Mathematics

Maximal and Potential Operators in Variable Morrey Spaces Defined on Nondoubling Quasimetric Measure Spaces

Vakhtang Kokilashvili^{*}, Alexander Meskhi^{**}

* Academy Member, A.Razmadze Mathematical Institute, Tbilisi

** A.Razmadze Mathematical Institute, Tbilisi

ABSTRACT. The boundedness of modified maximal operator and potentials in variable Morrey spaces defined on quasimetric measure spaces, where the doubling condition is not needed, is established. © 2008 Bull. Georg. Natl. Acad. Sci.

Key words: maximal operator, potential, non-homogeneous spaces, variable Morrey space, boundedness.

Let $X := (X, \rho, \mu)$ be a topological space with a complete measure μ such that the space of compactly supported continuous functions is dense in $L^1(X, \mu)$ and there exists a non-negative real-valued function (quasimetric) d on $X \times X$ satisfying the conditions:

(i) d(x, y) = 0 for all $x, y \in X$;

(ii) d(x, y) > 0 for all $x \neq y, x, y \in X$;

(iii) there exists a constant $a_1 > 0$, such that $d(x, y) \le a_1(d(x, z) + d(z, y))$ for all $x, y, z \in X$;

(iv) there exists a constant $a_0 > 0$, such that $d(x, y) \le a_0(d(y, x))$ for all $x, y \in X$.

We assume that the balls $B(a, r) := \{x \in X : \rho(a, x) \le r\}$ are measurable, for all $a \in X$ and $r \ge 0$, and $0 \mu (B(a, r)) \le \infty$; for every neighborhood *V* of $x \in X$, there exists $r \ge 0$, such that $B(x, r) \subset V$. We also suppose that $\mu(X) = \infty$ and $\mu\{a\} = 0$ for all $a \in X$.

The triple (X, ρ, μ) will be called quasimetric measure space. If μ satisfies the doubling condition

$$\mu(B(x,2r)) \le c\mu(B(x,r)),$$

where the positive constant *c* does not depend on $x \in X$ and r > 0, then (X, d, μ) is called a space of homogeneous type (*SHT*). A quasimetric measure space, where the doubling condition might be failed, is also called a non-homogeneous space.

We say that the measure μ satisfies the growth condition ($\mu \in GC$) if there is a positive constant b such that for all $a \in X$ and r > 0,

$$\mu(B(a,r)) \le br \tag{1}$$

The boundedness of maximal and potential operators in Lebesgue spaces on non-homogeneous spaces was established in [1] (for Euclidean spaces), [2-5] (see also [6, Ch. 6]).

Suppose that p is a μ -measurable function on X. Denote

$$p_{-}(E) \coloneqq \inf_{E} p; p_{+}(E) \coloneqq \sup_{E} p$$

for a μ -measurable set $E \subset X$;

$$p_{-}:=p_{-}(X); p_{+}:=p_{+}(X).$$

A sum other is $p_{-} \le p_{+} < \infty$. The Lebesgue space with variable exponent $L^{p(\cdot)}(X)$ (or $L^{p(x)}(X)$) is the class of all μ -measurable functions f on X for which

$$S_p(f) := \int_X |f(x)|^{p(x)} d\mu(x) < \infty.$$

The norm in $L^{p(.)}(X)$ is defined as follows:

$$||f||_{L^{p(\cdot)}(X)} = \inf \{\lambda > 0 : S_p(f/\lambda) \le 1\}.$$

It is known (see e.g. [7-10]) that $L^{p(\cdot)}$ space is a Banach space. For other properties of $L^{p(\cdot)}$ we refer to [7,25] etc.

The boundedness of the Hardy-Littlewood maximal and potential operators in $L^{p(x)}(\Omega)$ ($\Omega \subseteq \mathbb{R}^n$) spaces was established in [12-15]. The same problem on an SHT was studied in [10,17-20] etc.

Definition 1. Let $N \ge 1$ be a constant. We say that $p \in P(N)$ if there is a positive constant C such that

$$\mu(B(x,Nr))^{p_{-}(B(x,r))-p_{+}(B(x,r))} \le C$$
⁽²⁾

for all $x \in X$ and r > 0.

Now we are ready to define variable exponent Morrey spaces.

Definition 2. Let $N \ge 1$ be a constant. Suppose that $1 \le q_{-} \le q(x) \le p_{+} \le \infty$. We say that $f \in M_{q(\cdot)}^{p(\cdot)}(X)_{N}$ if

$$\|f\|_{M^{p(\cdot)}_{q(\cdot)}(X)_{N}} \coloneqq \sup_{x \in X} \sup_{r > 0} \mu(B(x, Nr))^{\frac{1}{p(x)} - \frac{1}{q(x)}} \|f\|_{L^{q(\cdot)}(B(x, r))} < \infty.$$

It is obvious that $||f||_{M^{p(\cdot)}_{q(\cdot)}(X)_N} = ||f||_{L^{p(\cdot)}(X)}$ if p(x) = q(x).

For some properties of the spaces $M_{q(\cdot)}^{p(\cdot)}(\Omega)$, where Ω is a bounded domain in \mathbb{R}^n see [21]. For variable exponent Morrey spaces on an SHT we refer e.g. [20].

The boundedness problem for maximal and fractional integrals in classical Morrey spaces ($p \equiv const$, $q \equiv const$) defined on Euclidean spaces was studied in [22-24]. The same problem for constant exponents in the case of quasimetric metric spaces was investigated in [5,26].

In [21] the boundedness of the Hardy-Littlewood maximal and Riesz potential operator in $M_{q(\cdot)}^{p(\cdot)}(\Omega)$ on a bounded domain $\Omega \subset \mathbb{R}^n$ defined with respect to the Lebesgue measure was obtained. In [20] the authors have shown that maximal and Calderón-Zygmund operators on an SHT with finite measure and diameter are bounded in $L_{q(\cdot)}^{p(\cdot)}(X)$ provided that p satisfies log-Hölder continuity condition on X.

Let $N \ge 1$ be a constant and let

$$Mf(x) = \sup_{x \in X, r > 0} \frac{1}{\mu(B(x, Nr))} \int_{B(x, r)} |f(y)| d\mu(y) < \infty;$$

$$I_{\alpha(x)}f(x) = \int_{X} \frac{f(y)}{d(x,y)^{1-\alpha(x)}} d\mu(y), \ x \in X, \ 0 < \alpha_{-} \le \alpha_{+} < 1,$$

be the modified maximal and fractional integral operators respectively on a quasimetric measure space (X, d, μ) .

Bull. Georg. Natl. Acad. Sci., vol. 2, no. 3, 2008

Now we formulate the main results of the paper.

Theorem 1. Let $1 \le p_{-} \le p_{+} \le \infty$ and let $N := a_1(1+2a_0)$, where a_0 and a_1 are from the definition of the quasimetric *d*. If there exists a positive constant *C* such that for all $x \in X$ and r > 0, the inequality

$$\mu(B(x, Nr)) p_{-}(B(x, r)) - p(x) \le c$$
(3)

holds, then M is bounded in $L^{p(\cdot)}(X)$.

Remark: Notice that condition (2) implies condition (3).

To formulate the next results we need the notation

$$\overline{a} := a_1(a_1(a_0+1)+1).$$

Theorem 2. Let $1 < q_{-} \le q(x) \le p(x) \le p_{+} < \infty$. Suppose that $N := a_{1}(1 + 2a_{0})$ and $p, q \in P(N)$. Then M is bounded from $L_{a(\cdot)}^{p(\cdot)}(X)_{N}$ to $L_{a(\cdot)}^{p(\cdot)}(X)_{N\overline{a}}$.

Theorem 3. Let $N: = a_1(1 + 2a_0), 1 < q_- \le q(x) \le p(x) \le p_+ < \infty, 1 < t_- \le t(x) \le s(x) \le s_+ < \infty$. Suppose that

 $0 < \alpha_{-} \leq \alpha_{+} < \frac{1}{p_{-}}, \ s(x) = \frac{p(x)}{1 - \alpha(x)p(x)}, \ \frac{t(x)}{s(x)} = \frac{q(x)}{p(x)}$ and that $p, q, \alpha \in P(N)$. Suppose also that the measure μ satisfies

condition (1). Then the operator $I_{\alpha(x)}$ is bounded from $M_{q(\cdot)}^{p(\cdot)}(X)_N$ to $M_{t(\cdot)}^{s(\cdot)}(X)_{N\overline{a}}$.

Acknowledgement. The authors were partially supported by the INTAS Grant No. 06-1000017-8792 and the Georgian National Science Foundation Grant No. GNSF/STO7/3-169.

მათემატიკა

მაქსიმალური და პოტენციალური ოპერატორები გაორმაგების პირობის გარეშე კვაზიმეტრიკულ ზომად სივრცეებზე ცვლადმაჩვენებლიან მორის სივრცეებში

ვ. კოკილაშვილი^{*}, ა. მესხი^{**}

* აკაღემიის წევრი, ა. რაზმაძის მათემატიკის ინსტიტუტი, თბილისი

** ა. რაზმაძის მათემატიკის ინსტიტუტი, თბილისი

სტატიაში მოღიფიცირებული მაქსიმალური ფუნქციებისა და პოტენციალებისათვის, რომლებიც განსაზღვრული არიან გაორმაგების პირობის გარეშე კგაზიმეტრიკულ ზომად სივრცეებზე, დამტკიცებულია შემოსაზღვრულობა ცვლადმაჩვენებლიან მორის სივრცეებში.

REFERENCES

1. V. Kokilashvili (1990), Weighted estimates for classical integral operators. In: Nonlinear Analysis, Function Spaces and Applications IV (Roudnice nad Labern). Teubner-Texte Math., **119**, Leipzig: Teubner,1990, 86-103.

Maximal and Potential Operators in Variable Morrey Spaces Defined on ...

- 2. V. Kokilashvili, A. Meskhi (2001), Frac. Calc. Appl. Anal. 4, 4: 1-24.
- 3. V. Kokilashvili, A. Meskhi (2005), Zeitschrift für Analysis und ihre Anwendungen, 24, No. 4, 871-885.
- 4. J. García-Cuerva, A. E. Gatto (2004), Studia Math. 162 (3): 245-261.
- 5. Y. Sawano and H. Tanaka (2005), Acta Math. Sin. Engl. Ser. 21, 6: 1535-1544.
- D. Edmunds, V. Kokilashvili, A. Meskhi (2002), Bounded and Compact Integral Operators. Mathematics and Its Applications, 543. Kluwer Academic Publishers. Dordrecht, Boston, London.
- 7. O. Kováčik and J. Rákosník (1991), Czech.Math. J., 41 (116): 592-618.
- 8. S. G. Samko (1998), Integral Transform. Spec. Funct. 7, 3-4: 261-284.
- 9. V. Kokilashvili and S. Samko (2004), Rev. Mat. Iberoamericana, 20, 2: 493-515.
- 10. P. Harjulehto, P. Hästö and M. Pere (2004-05), Real. Anal. Exchange, 30: 87-104.
- 11. Y. Sawano (2005), Hokkaido Math. J. 34, 2: 435-458.
- 12. L. Diening (2004), Math. Inequal. Appl. 7, 2: 245-253.
- 13. L. Diening (2004), Math. Nachr. 268: 31-43.
- 14. D. Cruz-Uribe, A. Fiorenza and C. J. Neugebauer (2003), Ann. Acad. Sci. Fenn. Math. 28, 1: 223-238.
- 15. D. Cruz-Uribe SFO, A. Fiorenza, J. M. Martell and C. Perez (2006), Ann. Acad. Sci. Fenn. Math. 31: 239-264.
- 16. V. Kokilashvili and S. Samko (2003), Z. Anal. Anwendungen, 22, 4: 899-910.
- 17. D. Edmunds, V. Kokilashvili, A. Meskhi (2004), J. Funct. Spaces Appl. 2, 1: 55-69.
- 18. V. Kokilashvili and S. Samko (2007), Proc. A. Razmadze Math. Inst., 144: 137-144.
- 19. V. Kokilashvili and S. Samko (2007), Proc. A. Razmadze Math. Inst., 145: 109-116.
- 20. V. Kokilashvili and A. Meskhi (2008), Arm. J. Math., 1, 1:18-28.
- 21. A. Almeida, J. Hasanov and S. Samko (2008), Georgian Math. J., 15, 2: 195-208.
- 22. J. Peetre (1969), J. Funct. Anal. 4: 71-87.
- 23. F. Chiarenza and M. Frasca (1987), Rend. Math. 7: 273-279.
- 24. D. R. Adams (1975), Duke Math. J. 42: 765-778.
- 25. И. И. Шарапутдинов (1979), Матем. заметки, 26, 4: 613-632.
- 26. Eridani, V. Kokilashvili and A. Meskhi (2007), Morrey Spaces and fractional integral operators, Preprint No. 65, School of Mathematical Sciences, GC University, Lahore.

Received June, 2008