D. E. Edmunds, V. Kokilashvili and A. Meskhi

ON ONE-SIDED OPERATORS IN VARIABLE EXPONENT LEBESGUE SPACES

(Reported on 06.06.2007)

This note is devoted to the boundedness of one-sided maximal functions, singular integrals and potentials in Lebesgue spaces with variable exponent.

Let $I:=(a, b) \subseteq \mathbf{R}$. We denote

$$
p_{-}(E)=\underset{E}{\operatorname{essinf}} p, \quad p_{+}(E)=\underset{E}{\operatorname{esssup}} p
$$

for measurable functions $p: I \rightarrow \mathbf{R}$ and measurable sets $E \subseteq I$.
Let $\mathcal{P}_{-}(I)$ be the class of all measurable functions $p: I \rightarrow \mathbf{R}$ such that
(i) $1<p_{-}(I) \leq p(t) \leq p_{+}(I)<\infty, \quad t \in I$;
(ii) there exists a positive constant c such that for almost all $x \in I$ and all $r, 0<r \leq$ $\min \{1 / 2, x-a\}$, the inequality

$$
\begin{equation*}
r^{p_{-}((x-r, x])-p(x)} \leq c \tag{2}
\end{equation*}
$$

holds.
Analogously, we define the class $\mathcal{P}_{+}(I)$ to be the set of all measurable $p: I \rightarrow \mathbf{R}$ satisfying (1) and

$$
\begin{equation*}
r^{p_{-}([x, x+r))-p(x)} \leq c \tag{3}
\end{equation*}
$$

for almost all $x \in I$ and all $r, 0<r \leq \min \{1 / 2, b-x\}$.
It is easy to see that if p is a non-increasing function on I, then condition (2) is satisfied, while for non-decreasing p condition (3) holds.

Further, let $1 \leq p(x) \leq p_{+}(I)<\infty$. For measurable function $f: I \rightarrow \mathbf{R}$ we say that $f \in L^{p(x)}(I)$ (or $\left.f \in L^{p(\cdot)}(I)\right)$ if

$$
S_{p(\cdot)}(f)=\int_{I}|f(x)|^{p(x)} d x<\infty
$$

It is known that $L^{p(x)}(I)$ is a Banach space with the norm

$$
\|f\|_{L^{p(x)}(I)}=\inf \left\{\lambda>0: S_{p(\cdot)}\left(\frac{f}{\lambda}\right) \leq 1\right\} .
$$

For the basic properties of $L^{p(x)}$ spaces see e.g. [9], [13], [6].

[^0]126

Let $-\infty \leq a<b \leq+\infty$ and let us introduce the following maximal operators:

$$
\begin{aligned}
\left(\mathcal{M}_{R} f\right)(x)= & \sup _{0<h<b-x} \frac{1}{h} \int_{x-h}^{x+h}|f| ;\left(\mathcal{M}_{L} f\right)(x)=\sup _{0<h<x-a} \frac{1}{h} \int_{x-h}^{x+h}|f| \\
& (\mathcal{M} f)(x)=\sup _{0<h<\min \{x-a, b-x\}} \frac{1}{2 h} \int_{x-h}^{x+h}|f|
\end{aligned}
$$

where $x \in(a, b)$.
Definition 1. Let $I=\mathbf{R}_{+}$or $I=\mathbf{R}$. Suppose that p is a constant, $1<p<\infty$. We say that $w \in A_{p}^{+}(I)$ if there exists $c>0$ such that

$$
\left(\frac{1}{h} \int_{x-h}^{x} w\right)^{1 / p}\left(\frac{1}{h} \int_{x}^{x+h} w^{1-p^{\prime}}\right)^{1 / p^{\prime}} \leq c, \quad h, x>0, \quad h<x
$$

for $I=\mathbf{R}_{+}$and

$$
\left(\frac{1}{h} \int_{x-h}^{x} w\right)^{1 / p}\left(\frac{1}{h} \int_{x}^{x+h} w^{1-p^{\prime}}\right)^{1 / p^{\prime}} \leq c ; \quad x \in \mathbf{R}, h>0
$$

for $I=\mathbf{R}$, where $p^{\prime}=\frac{p}{p-1}$.
The weight $w \in A_{1}^{+}(I)$ if there exists $c>0$ such that $\mathcal{M}_{L} w \leq c w(x)$ for a.a. $x \in \mathbf{R}$ when $I=\mathbf{R}$ and for a.a $x \in \mathbf{R}_{+}$whenever $I=\mathbf{R}_{+}$.

Analogously is defined the classes $A_{p}^{-}(I)$.
The following statement is a one-sided version of Rubio de Francia's extrapolation theorem for variable exponent Lebesgue spaces. For the related statement in the twosided case see [2].

Theorem 1. Let $I=\mathbf{R}_{+}$or $I=\mathbf{R}$. Let \mathcal{F} be a family of pairs of functions such that for some p_{0} and q_{0} with $0<p_{0} \leq q_{0}<\infty$ and for every weight $w \in A_{1}^{+}(I)$ (resp. $\left.A_{1}^{-}(I)\right)$ the inequality

$$
\left(\int_{I} f(x)^{q_{0}} w(x) d x\right)^{\frac{1}{q_{0}}} \leq c_{0}\left(\int_{I} g(x)^{p_{0}} w(x)^{p_{0} / q_{0}} d x\right)^{\frac{1}{p_{0}}}
$$

holds for all $(f, g) \in \mathcal{F}$. Given p satisfying (1) and also the condition $p_{0}<p_{-} \leq p_{+}<$ $\frac{p_{0} q_{0}}{q_{0}-p_{0}}$ define a function q by

$$
\frac{1}{p(x)}-\frac{1}{q(x)}=\frac{1}{p_{0}}-\frac{1}{q_{0}}, \quad x \in I
$$

Let $\tilde{q}(x)=\left(\frac{q(x)}{q_{0}}\right)^{\prime}$. If \mathcal{M}_{L} (resp. $\left.\mathcal{M}_{R}\right)$ is bounded in $L^{\tilde{q}(\cdot)}(I)$, then for all $(f, g) \in \mathcal{F}$ such that $f \in L^{q(\cdot)}(I)$ the inequality

$$
\|f\|_{L^{q(\cdot)}(I)} \leq c\|g\|_{L^{p(\cdot)}(I)}
$$

holds.
Now we formulate the statements regarding one-sided maximal functions.
Theorem 2. Let $I=(0, b)$ be a bounded interval. Then
(a) there exists a discontinuous function p on I such that \mathcal{M}_{L} is bounded in $L^{p(\cdot)}(I)$ but \mathcal{M} is not bounded in $L^{p(\cdot)}(I)$.
(b) there exists a discontinuous function p on I such that \mathcal{M}_{R} is bounded in $L^{p(\cdot)}(I)$ but \mathcal{M} is not bounded in $L^{p(\cdot)}(I)$.

Theorem 3. Let I be a bounded interval and let $p \in \mathcal{P}_{-}(I)$. Then \mathcal{M}_{L} is bounded in $L^{p(\cdot)}(I)$.
Theorem 4. Let I be a bounded interval and let $p \in \mathcal{P}_{+}(I)$. Then \mathcal{M}_{R} is bounded in $L^{p(\cdot)}(I)$.
Theorem 5. Let $I=\mathbf{R}_{+}$and suppose that $p \in \mathcal{P}_{+}(I)$. Assume also that there exists a number $b>0$ such that $p(x)=p_{c} \equiv$ const when $x>b$. Then \mathcal{M}_{R} is bounded in $L^{p(\cdot)}\left(\mathbf{R}_{+}\right)$.

Theorem 6. Let $I=\mathbf{R}_{+}$. Suppose that $p \in P_{-}(I)$ and $p(x)=p_{c} \equiv$ const when $x>b$ for some positive b. Then \mathcal{M}_{L} is bounded in $L^{p(\cdot)}(I)$

Theorem 7. Let $I=\mathbf{R}$ and let $p \in \mathcal{P}_{+}(I)$. Suppose that there is a bounded interval (a, b) such that $p(x)=p_{c} \equiv$ const when $x \notin(a, b)$. Then \mathcal{M}_{R} is bounded in $L^{p(x)}(I)$.

Theorem 8. Let $I=\mathbf{R}$ and let $p \in \mathcal{P}_{-}(I)$. Suppose that $p_{c}=p(x) \equiv \mathrm{const}$ when $x \notin(a, b)$. Then \mathcal{M}_{L} is bounded in $L^{p(x)}(I)$.

Now we assume that $I=(0, b)$, where $0<b \leq \infty$ and let

$$
\begin{gathered}
\left(\mathcal{R}_{\alpha(\cdot)} f\right)(x)=\int_{0}^{x} f(t)(x-t)^{\alpha(x)-1} d t ; \quad\left(\mathcal{W}_{\alpha(\cdot)} f\right)(x)=\int_{x}^{b} f(t)(t-x)^{\alpha(x)-1} d t \\
\left(\mathcal{I}_{\alpha(\cdot)} f\right)(x)=\int_{0}^{b} f(t)|x-t|^{\alpha(x)-1} d t
\end{gathered}
$$

where $x \in(0, b)$ and $0<\alpha(x)<1$.
If $\alpha(x):=\alpha=$ const, then we denote $\mathcal{I}_{\alpha(\cdot)}, \mathcal{R}_{\alpha(\cdot)}, \mathcal{W}_{\alpha(\cdot)}$ by $\mathcal{I}_{\alpha}, \mathcal{R}_{\alpha}$ and \mathcal{W}_{α} respectively.

For one-sided potentials we have:
Theorem 9. Let $I=(0, b)$ be a bounded interval and let $\alpha \in(0,1)$ be a constant. Then
(a) there exists a discontinuous function p on I such that \mathcal{R}_{α} is bounded from $L^{p(\cdot)}(I)$ to $L^{q(\cdot)}(I)$ and \mathcal{I}_{α} is not bounded from $\left.L^{p(\cdot)}(I)\right)$ to $L^{q(\cdot)}(I)$, where $q(x)=\frac{p(x)}{1-\alpha p(x)}$ and $0<\alpha<1 / p_{+}(I)$.
(b) there exists a discontinuous function p on I such that \mathcal{W}_{α} is bounded from $L^{p(\cdot)}(I)$ to $L^{q(\cdot)}(I)$ and \mathcal{I}_{α} is not bounded from $L^{p(\cdot)}(I)$ to $L^{q(\cdot)}(I)$, where $q(x)=\frac{p(x)}{1-\alpha p(x)}$ and $0<\alpha<\frac{1}{p_{+}(I)}$.

Theorem 10. Let $I=\mathbf{R}_{+}$and let $1<p_{-}(I) \leq p(x) \leq p_{+}(I)<\infty$. Suppose that α is a constant on $I, 0<\alpha<\frac{1}{p_{+}(I)}, q(x)=\frac{p(x)}{1-\alpha p(x)}$. Suppose also that the condition

$$
r^{q(x)-q_{+}((x-r, x])} \leq c, \quad 0<r \leq \min \{1 / 2, x\}
$$

holds. Assume that p is a constant outside the interval $[0, b)$ for some positive b. Then \mathcal{W}_{α} is bounded from $L^{p(x)}(I)$ to $L^{q(x)}(I)$.

Theorem 11. Let $I=\mathbf{R}_{+}$and let $1<p_{-}(I) \leq p(x) \leq p_{+}(I)<\infty$. Let α be a constant on $I, 0<\alpha<\frac{1}{p_{+}(I)}$ and let $q(x)=\frac{p(x)}{1-\alpha p(x)}$. Suppose that $p(\cdot)$ is constant outside an interval $(0, b]$ and that

$$
r^{q(x)-q_{+}([x, x+r))} \leq c, \quad 0<r<\frac{1}{2}
$$

Then \mathcal{R}_{α} is bounded from $L^{p(x)}(I)$ to $L^{q(x)}(I)$.
Theorem 12. Let $I:=(0, b)$ be a bounded interval, $p \in \mathcal{P}_{+}(I), 0<\alpha(x)<\frac{1}{p(x)}$, $q(x)=\frac{p(x)}{1-\alpha(x) p(x)}$. Then $\mathcal{W}_{\alpha(\cdot)}$ is bounded from $L^{p(x)}(I)$ to $L^{q(x)}(I)$.

Theorem 13. Let $I=(0, b)$ be a bounded interval and let $p \in \mathcal{P}_{-}(I)$. Suppose that $0<\alpha(x)<\frac{1}{p(x)}, q(x)=\frac{p(x)}{1-\alpha(x) p(x)}$. Then $\mathcal{R}_{\alpha(\cdot)}$ is bounded from $L^{p(x)}(I)$ to $L^{q(x)}(I)$.

Theorem 14. Let $I=\mathbf{R}_{+}, \alpha$ and p be functions defined on \mathbf{R}_{+}which are constants α_{c}, p_{c} respectively outside some interval $(0, a)$ and satisfy the conditions: $p \in \mathcal{P}_{-}(I)$, $0<\alpha(x)<\frac{1}{p(x)}, q(x)=\frac{p(x)}{1-\alpha(x) p(x)}, \alpha_{c}<\min \left\{\frac{1}{p_{c}}, \frac{1}{\left(q_{c}\right)^{\prime}}\right\}$. Then $\mathcal{R}_{\alpha(\cdot)}$ is bounded from $L^{p(\cdot)}(I)$ to $L^{q(\cdot)}(I)$.

Definition 2. We say that a function k in $L_{l o c}^{1}(\mathbf{R} \backslash\{0\})$ is a Calderón-Zygmund kernel if the following properties are satisfied:
(a) there exists a finite constant B_{1} such that

$$
\left|\int_{\varepsilon<|x|<N} k(x) d x\right| \leq B_{1}
$$

for all ε and all N, with $0<\varepsilon<N$, and furthermore

$$
\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon<|x|<N} k(x) d x
$$

exists;
(b) there exists a positive constant B_{2} such that

$$
|k(x)| \leq \frac{B_{2}}{|x|}, \quad x \neq 0
$$

(c) there exists a positive constant B_{3} such that for all x and y with $|x|>2|y|>0$ the inequality

$$
|k(x-y)-k(x)| \leq B_{3} \frac{|y|}{|x|^{2}}
$$

holds.
It is known (see [10], [1]) that conditions (a)-(c) are sufficient for the boundedness of the operators:

$$
\begin{aligned}
T^{*} f(x) & =\sup _{\varepsilon>0}\left|T_{\varepsilon} f(x)\right| \\
T f(x) & =\lim _{\varepsilon \rightarrow 0} T_{\varepsilon} f(x)
\end{aligned}
$$

where

$$
T_{\varepsilon} f(x)=\int_{|x-y|>\varepsilon} k(x-y) f(y) d y
$$

in $L^{p}(\mathbf{R})$.
The following example shows that there exists a non-trivial Calderón-Zygmund kernel with support contained in $(0,+\infty)$

Example. The function

$$
k(x)=\frac{1}{x} \frac{\sin (\ln x)}{\ln x} \chi_{(0,+\infty)}(x)
$$

is a Calderón-Zygmund kernel (see e.g. [10], [1] for details).
There exists also a non-trivial Calderón-Zygmund kernel supported in $(-\infty, 0)$.

Theorem 15. Let $I=\mathbf{R}$ and let p satisfy (1). Assume that $r^{p(x)-p_{+}((x-r, x])} \leq c$ for $x \in I$ and $0<r<1 / 2$. Suppose that p is a constant outside some bounded interval (a, b). Then T^{*}, with kernel k supported in $(-\infty, 0)$, is bounded in $L^{p(\cdot)}(I)$.

An analogous result can be formulated for T^{*} with kernel supported in $(0,+\infty)$. Namely we have

Theorem 16. Let $I=\mathbf{R}$ and let p satisfy (1). Assume that $r^{p(x)-p_{+}((x, x+r))} \leq c$ for $x \in I$ and $0<r<1 / 2$. Suppose that p is a constant outside some bounded interval (a, b). Then T^{*}, with kernel k supported in $(0,+\infty)$ is bounded in $L^{p(\cdot)}(I)$.

Finally we mention that the boundedness of classical operators of various type in $L^{p(x)}$ spaces was established in [11], [3]-[5], [2]. For weighted $L^{p(x)}$ spaces with powertype weights we refer to [7]-[8], [12].

Acknowledgement

The second and third authors were partially supported by the INTAS Grant Nr. 06-10000017-8792 and Georgian National Science Foundation Grant, Nr. GNSF/ST06/3-010

References

1. H. Aimar, L. Forzani, and F. J. Martin-Reyes, On weighted inequalities for singular integrals. Proc. Amer. Math. Soc. 125(1997), No. 7, 2057-2064.
2. D. Cruz-Uribe, A. Fiorenza, and J. M. Martell and C. Perez, The boundedness of classical operators on variable L^{p} spaces. Ann. Acad. Sci. Fenn. Math. 31(2006), No. 1, 239-264.
3. L. Diening, Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$. Math. Inequal. Appl. 7(2004), No. 2, 245-253.
4. L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot)}$ and $W^{k, p(\cdot)}$. Math. Nachr. 268(2004), 31-43.
5. L. Diening and M. Ružiĉka, Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot)}$ and problems related to fluid dynamics. J. Reine Angew. Math. 563(2003), 197-220.
6. D. E. Edmunds and J. Rákosník, Density of smooth functions in $W^{k, p(x)}(\Omega)$. Proc. Roy. Soc. London Ser. A 437(1992), No. 1899, 229-236.
7. V. Kokilashvili, On a progress in the theory of integral operators in weighted Banach function spaces. In "Function Spaces, Differentiable Operators and Nonlinear Analysis", Proceedings of the Conference held in Milovy, Bohemian-Moravian Uplands, May 28 - June 2, Math. Inst. Acad Sci. Czech Republic, Prague, 2004.
8. V. Kokilashvili and S. Samko, Maximal and fractional operators in weighted $L^{p(x)}$ spaces. Rev. Mat. Iberoamericana 20(2004), No. 2, 493-515.
9. O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$. Czechoslovak Math. J. 41(116)(1991), No. 4, 592-618.
10. F. J. Martin-Reyes, Weights, one-sided operators, singular integrals, and ergodic theorems. In: Nonlinear Analysis, Function Spaces and Applications, Vol. 5, Proceedings, M. Krbec et al (eds), Prometheus Publishing House, Prague, 103-138 (1994).
11. S. G. Samko, Convolution and potential type operators in $L^{p(x)}\left(R^{n}\right)$. Integral Transforms. Spec. Funct. 7 (1998), No. 3-4, 261-284.
12. S. G. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators. Integral Transforms Spec. Funct. 16(2005), No. 5-6, 461-482.
13. I. I. Sharapudinov, The topology of the space $\mathcal{L}^{p(t)}([0,1])$. (Russian) Mat. Zametki 26(1976), No.4, 613-632.

Authors' addresses:
D. E. Edmunds

School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4YH,
U.K.
V. Kokilashvili and A. Meskhi
A. Razmadze Mathematical Institute

1, M. Aleksidze St., Tbilisi, 0193
Georgia

[^0]: 2000 Mathematics Subject Classification: 42B25, 46E30. Key words and phrases: Lebesgue spaces with variable exponent, one-sided maximal functions, one-sided potentials, Calderón-Zygmund singular integrals.

