D. E. Edmunds, V. Kokilashvili and A. Meskhi

ON ONE-SIDED OPERATORS IN VARIABLE EXPONENT LEBESGUE SPACES

(Reported on 06.06.2007)

This note is devoted to the boundedness of one-sided maximal functions, singular integrals and potentials in Lebesgue spaces with variable exponent.

Let $I := (a, b) \subseteq \mathbf{R}$. We denote

$$p_{-}(E) = \operatorname{essinf}_{E} p, \quad p_{+}(E) = \operatorname{esssup}_{E} p$$

for measurable functions $p: I \to \mathbf{R}$ and measurable sets $E \subseteq I$.

Let $\mathcal{P}_{-}(I)$ be the class of all measurable functions $p: I \to \mathbf{R}$ such that

(i) $1 < p_{-}(I) \le p(t) \le p_{+}(I) < \infty, t \in I;$

(ii) there exists a positive constant c such that for almost all $x \in I$ and all $r, 0 < r \le \min\{1/2, x - a\}$, the inequality

$$r^{p_{-}\left((x-r,x]\right)-p(x)} \le c \tag{2}$$

(1)

holds.

Analogously, we define the class $\mathcal{P}_+(I)$ to be the set of all measurable $p: I \to \mathbf{R}$ satisfying (1) and

$$r^{p_{-}\left([x,x+r)\right)-p(x)} \le c \tag{3}$$

for almost all $x \in I$ and all $r, 0 < r \le \min\{1/2, b - x\}$.

It is easy to see that if p is a non-increasing function on I, then condition (2) is satisfied, while for non-decreasing p condition (3) holds.

Further, let $1 \leq p(x) \leq p_+(I) < \infty$. For measurable function $f: I \to \mathbf{R}$ we say that $f \in L^{p(x)}(I)$ (or $f \in L^{p(\cdot)}(I)$) if

$$S_{p(\cdot)}(f) = \int_{I} |f(x)|^{p(x)} dx < \infty.$$

It is known that $L^{p(x)}(I)$ is a Banach space with the norm

$$\|f\|_{L^{p(x)}(I)} = \inf \left\{ \lambda > 0 : S_{p(\cdot)}\left(\frac{f}{\lambda}\right) \le 1 \right\}.$$

For the basic properties of $L^{p(x)}$ spaces see e.g. [9], [13], [6].

²⁰⁰⁰ Mathematics Subject Classification: 42B25, 46E30. Key words and phrases: Lebesgue spaces with variable exponent, one-sided maximal functions, one-sided potentials, Calderón-Zygmund singular integrals.

¹²⁶

Let $-\infty \le a < b \le +\infty$ and let us introduce the following maximal operators:

$$(\mathcal{M}_R f)(x) = \sup_{0 < h < b-x} \frac{1}{h} \int_{x-h}^{x+h} |f|; \quad (\mathcal{M}_L f)(x) = \sup_{0 < h < x-a} \frac{1}{h} \int_{x-h}^{x+h} |f|,$$
$$(\mathcal{M} f)(x) = \sup_{0 < h < \min\{x-a,b-x\}} \frac{1}{2h} \int_{x-h}^{x+h} |f|,$$

where $x \in (a, b)$.

Definition 1. Let $I = \mathbf{R}_+$ or $I = \mathbf{R}$. Suppose that p is a constant, 1 . Wesay that $w \in A_p^+(I)$ if there exists c > 0 such that

$$\left(\frac{1}{h}\int_{x-h}^{x}w\right)^{1/p} \left(\frac{1}{h}\int_{x}^{x+h}w^{1-p'}\right)^{1/p'} \le c, \quad h, x > 0, \quad h < x,$$

for $I = \mathbf{R}_+$ and

$$\left(\frac{1}{h}\int_{x-h}^{x}w\right)^{1/p}\left(\frac{1}{h}\int_{x}^{x+h}w^{1-p'}\right)^{1/p'} \le c; \quad x \in \mathbf{R}, \ h > 0,$$

for $I = \mathbf{R}$, where $p' = \frac{p}{p-1}$. The weight $w \in A_1^+(I)$ if there exists c > 0 such that $\mathcal{M}_L w \leq cw(x)$ for a.a. $x \in \mathbf{R}$ when $I = \mathbf{R}$ and for a.a $x \in \mathbf{R}_+$ whenever $I = \mathbf{R}_+$.

Analogously is defined the classes $A_p^-(I)$.

The following statement is a one-sided version of Rubio de Francia's extrapolation theorem for variable exponent Lebesgue spaces. For the related statement in the twosided case see [2].

Theorem 1. Let $I = \mathbf{R}_+$ or $I = \mathbf{R}$. Let \mathcal{F} be a family of pairs of functions such that for some p_0 and q_0 with $0 < p_0 \leq q_0 < \infty$ and for every weight $w \in A_1^+(I)$ (resp. $A_1^-(I))$ the inequality

$$\left(\int_{I} f(x)^{q_0} w(x) dx\right)^{\frac{1}{q_0}} \le c_0 \left(\int_{I} g(x)^{p_0} w(x)^{p_0/q_0} dx\right)^{\frac{1}{p_0}}$$

holds for all $(f,g) \in \mathcal{F}$. Given p satisfying (1) and also the condition $p_0 < p_- \leq p_+ < p_+ < p_+$ $\frac{p_0q_0}{q_0-p_0}$ define a function q by

$$\frac{1}{p(x)} - \frac{1}{q(x)} = \frac{1}{p_0} - \frac{1}{q_0}, \quad x \in I.$$

Let $\tilde{q}(x) = (\frac{q(x)}{q_0})'$. If \mathcal{M}_L (resp. \mathcal{M}_R) is bounded in $L^{\tilde{q}(\cdot)}(I)$, then for all $(f,g) \in \mathcal{F}$ such that $f \in L^{q(\cdot)}(I)$ the inequality

$$\|f\|_{L^{q(\cdot)}(I)} \le c \|g\|_{L^{p(\cdot)}(I)}$$

holds.

Now we formulate the statements regarding one-sided maximal functions.

Theorem 2. Let I = (0, b) be a bounded interval. Then

(a) there exists a discontinuous function p on I such that \mathcal{M}_L is bounded in $L^{p(\cdot)}(I)$ but \mathcal{M} is not bounded in $L^{p(\cdot)}(I)$.

(b) there exists a discontinuous function p on I such that \mathcal{M}_R is bounded in $L^{p(\cdot)}(I)$ but \mathcal{M} is not bounded in $L^{p(\cdot)}(I)$.

Theorem 3. Let I be a bounded interval and let $p \in \mathcal{P}_{-}(I)$. Then \mathcal{M}_{L} is bounded in $L^{p(\cdot)}(I)$.

Theorem 4. Let I be a bounded interval and let $p \in \mathcal{P}_+(I)$. Then \mathcal{M}_R is bounded in $L^{p(\cdot)}(I)$.

Theorem 5. Let $I = \mathbf{R}_+$ and suppose that $p \in \mathcal{P}_+(I)$. Assume also that there exists a number b > 0 such that $p(x) = p_c \equiv \text{const}$ when x > b. Then \mathcal{M}_R is bounded in $L^{p(\cdot)}(\mathbf{R}_+)$.

Theorem 6. Let $I = \mathbf{R}_+$. Suppose that $p \in P_-(I)$ and $p(x) = p_c \equiv \text{const}$ when x > b for some positive b. Then \mathcal{M}_L is bounded in $L^{p(\cdot)}(I)$

Theorem 7. Let $I = \mathbf{R}$ and let $p \in \mathcal{P}_+(I)$. Suppose that there is a bounded interval (a, b) such that $p(x) = p_c \equiv \text{const}$ when $x \notin (a, b)$. Then \mathcal{M}_R is bounded in $L^{p(x)}(I)$.

Theorem 8. Let $I = \mathbf{R}$ and let $p \in \mathcal{P}_{-}(I)$. Suppose that $p_c = p(x) \equiv \text{const}$ when $x \notin (a, b)$. Then \mathcal{M}_L is bounded in $L^{p(x)}(I)$.

Now we assume that I = (0, b), where $0 < b \le \infty$ and let

$$\left(\mathcal{R}_{\alpha(\cdot)}f\right)(x) = \int_{0}^{x} f(t)(x-t)^{\alpha(x)-1}dt; \quad \left(\mathcal{W}_{\alpha(\cdot)}f\right)(x) = \int_{x}^{b} f(t)(t-x)^{\alpha(x)-1}dt;$$
$$\left(\mathcal{I}_{\alpha(\cdot)}f\right)(x) = \int_{0}^{b} f(t)|x-t|^{\alpha(x)-1}dt,$$

where $x \in (0, b)$ and $0 < \alpha(x) < 1$.

If $\alpha(x) := \alpha = \text{const}$, then we denote $\mathcal{I}_{\alpha(\cdot)}$, $\mathcal{R}_{\alpha(\cdot)}$, $\mathcal{W}_{\alpha(\cdot)}$ by \mathcal{I}_{α} , \mathcal{R}_{α} and \mathcal{W}_{α} respectively.

For one-sided potentials we have:

Theorem 9. Let I = (0, b) be a bounded interval and let $\alpha \in (0, 1)$ be a constant. Then

(a) there exists a discontinuous function p on I such that \mathcal{R}_{α} is bounded from $L^{p(\cdot)}(I)$ to $L^{q(\cdot)}(I)$ and \mathcal{I}_{α} is not bounded from $L^{p(\cdot)}(I)$ to $L^{q(\cdot)}(I)$, where $q(x) = \frac{p(x)}{1-\alpha p(x)}$ and $0 < \alpha < 1/p_+(I)$.

(b) there exists a discontinuous function p on I such that \mathcal{W}_{α} is bounded from $L^{p(\cdot)}(I)$ to $L^{q(\cdot)}(I)$ and \mathcal{I}_{α} is not bounded from $L^{p(\cdot)}(I)$ to $L^{q(\cdot)}(I)$, where $q(x) = \frac{p(x)}{1 - \alpha p(x)}$ and $0 < \alpha < \frac{1}{p_+(I)}$.

Theorem 10. Let $I = \mathbf{R}_+$ and let $1 < p_-(I) \le p(x) \le p_+(I) < \infty$. Suppose that α is a constant on I, $0 < \alpha < \frac{1}{p_+(I)}$, $q(x) = \frac{p(x)}{1 - \alpha p(x)}$. Suppose also that the condition

$$r^{q(x)-q_+((x-r,x])} \le c, \ 0 < r \le \min\{1/2,x\},\$$

holds. Assume that p is a constant outside the interval [0,b) for some positive b. Then \mathcal{W}_{α} is bounded from $L^{p(x)}(I)$ to $L^{q(x)}(I)$.

Theorem 11. Let $I = \mathbf{R}_+$ and let $1 < p_-(I) \le p(x) \le p_+(I) < \infty$. Let α be a constant on I, $0 < \alpha < \frac{1}{p_+(I)}$ and let $q(x) = \frac{p(x)}{1-\alpha p(x)}$. Suppose that $p(\cdot)$ is constant outside an interval (0, b] and that

$$r^{q(x)-q_+([x,x+r))} \le c, \quad 0 < r < \frac{1}{2}.$$

128

Then \mathcal{R}_{α} is bounded from $L^{p(x)}(I)$ to $L^{q(x)}(I)$.

Theorem 12. Let I := (0, b) be a bounded interval, $p \in \mathcal{P}_+(I)$, $0 < \alpha(x) < \frac{1}{p(x)}$, $q(x) = \frac{p(x)}{1 - \alpha(x)p(x)}$. Then $\mathcal{W}_{\alpha(\cdot)}$ is bounded from $L^{p(x)}(I)$ to $L^{q(x)}(I)$.

Theorem 13. Let I = (0, b) be a bounded interval and let $p \in \mathcal{P}_{-}(I)$. Suppose that $0 < \alpha(x) < \frac{1}{p(x)}, q(x) = \frac{p(x)}{1 - \alpha(x)p(x)}$. Then $\mathcal{R}_{\alpha(.)}$ is bounded from $L^{p(x)}(I)$ to $L^{q(x)}(I)$.

Theorem 14. Let $I = \mathbf{R}_+$, α and p be functions defined on \mathbf{R}_+ which are constants α_c , p_c respectively outside some interval (0, a) and satisfy the conditions: $p \in \mathcal{P}_-(I)$, $0 < \alpha(x) < \frac{1}{p(x)}$, $q(x) = \frac{p(x)}{1 - \alpha(x)p(x)}$, $\alpha_c < \min\left\{\frac{1}{p_c}, \frac{1}{(q_c)'}\right\}$. Then $\mathcal{R}_{\alpha(\cdot)}$ is bounded from $L^{p(\cdot)}(I)$ to $L^{q(\cdot)}(I)$.

Definition 2. We say that a function k in $L^1_{loc}(\mathbf{R} \setminus \{0\})$ is a Calderón-Zygmund kernel if the following properties are satisfied:

(a) there exists a finite constant B_1 such that

$$\left| \int\limits_{\varepsilon < |x| < N} k(x) dx \right| \le B_1$$

for all ε and all N, with $0 < \varepsilon < N$, and furthermore

$$\lim_{\varepsilon \to 0} \int_{\varepsilon < |x| < N} k(x) dx$$

exists;

(b) there exists a positive constant B_2 such that

$$\left|k(x)\right| \le \frac{B_2}{|x|}, \quad x \ne 0$$

(c) there exists a positive constant B_3 such that for all x and y with |x|>2|y|>0 the inequality

$$|k(x-y) - k(x)| \le B_3 \frac{|y|}{|x|^2}$$

holds.

It is known (see [10], [1]) that conditions (a)-(c) are sufficient for the boundedness of the operators:

$$\begin{split} T^*f(x) &= \sup_{\varepsilon > 0} \left| T_\varepsilon f(x) \right|; \\ Tf(x) &= \lim_{\varepsilon \to 0} T_\varepsilon f(x), \end{split}$$

where

$$T_{\varepsilon}f(x) = \int_{|x-y| > \varepsilon} k(x-y)f(y)dy,$$

in $L^p(\mathbf{R})$.

The following example shows that there exists a non-trivial Calderón-Zygmund kernel with support contained in $(0, +\infty)$

Example. The function

$$k(x) = \frac{1}{x} \frac{\sin(\ln x)}{\ln x} \chi_{(0,+\infty)}(x)$$

is a Calderón-Zygmund kernel (see e.g. [10], [1] for details).

There exists also a non-trivial Calderón-Zygmund kernel supported in $(-\infty, 0)$.

Theorem 15. Let $I = \mathbf{R}$ and let p satisfy (1). Assume that $r^{p(x)-p+((x-r,x])} \leq c$ for $x \in I$ and 0 < r < 1/2. Suppose that p is a constant outside some bounded interval (a, b). Then T^* , with kernel k supported in $(-\infty, 0)$, is bounded in $L^{p(\cdot)}(I)$.

An analogous result can be formulated for T^* with kernel supported in $(0, +\infty)$. Namely we have

Theorem 16. Let $I = \mathbf{R}$ and let p satisfy (1). Assume that $r^{p(x)-p+((x,x+r))} \leq c$ for $x \in I$ and 0 < r < 1/2. Suppose that p is a constant outside some bounded interval (a, b). Then T^* , with kernel k supported in $(0, +\infty)$ is bounded in $L^{p(\cdot)}(I)$.

Finally we mention that the boundedness of classical operators of various type in $L^{p(x)}$ spaces was established in [11], [3]–[5], [2]. For weighted $L^{p(x)}$ spaces with power-type weights we refer to [7]-[8], [12].

Acknowledgement

The second and third authors were partially supported by the INTAS Grant Nr. 06-10000017-8792 and Georgian National Science Foundation Grant, Nr. GNSF/ST06/3-010

References

- H. Aimar, L. Forzani, and F. J. Martin-Reyes, On weighted inequalities for singular integrals. Proc. Amer. Math. Soc. 125(1997), No. 7, 2057–2064.
- D. Cruz-Uribe, A. Fiorenza, and J. M. Martell and C. Perez, The boundedness of classical operators on variable L^p spaces. Ann. Acad. Sci. Fenn. Math. **31**(2006), No. 1, 239–264.
- 3. L. Diening, Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$. Math. Inequal. Appl. 7(2004), No. 2, 245–253.
- 4. L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot)}$ and $W^{k,p(\cdot)}$. Math. Nachr. **268**(2004), 31–43.
- L. Diening and M. Ružiĉka, Calderón-Zygmund operators on generalized Lebesgue spaces L^{p(.)} and problems related to fluid dynamics. J. Reine Angew. Math. 563(2003), 197–220.
- D. E. Edmunds and J. Rákosník, Density of smooth functions in W^{k,p(x)}(Ω). Proc. Roy. Soc. London Ser. A 437(1992), No. 1899, 229–236.
- V. Kokilashvili, On a progress in the theory of integral operators in weighted Banach function spaces. In "Function Spaces, Differentiable Operators and Nonlinear Analysis", Proceedings of the Conference held in Milovy, Bohemian-Moravian Uplands, May 28 - June 2, Math. Inst. Acad Sci. Czech Republic, Prague, 2004.
- V. Kokilashvili and S. Samko, Maximal and fractional operators in weighted L^{p(x)} spaces. Rev. Mat. Iberoamericana 20(2004), No. 2, 493–515.
- 9. O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czechoslovak Math. J. **41(116)**(1991), No. 4, 592–618.
- F. J. Martin-Reyes, Weights, one-sided operators, singular integrals, and ergodic theorems. In: Nonlinear Analysis, Function Spaces and Applications, Vol. 5, Proceedings, M. Krbec et al (eds), Prometheus Publishing House, Prague, 103-138 (1994).
- S. G. Samko, Convolution and potential type operators in L^{p(x)}(Rⁿ). Integral Transforms. Spec. Funct. 7(1998), No. 3-4, 261–284.
- S. G. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators. *Integral Transforms Spec. Funct.* 16(2005), No. 5-6, 461–482.

130

 I. I. Sharapudinov, The topology of the space L^{p(t)}([0, 1]). (Russian) Mat. Zametki 26(1976), No.4, 613-632.

Authors' addresses:

D. E. Edmunds School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4YH, U.K.

V. Kokilashvili and A. Meskhi A. Razmadze Mathematical Institute 1, M. Aleksidze St., Tbilisi, 0193 Georgia