condition

−→w ∈ A−−−→
l(p,q)

([0, 1]), where
−−−→
l(p, q) := (1 + q1/p

′
1, . . . , 1 + qm/p′m) guarantees

the following one-weight inequality∥∥Nα(f1w
αj

j , . . . , fmwαm
m )

∥∥
L

q),θq/p
ν̃−→w

([0,1])
≤ C

∥∥−→f ∥∥∏m
j=1 L

pj),θ
wj

([0,1])
, (8)

where Nα is Iα or Mα, and αj are defined by (7), j = 1, . . . ,m.

Now we formulate another type of one-weight inequality which is new
even in the linear (m = 1) case.
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Theorem 3. Let 1/m < p < ∞, pj = mp for each 1 ≤ i ≤ m. We
set q = p

1−αp . Let 1
qj

= 1
pj

− α
m > 0. Suppose that θ > 0. Let for weight

functions wj, 1 ≤ j ≤ m,

ν̃−→w :=

m∏
j=1

w
q/qj
j .

Then the condition −→w ∈ A−→p ,q([0, 1]) implies the one-weight inequality

∥∥(Nα
−→
f
)
ν̃−→w

∥∥
Lq),θq/p([0,1])

≤ C
m∏
j=1

∥∥fjwj

∥∥
Lpj),θ([0,1])

,

where Nα is Iα or Mα and the positive constant C is independent of fj,
1 ≤ j ≤ m.

In the linear case the latter statement is formulated as follows:

Corollary 2. Let m = 1 and let 1 < p < ∞. We set q = p
1−αp . Suppose

that θ > 0. Let Jα be the fractional integral operator defined by (1). If
the condition w ∈ A−→p ,q([0, 1]) is satisfied, then the following one-weight
inequality holds ∥∥(Jαf)w∥∥Lq),θq/p([0,1])

≤ C
∥∥fw∥∥

Lp),θ([0,1])

with the positive constant C independent of f .

1.2. Trace type inequality. Now we give necessary and sufficient condi-
tion governing the boundedness of Nα from

∏m
j=1 Lpj),θ([0, 1]) to

Lq),θq/p([0, 1], ν), where Tα is Jα or Mα and ν is another measure on [0, 1].
Here Jα or Mα are defined by (1), (2) respectively.

Theorem 4. Let 1 < pj < ∞ for every 1 ≤ j ≤ m and let θ > 0. Let
1
p =

∑m
j=1

1
pj
. Suppose that 0 < α < 1

p and p < q < ∞. Then the following

conditions are equivalent:

(i) the operator Jα is bounded from
∏m

j=1 Lpj),θ([0, 1]) to L
q),θq/p
v ([0, 1]);

(ii) the operator Jα is bounded from
∏m

j=1 Lpj),θ([0, 1]) to L
q),θq/p
v ([0, 1]);

(iii) there is a positive constant C such that

v(I) ≤ C|I|Aα,p,q . (9)
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