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Let X : = (X, ρ, μ) be a topological space with a complete measure μ such that the space of compactly supported
continuous functions is dense in L1 (X, μ) and there exists a non-negative real-valued function (quasimetric) d on X × X
satisfying the conditions:

(i) d(x, y) = 0 for all  x, y ∈ X;
(ii) d(x, y) > 0 for all  x ≠ y,  x, y ∈ X;
(iii) there exists a constant a1 >0, such that d(x, y) ≤ a1(d(x, z) + d(z, y)) for all  x, y, z ∈ X;
(iv) there exists a constant a0 >0, such that d(x, y) ≤ a0(d(y, x) for all x, y ∈ X.
We assume that the balls  B(a, r) : = {x ∈ X : ρ(a, x) < r} are measurable, for all a ∈ X and r > 0, and 0 μ (B(a, r)) <∞;

for every neighborhood V of x ∈ X, there  exists r > 0, such that B(x, r) ⊂ V. We also suppose that μ (X) = ∞ and μ {a} =
0 for all a ∈ X.

The triple (X, ρ, μ) will be called quasimetric measure space. If μ satisfies the doubling condition

μ  (B(x, 2r)) ≤ cμ (B(x, r)),

where the positive constant  c  does not depend on  x ∈ X and  r >0, then (X, d, μ) is called a space of homogeneous type
(SHT). A quasimetric measure space, where the doubling condition might be failed, is also called a non-homogeneous
space.

We say that the measure μ satisfies the growth condition (μ ∈ GC) if there is a positive constant  b  such that for
all a ∈ X and r >0,

( )( ) brraB ≤,μ (1)

The boundedness of maximal and potential operators in Lebesgue spaces on non-homogeneous spaces was
established in [1] (for Euclidean spaces), [2-5]  (see also [6, Ch. 6]).

Suppose that p is a μ-measurable function on X. Denote
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( ) pEp
E

inf:=− ;  ( ) pEp
E

sup:=+

for a μ-measurable set E ⊂ X;

p− : = p−(X);  p+ : = p+(X).

A s s u m e  t h a t  1 <  p− ≤ p+ < ∞. The Lebesgue space with variable exponent Lp(·)(X) (or Lp(x) (X)) is the class of all μ-
measurable functions f on X for which

( ) ( ) ∞<= ∫
X

xp
p xdxffS μ)()(: .

The  norm in Lp(.)(X) is defined as follows:

|| f || ( ) ( )XLp ⋅ = inf {λ > 0 : Sp( f / λ) ≤ 1}.

It is known (see e.g. [7-10]) that Lp(·) space is a Banach space. For other properties of  Lp(·) we refer to [7,25] etc.
The boundedness of the Hardy-Littlewood maximal and potential operators in Lp(x) (Ω) (Ω ⊆ Rn) spaces was

established in [12-15]. The same problem on an SHT was studied in [10,17-20] etc.
Definition 1.  Let N ≥ 1 be a constant. We say that p ∈ P(N) if there is a positive constant C such that

( )( ) ( )( ) ( )( ) CNrxB rxBprxBp ≤+− − ,,,μ (2)

for all x ∈ X and  r > 0.
Now we are ready to define variable exponent Morrey spaces.

Definition 2. Let N  ≥ 1 be a constant. Suppose that 1 < q– ≤ q(x) ≤ p(x) ≤ p+ < ∞. We say that  f ∈ ( )
( )( )N

p
q XM ⋅

⋅   if

( )
( ) ( ) ( )( ) ( ) ( )( ) ∞<= ⋅⋅
⋅

−

>∈
rxBLxqxp

rXx
XM q

N
p
q

fNrxBf ,)(
1

)(
1

0,
,sup: μ .

It is obvious that 
( )
( ) ( )N

p
q XMf ⋅

⋅
 = || f || ( ) ( )XLp ⋅   if  p(x) ≡ q(x).

For some properties of the spaces ( )
( )( )Ω⋅
⋅

p
qM , where Ω is a bounded domain in Rn see [21]. For variable exponent

Morrey spaces on an SHT we refer e.g. [20].
The boundedness problem for maximal and fractional integrals in classical Morrey spaces (p ≡ const, q ≡ const)

defined on Euclidean spaces was studied in [22-24]. The same problem for constant exponents in the case of quasimetric
metric spaces was investigated in [5,26].

In [21] the boundedness of the Hardy-Littlewood maximal and Riesz potential operator in ( )
( )( )Ω⋅
⋅

p
qM  on a bounded

domain Ω ⊂ Rn defined with respect to the Lebesgue measure was obtained. In [20] the authors have shown that

maximal and Calderón-Zygmund operators on an SHT with finite measure and diameter are bounded in ( )
( )( )XLp

q
⋅
⋅

provided that p  satisfies log-Hölder continuity condition on X.
Let N ≥ 1 be a constant and let

M f(x) = ( )( ) ( ) ( )
( )

∞<∫
>∈ rxBrXx

ydyf
NrxB

,0, ,
1sup μ

μ
;

( ) ( ) ( )
( ) ( ) ( )∫ −

=
X

xx yd
yxd

yfxfI μαα 1,
,   x ∈ X,   0 < α– ≤  α+ < 1,

be the modified maximal and fractional integral operators respectively on a quasimetric measure space (X, d, μ).
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Now we formulate the main results of the paper.
Theorem 1. Let 1 < p– ≤ p + < ∞ and let N : = a1(1+2a0), where a0 and a1 are from the definition of the quasimetric

d. If there exists a positive constant C such that for all x ∈ X and r >0, the inequality

μ (B(x, Nr)) ( )( ) ( )xprxBp −− ,  ≤ c (3)

holds, then M is bounded in Lp(·)(X).
Remark: Notice that condition (2) implies condition (3).
To formulate the next results we need the notation

a  : = a1 (a1(a0 + 1) + 1).

Theorem 2.  Let 1 < q– ≤ q(x) ≤ p(x) ≤ p+ < ∞. Suppose that  N: = a1(1 + 2a0) and p, q ∈ P(N). Then  M is bounded from

( )
( )( )N

p
q XL ⋅

⋅  to ( )
( )( ) aN

p
q XL ⋅

⋅ .

Theorem 3.  Let N: = a1(1 + 2a0), 1 < q– ≤ q(x) ≤ p(x) ≤ p+ < ∞, 1 <  t– ≤ t(x) ≤ s(x) ≤ s+ < ∞. Suppose that

0 < α– ≤  α+ <  
−p

1
,  s(x) = 

( )
( ) ( )xpx

xp
α−1

,  ( )
( )

( )
( )xp
xq

xs
xt

=   and that p, q, α ∈ P(N). Suppose also that the measure  μ  satisfies

condition (1). Then the operator ( )xIα   is bounded from  ( )
( )( )N

p
q XM ⋅

⋅   to ( )
( )( ) aN

s
t XM ⋅

⋅ .
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