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1. Introduction

The main goal of the present paper is to give a complete description of those
measure spaces for which the two-weight estimate for potentials with measure
holds, where the weights are of power type. This enables us to generalize the
well-known classical theorem of E. M. Stein and G. Weiss [15] concerning the
two-weight inequality( ∫

Rn

|Tγf(x)|q|x|λ2 dx

) 1
q

≤ A

( ∫
Rn

|f(x)|p|x|λ1 dx

) 1
p

, 1 < p ≤ q < ∞,

for the operator

Tγf(x) =

∫
Rn

f(y)

|x− y|n−γ
dy, 0 < γ < n,
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in the case of non-doubling measures. The boundedness of the potential oper-
ator

T̄γf(x) =

∫ ∞

0

f(t)

|x− t|1−γ
dt

from Lp

xλ1
(0,∞) to Lq

xλ2
(0,∞), 1 < p ≤ q < ∞, was obtained by G. H. Hardy

and J. E. Littlewood [9] (see also [14, p. 495], and [13] for two-weight estimates
with power weights for the operator Tγ).

For the first time weighted estimates for integral transforms with positive
kernel defined on nonhomogeneous spaces (X, ρ, µ) were obtained in [7] (see also
[8, Chapter 2]), where the authors showed that the weak-type inequality

ν{x ∈ X : Kf(x) > λ} ≤ c

λq

( ∫
X

|f(x)|pw(x) dµ(x)

) q
p

, 1 < p < q < ∞,

for the operator Kf(x) =
∫

X
k(x, y)f(y) dµ(y), k ≥ 0, holds if

sup
x∈X, r>0

(
νB(x, 2N0r)

) 1
q

( ∫
X\B(x,r)

kp′(x, y)w1−p′(y) dµ(y)

) 1
p′

< ∞,

where N0 is a positive constant depending on the quasimetric ρ; ν is another
non-doubling measure on X, and w is a weight function defined on X. Using
this result they have established necessary and sufficient conditions governing
two-weight strong-type inequality for the operator K defined on measure spaces
with quasimetric and doubling measure, i.e., spaces of homogeneous type (SHT)
(see, e.g., [2] and [8] for the definition and some examples of SHT).

In [12] (see also [4, Chapter 6]) a complete description of non-doubling
measure µ guaranteeing the boundedness of the potential operator

Iαf(x) =

∫
X

f(y)

ρ(x, y)1−α
dµ(y)

from Lp(µ, X) to Lq(µ, X), 1 < p < q < ∞, has been obtained. In the same
paper theorems of Sobolev and Adams type for fractional integrals defined on
nonhomogeneous spaces have been established. Analogous problems in the case
of Euclidean spaces and curves were considered in [10, 11]. Some two-weight
norm inequalities for fractional maximal functions and potentials on Rn with
non-doubling measure were studied in [6].

The paper is organized as follows: In Section 2 we give a definition of nonho-
mogeneous spaces and some well-known results concerning fractional integrals
on nonhomogeneous spaces. In Section 3 we formulate the main results of the
paper, while in Section 4 we prove them. Constants (often different constants
in the same series of inequalities) will generally be denoted by c.
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2. Preliminaries

Throughout the paper we assume that (X, ρ, µ) is a topological space X, en-
dowed with a complete measure µ such that the space of compactly supported
continuous functions is dense in L1(X, µ) and there exists a non-negative real-
valued function (quasimetric) ρ : X ×X −→ R1 satisfying the conditions

(i) ρ(x, x) = 0 for arbitrary x ∈ X;

(ii) ρ(x, y) > 0 for arbitrary x, y ∈ X, x 6= y;

(iii) there exists a positive constant a0 such that for all x, y ∈ X the in-
equality holds ρ(x, y) ≤ a0ρ(y, x) holds;

(iv) there exists a positive constant a1 such that for arbitrary x, y, z ∈ X
the inequality ρ(x, y) ≤ a1(ρ(x, z) + ρ(z, y)) holds;

(v) for every neighbourhood V of the point x ∈ X there exists a positive
number r such that the ball B(x, r) = {y ∈ X : ρ(x, y) < r} with
center in x and radius r is contained in V ;

(vi) the balls B(x, r) are measurable for all x ∈ X, r > 0 and, in addition,
0 < µB(x, r) < ∞.

The spaces (X, ρ, µ) with the above mentioned properties are called non-
homogeneous spaces. We shall also assume that µ(X) = ∞, µ{a} = 0 for all
a ∈ X; and B(x, r2)\B(x, r1) 6= ∅ for all x, r1 and r2 (x ∈ X, 0 < r1 < r2 < ∞).

Let w be µ-a.e. positive function on X. We denote by Lp
w(X) (1 ≤ p < ∞)

the weighted Lebesgue space which is the class of all µ-measurable functions
f : X → R1, for which

‖f‖Lp
w(X) =

( ∫
X

|f(x)|pw(x) dµ(x)

) 1
p

< ∞.

If w ≡ 1, then instead of Lp
w(X) we use the symbol Lp(X).

We consider the integral operator of the form

Iαf(x) =

∫
X

f(y)

ρ(x, y)1−α
dµ(y), 0 < α < 1.

The next statement is from [12] (see also [4, Theorem 6.1.1]).

Theorem A. Let 1 < p < q < ∞. Suppose that 0 < α < 1. Then the
operator Iα is bounded from Lp(X) into Lq(X) if and only if there exists a
positive constant c > 0 such that

µB(x, r) ≤ crβ, β =
pq(1− α)

pq + p− q
,

for arbitrary balls B(x, r).
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In particular, from Theorem A it follows (see Corollary 6.1.1 of [4])

Theorem B. Let 0 < α < 1, 1 < p < 1
α

and 1
q

= 1
p
−α. Then Iα acts boundedly

from Lp(X) into Lq(X) if and only if µB(x, r) ≤ cr, where the constant c is
independent of x and r.

The latter statement by the different proof was also derived in [5] for metric
spaces. We shall need the following Hardy-type transforms defined on X:

Hx0f(x) =

∫
{y:ρ(x0,y)≤ρ(x0,x)}

f(y) dµ(y)

H ′
x0

f(x) =

∫
{y:ρ(x0,y)≥ρ(x0,x)}

f(y) dµ(y),

where x0 is a fixed point of X. The next statement is from [3] (see also [4,
Section 1.1]).

Theorem C. Let 1 < p ≤ q < ∞. Suppose that v and w are µ-a.e. positive
functions on X. Then:

(a) The operator Hx0 is bounded from Lp
w(X) to Lq

v(X) if and only if

A1 ≡ sup
t≥0

( ∫
{y:ρ(x0,y)≥t}

v(y) dµ(y)

) 1
q
( ∫

{y:ρ(x0,y)≤t}
w1−p′(y) dµ(y)

) 1
p′

< ∞,

p′ = p/(p− 1);

(b) The operator H ′
x0

is bounded from Lp
w(X) to Lq

v(X) if and only if

A2 ≡ sup
t≥0

( ∫
{y:ρ(x0,y)≤t}

v(y) dµ(y)

) 1
q
( ∫

{y:ρ(x0,y)≥t}
w1−p′(y) dµ(y)

) 1
p′

< ∞.

Moreover, there exist positive constants cj, j = 1, · · · 4, depending only on p
and q such that c1A1 ≤ ‖Hx0‖ ≤ c2A1 and c3A2 ≤ ‖H ′

x0
‖ ≤ c4A2.

3. The main results

In this section we formulate the main results of this paper.

Theorem 3.1. Let 1 < p ≤ q < ∞, 1
p
− 1

q
≤ α < 1, α 6= 1

p
. Suppose that

αp− 1 < β < p− 1 and λ = q
(

1
p

+ β
p
− α

)
− 1. Then the inequality( ∫

X

|Iαf(x)|qρ(x0, x)λ dµ(x)

) 1
q

≤ c

( ∫
X

|f(x)|pρ(x0, x)β dµ(x)

) 1
p

, (1)

with the positive constant c independent of f and x0, x0 ∈ X, holds if and only if

B ≡ sup
a∈X, r>0

µB(a, r)

r
< ∞. (2)
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Remark 3.2. It follows immediately from (2) that µ{a} = 0 for all a ∈ X.
Therefore for sufficiency of Theorem 3.1 we can omit the assumption that the
measure µ has any atoms.

Remark 3.3. Note that if 1 < p < q < ∞ and 0 < α < 1
p
− 1

q
, then from the

two-weight inequality
‖Kαf‖Lq

v(R) ≤ c‖f‖Lp
w(R), (3)

for example, for the one-dimensional potential

Kαf(x) =

∫
R

f(y)

|x− y|1−α
dy,

it follows that v
1
q (x)/w

1
p (x) = 0 a.e. on R. Indeed, if (3) holds for some weight

pair (v, w), then putting the function f = w1−p′χ(x−r,x+r) in the inequality (3)
we observe that

rα− 1
p
+ 1

q

(
1

r

∫ x+r

x−r

v

) 1
q
(

1

r

∫ x+r

x−r

w1−p′
) 1

p′

≤ c (4)

for all x ∈ R and r > 0. Passing r to 0 we see that (4) will not remain valid

unless v
1
q (x)/w

1
p (x) = 0 a.e..

¿From Theorem 3.1 it is easy to obtain the following corollary for the op-
erator

Ix0
α f(x) = ρ(x0, x)−α

∫
X

f(y)

ρ(x, y)1−α
dµ(y).

Corollary 3.4. Let 1 < p < ∞, 0 < α < 1
p
. Then the inequality( ∫

X

|Ix0
α f(x)|p dµ(x)

) 1
p

≤ c

( ∫
X

|f(x)|p dµ(x)

) 1
p

, (5)

where the positive constant c does not depend on x0 and f , holds if and only if
the measure µ satisfies the condition (2).

Theorem 3.1 can be also formulated in the following form:

Theorem 3.1’. Let n be a positive number. Suppose that 1 < p ≤ q < ∞,
n
p
− n

q
≤ α < n, α 6= n

p
, αp−n < β < n(p− 1) and λ = q(n

p
+ β

p
−α)−n. Then

the inequality( ∫
X

|Jαf(x)|qρ(x0, x)λ dµ(x)

) 1
q

≤ c

( ∫
X

|f(x)|pρ(x0, x)β dµ(x)

) 1
p

for the operator

Jαf(x) =

∫
X

f(y)

ρ(x, y)n−α
dµ(y),



876 V. Kokilashvili and A. Meskhi

with the positive constant c independent of f and x0, holds if and only if

sup
a∈X, r>0

µB(a, r)

rn
< ∞.

¿From Corollary 3.4 we can derive

Proposition 3.5. Let 1 < p < ∞, 0 < α < 1
p
. Then the operator Iα is bounded

in Lp(X) if

D ≡ sup
a∈X; r>0

∫
B(a,r)

ρ(x0, x)αdµ(x)

r
< ∞ (6)

for some point x0 ∈ X. Further, if Iα is bounded in Lp(X), then

D1 ≡ sup
a∈X; r>0

∫
B(a,r)

ρ(a, x)αdµ(x)

r
< ∞. (7)

We now apply the Theorems 3.1 and 3.1’ to some special measure spaces.
A non-negative Borel measure m on C is called a Radon measure if m is finite
on compact sets and

m(A) = sup m(K) = inf m(U)

for every Borel set A, where the supremum is taken over all compact sets K ⊂ A
and the infimum is over all open sets U containing A. We say that a Borel
measure m on C is a Carleson measure if m is a Radon measure and there
exists a constant C := C(m) ≥ 0 such that

m(D(z, ε)) ≤ Cε

for all disks D(z, ε) := {τ ∈ C : |τ − z| < ε}. For the definition and some
examples of the Carleson measures see, e.g., [1, p. 185].

Proposition 3.6. Let m be a Radon measure on C. Suppose that 1 < p ≤ q <
∞, 1

p
− 1

q
≤ α < 1, α 6= 1

p
, αp− 1 < β < p− 1 and λ = q

(
1
p
+ β

p
−α

)
− 1. Then

the two-weight inequality( ∫
C
|Kαf(z)|q|z − z0|λdm(z)

) 1
q

≤ c

( ∫
C
|f(z)|p|z − z0|βdm(z)

) 1
p

for the operator

Kαf(z) =

∫
C

f(ζ)

|ζ − z|1−α
dm(ζ),

with the positive constant c independent of f and z0, z0 ∈ C, holds if and only
if m is a Carleson measure.
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Let γ be a simple locally rectifiable curve in the plane and let ν be a measure
on γ given by

ν(A) := |γ ∩ A|,
where |γ ∩A| is a length of γ ∩A. Then ν is a Carleson measure if and only if
γ is a regular (Carleson) curve, i.e., there exists a positive constant c such that
the inequality

ν(γ ∩D(z, r)) ≤ cr

holds for all z ∈ C and r > 0. For r smaller than half the diameter of γ, the
reverse inequality

ν(γ ∩D(z, r)) ≥ r

holds for all z ∈ C. Note that there exist nonregular curves (see, e.g., [1,
pp. 5/6]).

We have the next statement for the operator

Kα
γ f(z) =

∫
γ

f(t)

|z − t|1−α
dν(t), 0 < α < 1.

Proposition 3.7. Let γ be a regular curve with ν(γ) = ∞. Suppose that 1 <
p ≤ q < ∞, 1

p
− 1

q
≤ α < 1, α 6= 1

p
, αp−1 < β < p−1 and λ = q

(
1
p
+ β

p
−α

)
−1.

Then there exists a positive constant c such that the inequality( ∫
γ

|Kα
γ f(z)|q|z − z0|λdν(z)

) 1
q

≤ c

( ∫
γ

|f(z)|p|z − z0|βdν(z)

) 1
p

,

holds for all z0 ∈ γ and f .

Now we consider the case of s-sets. Let Γ be a subset of Rn which is an
s-set (0 ≤ s ≤ n) in the sense that there is a Borel measure µ on Rn such that

(a) supp µ = Γ;

(b) there are positive constants c1 and c2 such that for all x ∈ Γ and all
r ∈ (0, 1), c1r

s ≤ µ(B(x, r) ∩ Γ) ≤ c2r
s.

It is known (see [16, Theorem 3.4]) that µ is equivalent to the restriction of the
Hausdorff s-measure Hs to Γ. We shall thus identify µ with Hs|Γ.

Given x ∈ Γ, put Γ(x, r) = B(x, r) ∩ Γ. Let

Kα
Γf(x) =

∫
Γ

f(y)

|x− y|s−α
dHs, 0 < α < s.

Proposition 3.8. Let 1 < p ≤ q < ∞, s
p
− s

q
≤ α < s, α 6= s

p
, αp − s < β <

s(p− 1) and λ = q
(

s
p

+ β
p
− α

)
− s. Then the inequality( ∫

Γ

|Kα
Γf(x)|q|x− x0|λdHs(x)

) 1
q

≤ c

( ∫
Γ

|f(x)|p|x− x0|β dHs(x)

) 1
p

,

with the positive constant c independent of f and x0, holds.
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Note that since the Cantor set in Rn is an s-set (see [16, 4.9]), where

s =
log(3n − 1)

log 3
,

we can obtain two-weighted estimate for potentials on a Cantor set in Rn. For
the theorem of Sobolev type and other weighted results for fractional integrals
defined on curves and s-sets see [10, 11].

4. Proof of the main results

We now are ready to prove the main results.

Proof of Theorem 3.1. Necessity. Let us put the function fx0,r(x) =
χB(x0,r)\B(x0,r/2)(x) in (1). Then it is easy to see that( ∫

X

|Iαfx0,r(x)|qρ(x0, x)λdµ(x)

) 1
q

≥
( ∫

B(x0,r)\B(x0,r/2)

(Iαfx0,r(x))qρ(x0, x)λ dµ(x)

) 1
q

≥ cr
λ
q
+α−1

(
µ(B(x0, r) \B(x0, r/2))

)1+ 1
q .

On the other hand,( ∫
X

|f(x)|pρ(x0, x)βdµ(x)

) 1
p

≤ c
(
µ(B(x0, r) \B(x0, r/2))

) 1
p r

β
p .

Summarizing these estimates and taking into account that the inequality (1) is
independent of x0 and r, we have(

µ(B(x0, r) \B(x0, r/2))
)1+ 1

q
− 1

p r
λ
q
+α−1−β

p ≤ c.

By the condition of the theorem we have λ
q
+α−1− β

p
= −1− 1

q
+ 1

p
. Consequently

1
r
µ(B(x0, r) \B(x0, r/2)) ≤ c. The latter inequality yields

µB(x0, r) =
0∑

k=−∞

µ
(
B(x0, 2

kr) \B(x0, 2
k−1r)

)
≤ c

0∑
k=−∞

2kr = 2cr.

Sufficiency. Let f ≥ 0. Let us introduce the following notation:

E1(x) ≡
{

y : ρ(x0, y) <
ρ(x0, x)

2a1

}
E2(x) ≡

{
y :

ρ(x0, x)

2a1

≤ ρ(x0, y) ≤ 2a1ρ(x0, x)

}
E3(x) ≡

{
y : ρ(x0, y) > 2a1ρ(x0, x)

}
.
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We have∫
X

ρ(x0, x)λ(Iαf(x))q dµ(x)

≤ c

∫
X

ρ(x0, x)λ

( ∫
E1(x)

f(y)ρ(x, y)α−1 dµ(y)

)q

dµ(x)

+ c

∫
X

ρ(x0, x)λ

( ∫
E2(x)

f(y)ρ(x, y)α−1 dµ(y)

)q

dµ(x)

+ c

∫
X

ρ(x0, x)λ

( ∫
E3(x)

f(y)ρ(x, y)α−1 dµ(y)

)q

dµ(x)

≡ I1 + I2 + I3.

It is easy to verify that if ρ(x0, y) < ρ(x0,x)
2a1

, then

ρ(x0, x) ≤ a1ρ(x0, y) + a0a1ρ(x, y) ≤ ρ(x0, x)

2
+ a1a0ρ(x, y).

Hence ρ(x0,x)
2a1a0

≤ ρ(x, y). Consequently,

I1 ≤ c

∫
X

ρ(x0, x)λ+(α−1)q(Hx0f(x))q dµ(x).

Further, taking into account the inequality λ < (1− α)q − 1 we have∫
ρ(x0,x)≥t

ρ(x0, x)λ+(α−1)q dµ(x) =
+∞∑
k=0

∫
2kt≤ρ(x0,x)<2k+1t

ρ(x0, x)λ+(α−1)q dµ(x)

≤ cB

+∞∑
k=0

(2kt)λ+(α−1)q+1

= (1− 2λ+(α−1)q+1)−1cBtλ+(α−1)q+1,

where the positive constant c depends only on α, λ and q. Analogously by
virtue of the condition β < p− 1 it follows that∫

ρ(x0,x)≤t

ρ(x0, x)β(1−p′) ≤ cBtβ(1−p′)+1.

Summarizing these estimates we find that

sup
t>0

{( ∫
ρ(x0,x)≥t

ρ(x0, x)λ+(α−1)q dµ(x)

) 1
q

×
( ∫

ρ(x0,x)≤t

ρ(x0, x)β(1−p′)dµ(x)

) 1
p′

}
≤ cB

1
q
+ 1

p′ ,
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with the positive constant c independent of x0 and f . Here we used the condition
λ = q(1

p
+ β

p
−α)−1. Now the first part of Theorem C leads us to the inequality

I1 ≤ b1

( ∫
X

ρ(x0, y)β(f(y))pdµ(y)

) q
p

,

where the positive constant b1 is independent of x0 and f .

Repeating these arguments for I3 and using the second part of Theorem C
we derive the next estimate:

I3 ≤ b2

( ∫
X

ρ(x0, y)β(f(y))p dµ(y)

) q
p

,

with the positive constant b2 independent of x0 and f .

To estimate I2 we consider the cases α < 1
p

and α > 1
p

separately.

The case α < 1
p
. In this case the condition α ≥ 1

p
− 1

q
implies q ≤ p∗, where

p∗ = p/(1− αp). First assume that q < p∗. In the sequel we use the notation

Fk ≡
{
x : 2k ≤ ρ(x0, x) < 2k+1

}
F̄k ≡

{
y :

1

a1

2k−2 ≤ ρ(x0, y) < a12
k+2

}
.

By Hölder’s inequality with respect to the exponent p∗

q
and Theorem B we find

that

I2 =

∫
X

ρ(x0, x)λ

( ∫
E2(x)

f(y)ρ(x, y)α−1dµ(y)

)q

dµ(x)

=
∑
k∈Z

∫
Fk

ρ(x0, x)λ

( ∫
E2(x)

f(y)ρ(x, y)α−1dµ(y)

)q

dµ(x)

≤
∑
k∈Z

( ∫
Fk

( ∫
E2(x)

f(y)ρ(x, y)α−1dµ(y)

)p∗

dµ(x)

) q
p∗

×
( ∫

Fk

ρ(x0, x)
λp∗

p∗−q dµ(x)

) p∗−q
p∗

≤ cB
p∗−q

p∗
∑
k∈Z

2k(λ+ p∗−q
p∗ )

( ∫
X

(Iα(fχF̄k
)(x))p∗dµ(x)

) q
p∗

≤ c
∑
k∈Z

2k(λ+ p∗−q
p∗ )

( ∫
F̄k

fp(y) dµ(y)

) q
p

≤ c

( ∫
X

ρ(x0, x)βfp(x)dµ(x)

) q
p

.
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If q = p∗, then λ = βp∗

p
and consequently using directly Theorem B we have

I2 ≤ c
∑
k∈Z

2kβ p∗
p

∫
Fk

(Iα(fχF̄k
)(x))p∗ dµ(x)

≤ c
∑
k∈Z

2kβ p∗
p

( ∫
F̄k

f(y)p dµ(y)

) p∗
p

≤ c

( ∫
X

ρ(x0, y)βf(y)p dµ(y)

) p∗
p

.

The case α > 1
p
. In this case by Hölder’s inequality with respect to the exponent

p we get the following estimate

I2 ≤
∫

X

ρ(x0, x)λ

( ∫
E2(x)

fp(y) dµ(y)

) q
p
( ∫

E2(x)

ρ(x, y)(α−1)p′dµ(y)

) q
p′

dµ(x).

On the other hand, using (2) and the inequality α > 1
p

we observe that∫
E2(x)

ρ(x, y)(α−1)p′ dµ(y)

≤
∫ ∞

0

µ
(
B(x0, ρ(x0, x)) ∩

{
y : ρ(x, y) < λ

1
(α−1)p′

})
dλ

≤ Bρ(x0, x)1+(α−1)p′ + B

∫ ∞

ρ(x0,x)(α−1)p′
λ

1
(α−1)p′ dλ

= cBρ(x0, x)1+(α−1)p′ ,

where the positive constant c does not depend on x and x0. The latter estimate
yields

I2 ≤ cB
q
p′

∑
k∈Z

∫
Fk

ρ(x0, x)
λ+[(α−1)p′+1)] q

p′

( ∫
E2(x)

(f(y))p dµ(y)

) q
p

dµ(x)

≤ cB
q
p′

∑
k∈Z

∫
Fk

ρ(x0, x)
λ+[(α−1)p′+1)] q

p′ dµ(x)

( ∫
F̄k

(f(y))pdµ(y)

) q
p

≤ cB
q
p′ +1

∑
k∈Z

2
k(λ+[(α−1)p′+1)] q

p′ +1)

( ∫
F̄k

(f(y))pdµ(y)

) q
p

= c
∑
k∈Z

2k βq
p

( ∫
F̄k

(f(y))pdµ(y)

) q
p

≤ c

( ∫
X

ρ(x0, y)β(f(y))pdµ(y)

) q
p

.

Theorem 3.1 is completely proved.
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Proof of Theorem 3.1’. The proof immediately follows applying Theorem 3.1
to the nonhomogeneous space (X, ρ1, µ), where ρ1(x, y) = ρ(x, y)n.

To prove Proposition 3.5 we need

Lemma 4.1. Let 1 < p < ∞. The operator Iα,x0,p is bounded in Lp(X) if

D(x0) ≡ sup
a∈X; r>0

∫
B(a,r)

ρ(x0, x)αpdµ(x)

r
< ∞. (8)

Proof. First note that the boundedness of Iα,x0,p in Lp(X) is equivalent to the
weighted inequality

S ≡
∫

X

( ∫
X

f(y)ρ(x, y)α−1ρ(x0, y)αp dµ(y)

)p

dµ(x)

≤ c

∫
X

(f(y))pρ(x0, y)αp dµ(y), (f ≥ 0).

The latter inequality follows easily applying (8) and Corollary 3.4 to the space
(X, ρ, µ1), dµ1(x) ≡ ρ(x0, x)αpdµ(x), because

S =

∫
X

ρ(x0, x)αp

ρ(x0, x)αp

( ∫
X

f(y)ρ(x, y)α−1ρ(x0, y)αpdµ(y)

)p

dµ(x)

≤ c

∫
X

(f(y))pρ(x0, y)αpdµ(y).

Proof of Proposition 3.5. Let us take a point x0 ∈ X and consider the op-
erator

Iα,x0,pf(x) =

∫
X

ρ(x0, x)α(p−1)ρ(x, y)α−1f(y) dµ(y).

Further, due to condition (6) we have

S1 ≡
∫

X

ρ(x0, x)α−αp(Iαf(x))p dµ(x) ≤ c

∫
X

ρ(x0, x)α−αp(f(x))p dµ(x), (f ≥ 0).

Indeed, Lemma 4.1 with respect to the nonhomogeneous space (X, ρ, µ2), dµ2(x)
= ρ(x0, x)α−αpdµ(x), yields

S1 =

∫
X

ρ(x0, x)α−αp

( ∫
X

f(y)ρ(x, y)α−1ρ(x0, y)αp−α

ρ(x0, y)αp−α
dµ(y)

)p

dµ(x)

≤
∫

X

ρ(x0, x)α−αp(f(x))p dµ(x), (f ≥ 0).

The latter inequality can be rewritten in the form∫
X

ρ(x0, x)α(1−p)
(
Iα

(
fρ(x0, ·)

α
p′

)
(x)

)p
dµ(x) ≤ c

∫
X

(f(x))pdµ(x). (9)
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Consequently, using the notation from the proof of Theorem 3.1 we have∫
X

(Iαf(x))p dµ(x) ≤ c

∫
X

( ∫
E1(x)

f(y)ρ(x, y)α−1 dµ(y)

)q

dµ(x)

+ c

∫
X

( ∫
E2(x)

f(y)ρ(x, y)α−1 dµ(y)

)q

dµ(x)

+ c

∫
X

( ∫
E3(x)

f(y)ρ(x, y)α−1 dµ(y)

)q

dµ(x)

≡ I1 + I2 + I3.

Further, condition (6) implies

D1(x0) ≡ sup
r>0

µ
(
B(x0, r) \B(x0, r/2)

)
r1−α

< ∞.

Besides, it is easy to check that

sup
t≥0

( ∫
ρ(x0,x)≥t

ρ(x0, x)(α−1)pdµ(x)

) 1
p

(µB(x0, t))
1
p′ ≤ c1D1(x0)

sup
t≥0

( ∫
ρ(x0,x)≥t

ρ(x0, x)(α−1)p′dµ(x)

) 1
p′

(µB(x0, t))
1
p ≤ c2D1(x0).

Let us show the first inequality.( ∫
ρ(x0,x)≥t

ρ(x0, x)(α−1)pdµ(x)

) 1
p

(µB(x0, t))
1
p′

=

( ∞∑
k=0

∫
2kt≤ρ(x0,x)<2k+1t

ρ(x0, x)(α−1)pdµ(x)

) 1
p

(µB(x0, t))
1
p′

≤ c

( ∞∑
k=0

(t2k)(α−1)pµ
{
x : 2kt ≤ ρ(x0, x) < 2k+1t

}) 1
p

(µB(x0, t))
1
p′

≤ c(D1(x0))
1
p

( ∞∑
k=0

(t2k)(α−1)(p−1)

) 1
p

µB(x0, t)
1
p′

= c(D1(x0))
1
p t

α−1
p′ (µB(x0, t))

1
p′

= c(D1(x0))
1
p t

α−1
p′

( 0∑
k=−∞

µ
(
B(x0, 2

kt) \B(x0, 2
k−1t)

)) 1
p′

≤ cD1(x0)t
α−1
p′

( 0∑
k=−∞

(t2k)1−α

) 1
p′

= (1− 2α−1)
− 1

p′ cD1(x0).
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Analogously, the second inequality follows. Using now Theorem C we find

I1 ≤ c

∫
X

ρ(x0, x)(α−1)p

( ∫
{y:ρ(x0,y)≤ρ(x0,x)}

f(y)dµ(y)

)p

dµ(x)

≤ c

∫
X

f(y)pdµ(y)

I3 ≤ c

∫
X

( ∫
{y:ρ(x0,y)≥ρ(x0,x)}

ρ(x0, y)α−1 f(y) dµ(y)

)p

dµ(x)

≤ c

∫
X

f(y)pdµ(y).

To estimate I2 we use (9). We have

I2 ≡
∫

X

( ∫
E2(x)

f(y)ρ(x, y)α−1dµ(y)

)p

dµ(x)

= c
∑
k∈Z

∫
Fk

ρ(x0, x)α(1−p)

( ∫
E2(x)

f(y)ρ(x0, y)
α
p′ ρ(x, y)α−1dµ(y)

)p

dµ(x)

≤ c
∑
k∈Z

∫
F̄k

f(y)p dµ(y)

≤ c

∫
X

f(y)p dµ(y).

For the necessity of Proposition 3.5 we put the function fa(x) = χB(a,r)(x)
in the inequality ‖Iαf‖Lp(X) ≤ c‖f‖Lp(X). Consequently, we observe that

D̄ ≡ sup
a∈X, r>0

µB(a, r)

r1−α
< ∞.

Further, it is clear that ∫
B(a,r)

ρ(a, x)αdµ(x) ≤ rD̄.

Proposition 3.5 is proved.
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[5] Garćıa-Cuerva, J. and A. E. Gatto: Boundedness properties of fractional integ-
ral operators associated to non-doubling measures. Studia Math. 162 (2004)(3),
245 – 261.
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