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This note is devoted to the boundedness of one-sided maximal functions, singular
integrals and potentials in Lebesgue spaces with variable exponent.

Let I := (a, b) ⊆ R. We denote

p−(E) = essinf
E

p, p+(E) = esssup
E

p

for measurable functions p : I → R and measurable sets E ⊆ I.
Let P−(I) be the class of all measurable functions p : I → R such that
(i) 1 < p−(I) ≤ p(t) ≤ p+(I) < ∞, t ∈ I; (1)
(ii) there exists a positive constant c such that for almost all x ∈ I and all r, 0 < r ≤

min
{

1/2, x − a
}

, the inequality

rp−

(

(x−r,x]
)

−p(x) ≤ c (2)

holds.
Analogously, we define the class P+(I) to be the set of all measurable p : I → R

satisfying (1) and

rp−

(

[x,x+r)
)

−p(x) ≤ c (3)

for almost all x ∈ I and all r, 0 < r ≤ min
{

1/2, b − x
}

.
It is easy to see that if p is a non-increasing function on I, then condition (2) is

satisfied, while for non-decreasing p condition (3) holds.
Further, let 1 ≤ p(x) ≤ p+(I) < ∞. For measurable function f : I → R we say that

f ∈ Lp(x)(I) (or f ∈ Lp(·)(I)) if

Sp(·)(f) =

∫

I

∣

∣f(x)
∣

∣

p(x)
dx < ∞.

It is known that Lp(x)(I) is a Banach space with the norm

‖f‖Lp(x)(I) = inf
{

λ > 0 : Sp(·)

( f

λ

)

≤ 1
}

.

For the basic properties of Lp(x) spaces see e.g. [9], [13], [6].
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Let −∞ ≤ a < b ≤ +∞ and let us introduce the following maximal operators:

(

MRf
)

(x) = sup
0<h<b−x

1

h

x+h
∫

x−h

|f |;
(

MLf
)

(x) = sup
0<h<x−a

1

h

x+h
∫

x−h

|f |,

(

Mf
)

(x) = sup
0<h<min {x−a,b−x}

1

2h

x+h
∫

x−h

|f |,

where x ∈ (a, b).

Definition 1. Let I = R+ or I = R. Suppose that p is a constant, 1 < p < ∞. We

say that w ∈ A+
p (I) if there exists c > 0 such that

(

1

h

x
∫

x−h

w

)1/p(

1

h

x+h
∫

x

w1−p′

)1/p′

≤ c, h, x > 0, h < x,

for I = R+ and

(

1

h

x
∫

x−h

w

)1/p(

1

h

x+h
∫

x

w1−p′

)1/p′

≤ c; x ∈ R, h > 0,

for I = R, where p′ = p
p−1

.

The weight w ∈ A+
1 (I) if there exists c > 0 such that MLw ≤ cw(x) for a.a. x ∈ R

when I = R and for a.a x ∈ R+ whenever I = R+.

Analogously is defined the classes A−
p (I).

The following statement is a one-sided version of Rubio de Francia’s extrapolation

theorem for variable exponent Lebesgue spaces. For the related statement in the two-
sided case see [2].

Theorem 1. Let I = R+ or I = R. Let F be a family of pairs of functions such

that for some p0 and q0 with 0 < p0 ≤ q0 < ∞ and for every weight w ∈ A+
1 (I) (resp.

A−
1 (I)) the inequality

(
∫

I

f(x)q0w(x)dx

) 1
q0

≤ c0

(
∫

I

g(x)p0w(x)p0/q0dx

) 1
p0

holds for all (f, g) ∈ F . Given p satisfying (1) and also the condition p0 < p− ≤ p+ <
p0q0

q0−p0
define a function q by

1

p(x)
−

1

q(x)
=

1

p0
−

1

q0
, x ∈ I.

Let q̃(x) = (
q(x)
q0

)′. If ML

(

resp. MR

)

is bounded in Lq̃(·)(I), then for all (f, g) ∈ F

such that f ∈ Lq(·)(I) the inequality

‖f‖Lq(·)(I) ≤ c‖g‖Lp(·)(I)

holds.

Now we formulate the statements regarding one-sided maximal functions.

Theorem 2. Let I = (0, b) be a bounded interval. Then

(a) there exists a discontinuous function p on I such that ML is bounded in Lp(·)(I)

but M is not bounded in Lp(·)(I).
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(b) there exists a discontinuous function p on I such that MR is bounded in Lp(·)(I)

but M is not bounded in Lp(·)(I).

Theorem 3. Let I be a bounded interval and let p ∈ P−(I). Then ML is bounded

in Lp(·)(I).

Theorem 4. Let I be a bounded interval and let p ∈ P+(I). Then MR is bounded in

Lp(·)(I).

Theorem 5. Let I = R+ and suppose that p ∈ P+(I). Assume also that there exists
a number b > 0 such that p(x) = pc ≡ const when x > b. Then MR is bounded in

Lp(·)(R+).

Theorem 6. Let I = R+. Suppose that p ∈ P−(I) and p(x) = pc ≡ const when x > b

for some positive b. Then ML is bounded in Lp(·)(I)

Theorem 7. Let I = R and let p ∈ P+(I). Suppose that there is a bounded interval

(a, b) such that p(x) = pc ≡ const when x /∈ (a, b). Then MR is bounded in Lp(x)(I).

Theorem 8. Let I = R and let p ∈ P−(I). Suppose that pc = p(x) ≡ const when

x /∈ (a, b). Then ML is bounded in Lp(x)(I).

Now we assume that I = (0, b), where 0 < b ≤ ∞ and let

(

Rα(·)f
)

(x) =

x
∫

0

f(t)(x − t)α(x)−1dt;
(

Wα(·)f
)

(x) =

b
∫

x

f(t)(t − x)α(x)−1dt;

(

Iα(·)f
)

(x) =

b
∫

0

f(t)|x − t|α(x)−1dt,

where x ∈ (0, b) and 0 < α(x) < 1.
If α(x) := α = const, then we denote Iα(·), Rα(·), Wα(·) by Iα, Rα and Wα respec-

tively.
For one-sided potentials we have:

Theorem 9. Let I = (0, b) be a bounded interval and let α ∈ (0, 1) be a constant.
Then

(a) there exists a discontinuous function p on I such that Rα is bounded from Lp(·)(I)

to Lq(·)(I) and Iα is not bounded from Lp(·)(I)) to Lq(·)(I), where q(x) = p(x)
1−αp(x)

and

0 < α < 1/p+(I).

(b) there exists a discontinuous function p on I such that Wα is bounded from Lp(·)(I)

to Lq(·)(I) and Iα is not bounded from Lp(·)(I) to Lq(·)(I), where q(x) =
p(x)

1−αp(x)
and

0 < α < 1
p+(I)

.

Theorem 10. Let I = R+ and let 1 < p−(I) ≤ p(x) ≤ p+(I) < ∞. Suppose that α

is a constant on I, 0 < α < 1
p+(I)

, q(x) =
p(x)

1−αp(x)
. Suppose also that the condition

rq(x)−q+((x−r,x]) ≤ c, 0 < r ≤ min
{

1/2, x
}

,

holds. Assume that p is a constant outside the interval [0, b) for some positive b. Then

Wα is bounded from Lp(x)(I) to Lq(x)(I).

Theorem 11. Let I = R+ and let 1 < p−(I) ≤ p(x) ≤ p+(I) < ∞. Let α be a

constant on I, 0 < α < 1
p+(I)

and let q(x) =
p(x)

1−αp(x)
. Suppose that p(·) is constant

outside an interval (0, b] and that

rq(x)−q+

(

[x,x+r)
)

≤ c, 0 < r <
1

2
.
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Then Rα is bounded from Lp(x)(I) to Lq(x)(I).

Theorem 12. Let I := (0, b) be a bounded interval, p ∈ P+(I), 0 < α(x) < 1
p(x)

,

q(x) =
p(x)

1−α(x)p(x)
. Then Wα(·) is bounded from Lp(x)(I) to Lq(x)(I).

Theorem 13. Let I = (0, b) be a bounded interval and let p ∈ P−(I). Suppose that

0 < α(x) < 1
p(x)

, q(x) = p(x)
1−α(x)p(x)

. Then Rα(·) is bounded from Lp(x)(I) to Lq(x)(I).

Theorem 14. Let I = R+, α and p be functions defined on R+ which are constants
αc, pc respectively outside some interval (0, a) and satisfy the conditions: p ∈ P−(I),

0 < α(x) < 1
p(x)

, q(x) = p(x)
1−α(x)p(x)

, αc < min
{

1
pc

, 1
(qc)′

}

. Then Rα(·) is bounded from

Lp(·)(I) to Lq(·)(I).

Definition 2. We say that a function k in L1
loc

(

R \ {0}
)

is a Calderón-Zygmund
kernel if the following properties are satisfied:

(a) there exists a finite constant B1 such that
∣

∣

∣

∣

∫

ε<|x|<N

k(x)dx

∣

∣

∣

∣

≤ B1

for all ε and all N , with 0 < ε < N, and furthermore

lim
ε→0

∫

ε<|x|<N

k(x)dx

exists;
(b) there exists a positive constant B2 such that

∣

∣k(x)
∣

∣ ≤
B2

|x|
, x 6= 0;

(c) there exists a positive constant B3 such that for all x and y with |x| > 2|y| > 0
the inequality

|k(x − y) − k(x)| ≤ B3
|y|

|x|2

holds.

It is known (see [10], [1]) that conditions (a)-(c) are sufficient for the boundedness of
the operators:

T ∗f(x) = sup
ε>0

∣

∣Tεf(x)
∣

∣;

Tf(x) = lim
ε→0

Tεf(x),

where

Tεf(x) =

∫

|x−y|>ε

k(x − y)f(y)dy,

in Lp(R).
The following example shows that there exists a non-trivial Calderón-Zygmund kernel

with support contained in (0, +∞)

Example. The function

k(x) =
1

x

sin(ln x)

ln x
χ(0,+∞)(x)

is a Calderón-Zygmund kernel (see e.g. [10], [1] for details).
There exists also a non-trivial Calderón-Zygmund kernel supported in (−∞, 0).



130

Theorem 15. Let I = R and let p satisfy (1). Assume that rp(x)−p+((x−r,x]) ≤ c
for x ∈ I and 0 < r < 1/2. Suppose that p is a constant outside some bounded interval

(a, b). Then T ∗, with kernel k supported in (−∞, 0), is bounded in Lp(·)(I).

An analogous result can be formulated for T ∗ with kernel supported in (0, +∞).
Namely we have

Theorem 16. Let I = R and let p satisfy (1). Assume that rp(x)−p+((x,x+r)) ≤ c
for x ∈ I and 0 < r < 1/2. Suppose that p is a constant outside some bounded interval

(a, b). Then T ∗, with kernel k supported in (0, +∞) is bounded in Lp(·)(I).

Finally we mention that the boundedness of classical operators of various type in
Lp(x) spaces was established in [11], [3]–[5], [2]. For weighted Lp(x) spaces with power-
type weights we refer to [7]-[8], [12].
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