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In this note necessary and sufficient conditions governing two-weight inequalities for
strong fractional maximal functions and potentials with multiple kernels are presented,
provided that the weight on the right-hand side is a product of one-dimensional weights.
This enables us, for example, to obtain criteria guaranteeing the trace inequalities for the
operators mentioned above.

In our opinion one of the challenging problems in the weight theory currently is to
solve two-weight problem for integral operators with product kernels. The one-weight
problem for the Riesz potentials with multiple kernels has been derived in [13]. Neces-
sary and sufficient conditions guaranteeing the trace inequalities for one-sided potentials
with multiple kernels have been established in [16-17] (see also [18] for some two-weight
estimates for the Riesz and other potentials with multiple kernels).

Historically the one-weight inequality for the classical Riesz potentials

Iαf(x) =

∫

Rn

f(y)

|x − y|n−α
dy, 0 < α < n,

has been derived in [20], while the pioneering result concerning the two-weight problem
for Iα has been obtained in [25-26]. In the case 1 < p < q < ∞ two-weight criteria in
more transparent form were given in [7], [9] (see also [10], [27] for two-weight criteria for
integral transforms with positive kernels). Namely, the following statement holds:

Theorem A. Let 1 < p < q < ∞. Then Iα is bounded from Lp
w(Rn) into Lq

v(Rn) if

and only if

sup
x∈Rn

r>0

(
∫

B(x,2r)

v

)1/q(
∫

|x−y|>r

|x − y|(α−n)p′

w1−p′

(y)dy

)1/p′

< ∞

and

sup
x∈Rn

r>0

(
∫

B(x,2r)

w1−p′

)1/p′
(

∫

|x−y|>r

|x − y|(α−n)qv(y)dy

)1/q

< ∞,

where p′ = p/(p − 1) and B(x, r) is a ball centered at x and of radius r.

The proof of Theorem A is based on the two-weight weak-type criterion for the Riesz
potentials given in [24] and on more transparent one established in [6-7] (see also [15]).

In the case w ≡ 1, Theorem A (trace inequality) has been obtained in [1].
For p = q a two-weight criterion guaranteeing the trace inequality for Iα is due to [19]

(see also [29] for more general case).
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For the solution of the two-weight problem for fractional maximal operators

Mαf(x) = sup
B∋x

1

|B|1−α/n

∫

B

|f |, 0 < α < n,

where the supremum is taken over all balls B containing x, we refer to [21-22], [30], [11]
(see also [10]).

A two-weight criterion for the strong Hardy–Littlewood maximal functions has been
obtained in [22], provided that the weight on the right-hand side satisfies some addi-
tional conditions, for instance, belongs to the Muckenhoupt’s Ap class in each variable
separately, or is product of one-dimensional weights.

A criterion which guarantees the trace inequality for the truncated Riesz potential

Jαf(x) =

∫

|y|<2|x|

f(y)

|x − y|n−α
dy, x ∈ Rn,

has been given in [23] for p = q (for the simple proof in the case 1 < p ≤ q < ∞ see [4],
Section 5.1).

Let us introduce the following two-dimensional operators:

(Mα,βf)(x, y) = sup
I×J∋(x,y)

1

|I|1−α|J |1−β

∫

I

∫

J

|f(t, τ)|dtdτ ;

(MαIβf)(x, y) = sup
I∋x

1

|I|1−α

∫

I

∣

∣

∣

∣

∫

R

|y − τ |β−1f(t, τ)dτ

∣

∣

∣

∣

dt;

(IαJβf)(x, y) =

∫

R

∫

|τ |<2|y|

f(t, τ)|x − t|α−1|y − τ |β−1dtdτ ;

(Iα,βf)(x, y) =

∫

R

∫

R

|x − t|α−1|y − τ |β−1f(t, τ)dtdτ,

where I and J are arbitrary intervals in R.

Let D be the set of all dyadic intervals in R. By dyadic interval we mean an interval
of the form [2kn, 2k(n+1)), where k and n are integers. The main property of the dyadic
intervals is that if |I′| ≤ |I|, then I′ ⊂ I or I′ ∩ I = ∅. Let us denote Λk = 2−kZ for

k ∈ Z. Suppose that D(k) is the collection of the intervals determined by Λk. It is clear
that D =

⋃

k∈Z
D(k). Each I ∈ D(k) is the union of 2 nonoverlapping intervals belonging

to Dk+1 (for details and some properties of the dyadic intervals see, for instance, [8],
p. 136).

To formulate the main results of this note we need some definitions of weight classes.

Definition 1. We say that the weight function ρ satisfies the dyadic reverse doubling

condition (ρ ∈ RD(d)(R)) if there exists a constant d > 1 such that

dρ(I′) ≤ ρ(I),

for all I′, I ∈ D, where I′ ⊂ I and |I| = 2|I′|.

It is obvious that the constant d in Definition 1 is equal to 2 when ρ ≡ 1. It is also
easy to see that if a measure µ satisfies the doubling condition µ([x − 2r, x + 2r]) ≤
bµ([x − r, x + r]) (i.e., µ ∈ DC(R)), where the constant b is independent of x ∈ R and

r > 0, then µ ∈ DC(d)(R), i.e., µ(I) ≤ b1µ(I′), where I, I′ ∈ D, I′ ⊂ I and |I′|= |I|/2.

Consequently (see, e.g., [28], p. 21) if µ ∈ DC(R), then µ ∈ RD(d)(R).

Definition 2. We say that the weight ρ on R satisfies A∞(R) condition (ρ ∈ A∞(R))
is there exist constants c, δ > 0 such that for all intervals I and measurable sets E ⊂ I
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the inequality

ρ(E)

ρ(I)
≤ c

(

|E|

|I|

)δ

holds, where ρ(E) =
∫

E

ρ. Further, we say that a two-dimensional weight u belongs to the

class A∞(R) with respect to the first variable uniformly to the second one (u ∈ A
(x)
∞ (R))

if the inequality

uy(E)

uy(I)
≤ c

(

|E|

|I|

)δ

holds for all y ∈ R, all intervals I ⊂ R and measurable sets E ⊂ I, where uy(E) =
∫

E

u(x, y)dx.

It is known (see [12], [2], [8], Ch. IV) that ρ ∈ A∞(R) if and only if ρ belongs to the
Muckenhoupt’s class Ap(R) for some p ≥ 1.

It should be mentioned that some essential properties of Muckenhoupt’s Ap classes
defined on rectangles has been studied in [14], [5] (see also [3], [8]: Ch. 4).

We begin with the operator MαIβ :

Theorem 1. Let 1 < p < q < ∞ and let 0 < α, β < 1. Suppose that w(x, y) =

w1(x)w2(y) with w1−p′

1 ∈ RD(d)(R). Then MαIβ is bounded from Lp
w(R2) to Lq

v(R2) if

and only if

A1 : = sup
a∈R,r>0

I⊂R

|I|α−1

(
∫

I

∫

|y−a|<r

w1−p′

(x, y)dxdy

)1/p′

×

×

( ∫

I

∫

|y−a|>r

v(x, y)

|y − a|(1−β)q
dxdy

)1/q

< ∞;

A2 : = sup
a∈R,r>0

I⊂R

|I|α−1

(
∫

I

∫

|y−a|>r

w1−p′

(x, y)|y − a|(β−1)p′

dxdy

)1/p′

×

×

(
∫

I

∫

|x−a|<r

v(x, y)dxdy

)1/q

< ∞, .

where I is an arbitrary interval in R.

For the strong fractional maximal functions we have

Theorem 2. Let 1 < p < q < ∞ and let 0 < α, β < 1. Suppose that w(x, y) =

w1(x)w2(y) with w1−p′

1 , w1−p′

2 ∈ RD(d)(R). Then Mα,β is bounded from Lp
w(R2) to

Lq
v(R2) if and only if

sup
I,J⊂R

|I|α−1|J |β−1

(
∫

I

∫

J

v(x, y)dxdy

)1/q

×

×

(
∫

I

∫

J

w1−p′

(x, y)dxdy

)1/p′

< ∞,

where the supremum is taken over all intervals I and J in R.

The next statement concerns the Riesz potentials with multiple kernels Iα,β :

Theorem 3. Let 1 < p < q < ∞ and let 0 < α, β < 1. Suppose that w(x, y) =

w1(x)w2(y) with w1−p′

1 ∈ RD(d)(R) and v ∈ A
(x)
∞ (R) uniformly to the second variable.

Then Iα,β is bounded from Lp
w(R2) to Lq

v(R2) if and only if max{A1, A2} < ∞.
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The following statement is also true for the operator IαJβ :

Theorem 4. Let 1 < p < q < ∞. Suppose that 0 < α < 1 and β > 1/p. Then the

two-weight inequality
(

∫

R

∫

R

|(IαJβf)(x, y)|qv(x, y)dxdy

)1/q

≤ c

(
∫

R

∫

R

|f(x, y)|pu(x)dxdy

)1/p

holds if and only if

(i) sup
a∈R
r>0
k∈Z

(
∫

|x−a|>r

∫

2k<|y|<2k+1

v(x, y)

|x − a|(1−α)q
dxdy

)1/q

×

×

( ∫

|x−a|<r

u1−p′

(x)dx

)1/p′

2k(β−1/p) < ∞;

(ii) sup
a∈R
r>0
k∈Z

(
∫

|x−a|<r

∫

2k<|y|<2k+1

v(x, y)dxdy

)1/q

×

×

(
∫

|x−a|>r

u1−p′

(x)

|x − a|(α−1)p′
dx

)1/p′

2k(β−1/p) < ∞.

In the diagonal (p = q) case we have

Theorem 5. Let 1 < p < ∞, 0 < α < 1/p, β > 1/p. Then the operator Jα,β is

bounded from Lp(R2) to Lp
v(R2) if and only if there exists a positive constant c such

that for a.a. x ∈ R and all k ∈ Z the inequality

Iα[IαVj ]
p′

(x) ≤ Iα[Vj ](x)

holds, where Iα is the one-dimensional potential and

Vj(x) ≡

∫

2j<|y|<2j+1

v(x, y)|y|βp−1dy.

The remaining part of this note is devoted to the trace inequalities.

Corollary 1. Let 1 < p < q < ∞. Suppose that 0 < α, β < 1/p. Then the following

statements are equivalent:

(i) MαIβ is bounded from Lp(R2) to Lq
v(R2);

(ii) Mα,β is bounded from Lp(R2) to Lq
v(R2);

(iii) B ≡ sup
I,J

(
∫

I

∫

J

v(x, y)dxdy

)

|I|q(α−1/p)|J |q(β−1/p) < ∞,

where I and J are arbitrary intervals in R.

Corollary 2. Let 1 < p < q < ∞ and let 0 < α, β < 1/p. Suppose that the two-

dimensional weight v(x, y) belongs to A
(x)
∞ (R) uniformly to y, or v ∈ A

(y)
∞ (R) uniformly

with respect to x. Then Iα,β is bounded from Lp(R2) to Lq
v(R2) if and only if B < ∞.

Corollary 3. Let 1 < p < q < ∞. Suppose that 0 < α < 1 and β > 1/p. Then the

operator IαJβ is bounded from Lp(R2) to Lq
v(R2) if and only if

sup
∈R
r>0
k∈Z

(

a+r
∫

a−r

∫

2k<|y|<2k+1

v(x, y)dxdy

)1/q

rα−1/p2k(β−1/p) < ∞.
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