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In this note we give a necessary and sufficient condition on weight pair (v, w) guaran-
teeing the boundedness of the maximal operator

Mα(·)f(x) = sup
I∋x
I⊂J

1

|I|1−α(x)

∫

I

|f(y)|dy, x ∈ J, 0 ≤ α(x) ≤ sup
J

α < 1,

from L
p(x)
w (J) to L

p(x)
v (J) provided that (w(·))−p′(·) satisfies the doubling condition on

J , where J := [a, b] (−∞ < a < b < +∞) and I denotes an interval in J . The derived
criterion is of Sawyer [10] type.

If α(x) ≡ 0, then Mα(·) is the Hardy-Littlewood maximal function which will be
denoted by M .

Weighted inequalities with power-type and oscillating weights for the operator M in
Lp(x) spaces have been established in [5], [6]. Muckenhoupt-type condition governing
the one-weight inequality for M in variable exponent Lebesgue spaces was derived in [7],
while two-weight inequalities for the Hardy-Littlewood maximal operator with monotonic
radial weights were obtained in [2]. Necessary and sufficient conditions on weight pair

(v, w) guaranteeing the boundedness of Mα(·) from Lr
w to L

q(·)
v (r is constant) were

found in [4]. For solution of the two-weight problem for fractional maximal functions
with constant parameters in classical Lebesgue spaces we refer to [10], [11], [3, Ch.3] and
references therein.

Suppose that p is measurable function on J with the condition

1 < p−(J) ≤ p(x) ≤ p+(J) < ∞,

where

p−(J) := inf
J

p; p+(J) := sup
J

p.

Suppose also that ρ is a positive locally integrable function on J , i.e. ρ is a weight.

We say that a measurable function f : J → R belongs to L
p(·)
ρ (J) (or L

p(x)
ρ (J)) if

Sp,ρ(f) =

∫

J

∣

∣f(x)ρ(x)
∣

∣

p(x)
dx < ∞.

It is known that L
p(x)
ρ (J) is a Banach space with the norm

‖f‖
L

p(x)
ρ (J)

= inf
{

λ > 0 : Sp,ρ

(

f/λ
)

≤ 1
}

.
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If p = const, then L
p(·)
ρ coincides with the classical Lebesgue space with the weight

ρ. Further, if ρ ≡ 1, then we use the symbol Lp(·) for L
p(·)
ρ .

For basic properties of Lp(·) spaces we refer e.g. to [8], [9].
We say that p : J → R satisfies the Dini-Lipschitz condition on J ( p ∈ DL(J)) if

there exists a positive constant A such that

|p(x) − p(y)| ≤
A

− ln |x − y|
; x, y ∈ J ; |x − y| ≤ 1/2.

It is known that (see [1]) the operator M is bounded in Lp(·)(J) if p ∈ DL(J).
A weight function ρ satisfies the doubling condition on J if there exists a positive

constant b such that
∫

I(x,2r)

ρ ≤ b

∫

I(x,r)

ρ

for all x ∈ J and r > 0, where I(x, r) := (x − r, x + r).
Our main result is the following statement:

Theorem 1. Let 1 < p−(J) ≤ p(x) ≤ p+(J) < ∞ and let 0 ≤ α(x) ≤ α+(J) < 1.
Suppose that v and w be weights on J. Suppose also that p, α ∈ DL(J) and that

(w(·))−p′(·) satisfies the doubling condition on J. Then Mα(·) is bounded from L
p(·)
w (J)

to L
p(·)
v (J) if and only if there exists a positive constant c such that for all intervals I,

I ⊂ J,
∫

I

vp(x)
[

Mα(x)(χI(·)w−p′(·)(·))(x)
]p(x)

dx ≤ c

∫

I

w−p′(x)(x)dx.

In particular, if α ≡ 0, then Theorem 1 gives the criterion for the boundedness of the

Hardy-Littlewood maximal function M from L
p(·)
w (J) to L

p(·)
v (J) .

As a corollary we have

Theorem 2. Let 1 < p−(J) ≤ p(x) ≤ p+(J) < ∞ and let 0 ≤ α(x) ≤ α+(J) < 1.
Suppose that v be a weight function on J. Assume that p, α ∈ DL(J). Then Mα(·) is

bounded from Lp(·)(J) to L
p(·)
v (J) if and only if

sup
I

I⊂J

1

|I|

∫

I

v(x)p(x)|I|α(x)p(x)dx < ∞,

where the supremum is taken over all subintervals I of J.
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