V. Kokilashvili, A. Meskhi and M. Sarwar

ONE AND TWO WEIGHT NORM ESTIMATES FOR ONE–SIDED OPERATORS IN $L^{p(\cdot)}$ SPACES

(Reported on 22.11.2008)

In this note one and two weight estimates are presented for one-sided maximal functions and potentials in weighted Lebesgue spaces with variable exponent. In particular we present:

1) one-weight inequality for one-sided maximal operators;

2) two-weight estimates (criteria) for one-sided fractional maximal operators;

3) Fefferman–Stein type inequality for one–sided fractional maximal functions;

4) trace inequality for one-sided potentials;

5) a generalization of the Hardy-Littlewood theorem for the Riemann-Liouville and Weyl transforms.

From the results regarding one-sided maximal operators we conclude that the one-weight inequality for these operators automatically holds when both the exponent of the space and the weight are monotonic functions.

One-sided integral operators in $L^{p(\cdot)}$ spaces were studied in [9]. In particular, the authors established the boundedness of one-sided Hardy-Littlewood maximal functions, potentials and singular integrals in $L^{p(\cdot)}(I)$ spaces under the condition on p which is weaker than the Log-Hölder continuity (weak Lipschitz) condition.

For a solution of the two–weight problem under transparent integral conditions on weights for one–sided maximal functions and potentials we refer to the monographs [11], [6] (Ch.2) and also references cited therein.

Necessary and sufficient conditions on a power-type weight guaranteeing weighted estimates for maximal and potential operators in $L^{p(\cdot)}$ spaces were obtained in [16]-[19], [10], [22], [23].

Weighted inequalities for two-sided maximal and potential operators in $L^{p(\cdot)}$ spaces with general weights were derived in [5], [7], [8], [12]–[15], [20], [21].

126

²⁰⁰⁰ Mathematics Subject Classification: 42B20, 42B25, 46E30.

Key words and phrases. One-sided maximal functions, one-sided potentials, one-weight inequality, two-weight inequality, trace inequality.

In [2] necessary and sufficient conditions on a weight function v governing the boundedness compactness of the generalized Riemann-Liouville transform $R_{\alpha(\cdot)}$ from $L^{p(\cdot)}(\mathbb{R}_+)$ to $L^{q(\cdot)}_v(\mathbb{R}_+)$, $\alpha_- > 1/p_-$, were derived. Let I be an open set in \mathbb{R} and let p be a measurable function on I.

Suppose that

$$1 \le p_- \le p_+ < \infty$$

where p_{-} and p_{+} are the infimum and the supremum respectively of p on I. We denote by $||f||_{L^{p(\cdot)}(I)}$ the norm of a measurable function f on I. If ρ is a weight function on I, then we define

$$||f||_{L^{p(\cdot)}_{\rho}(I)} := ||f\rho||_{L^{p(\cdot)}(I)}.$$

Further, we denote

$$p_{-}(E) := \inf_{E} p; \ p_{+}(E) := \sup_{E} p, \qquad E \subset I;$$
$$I_{+}(x,h) := [x,x+h] \cap I, \quad I_{-}(x,h) := [x-h,x] \cap I;$$

$$I(x,h) := [x-h, x+h] \cap I.$$

We deal with the following integral operators:

$$\begin{pmatrix} M_{\alpha(\cdot)}^{-}f \end{pmatrix}(x) = \sup_{h>0} \frac{1}{h^{1-\alpha(x)}} \int_{I_{-}(x,h)} |f(t)| dt, \quad x \in I;$$

$$\begin{pmatrix} M_{\alpha(\cdot)}^{+}f \end{pmatrix}(x) = \sup_{h>0} \frac{1}{h^{1-\alpha(x)}} \int_{I_{+}(x,h)} |f(t)| dt, \quad x \in I;$$

$$R_{\alpha(\cdot)}f(x) = \int_{-\infty}^{x} \frac{f(t)}{(x-t)^{1-\alpha(x)}} dt;$$

$$W_{\alpha(\cdot)}f(x) = \int_{x}^{\infty} \frac{f(t)}{(t-x)^{1-\alpha(x)}} dt, \quad x \in \mathbb{R},$$

where $0 < \alpha_{-} \leq \alpha_{+} < 1$ and I is an open set in \mathbb{R} .

Definition A ([9]). Let $\mathcal{P}_{-}(I)$ be the class of all measurable positive functions $p: I \to \mathbb{R}$ satisfying the following condition: there exist a positive constant C_1 such that for a.e $x \in I$ and a.e $y \in I$ with $0 < x - y \leq \frac{1}{2}$ the inequality

$$p(x) \le p(y) + \frac{C_1}{\ln\left(\frac{1}{x-y}\right)} \tag{1}$$

holds. Further, we say that p belongs to $\mathcal{P}_+(I)$ if p is positive function on I and there exists a positive constant C_2 such that for a.e $x \in I$ and a.e $y \in I$ with $0 < y - x \leq \frac{1}{2}$ the inequality

$$p(x) \le p(y) + \frac{C_2}{\ln\left(\frac{1}{y-x}\right)} \tag{2}$$

is fulfilled.

Definition B ([3]). We say that a measurable positive function on I belongs to the class $\mathcal{P}_{\infty}(I)$ $(p \in \mathcal{P}_{\infty}(I))$ if

$$|p(x) - p(y)| \le \frac{C}{\ln(e + |x|)}$$
 (3)

holds for all $x, y \in I$ with $|y| \ge |x|$.

Definition C. Let p be a measurable function on an unbounded open set $I \subset \mathbb{R}$. We say that $p \in \mathcal{G}$ if there is a constant 0 < K < 1 such that

$$\int\limits_{I} K^{p(x)p_{-}/(p(x)-p_{-})} dx < \infty$$

Theorem A ([9]). Let I be a bounded interval in \mathbb{R} . Suppose that $1 < p_{-} \leq p_{+} < \infty$. Then

- (i) if $p \in \mathcal{P}_{-}(I)$, then M^{-} is bounded in $L^{p(\cdot)}(I)$;
- (ii) if $p \in \mathcal{P}_+(I)$, then M^+ is bounded in $L^{p(\cdot)}(I)$.

Theorem B ([9]). Let I be an open subset of \mathbb{R}^n , $1 < p_- \leq p_+ < \infty$ and let (3) hold. Then

- (i) if $p \in \mathcal{P}_{-}(I)$, then M^{-} is bounded in $L^{p(\cdot)}(I)$;
- (ii) if $p \in \mathcal{P}_+(I)$, then M^+ is bounded in $L^{p(\cdot)}(I)$.

The next statement gives one-weight criteria for one-sided maximal operators in classical Lebesgue spaces (see [1]).

Theorem C([1]). Let $I \subseteq \mathbb{R}$ be an interval. Assume that $0 \leq \alpha < 1$ and $1 , where p and <math>\alpha$ are constants $(1/\alpha = \infty \text{ if } \alpha = 0)$. We set $1/q = 1/p - \alpha$.

(i) Let $T := M_{\alpha}^{-}$. Then the inequality

$$\left[\int\limits_{I} |Tf(x)|^{q} v(x) dx\right]^{1/q} \le C \left[\int\limits_{I} |f(x)|^{p} v^{p/q}(x) dx\right]^{1/p} \tag{4}$$

holds if and only if

$$\sup_{h>0} \left(\frac{1}{h} \int_{I_{+}(x,x+h)} v(t)dt\right)^{\frac{1}{q}} \left(\frac{1}{h} \int_{I_{-}(x-h,x)} v^{-p'/q}(t)dt\right)^{\frac{1}{p'}} < \infty.$$
(5)

(ii) Let $T := M_{\alpha}^+$. Then (4) holds if and only if

128

$$\sup_{h>0} \left(\frac{1}{h} \int_{I_{-}(x-h,x)} v(t)dt\right)^{\frac{1}{q}} \left(\frac{1}{h} \int_{I_{+}(x,x+h)} v^{-p'/q}(t)dt\right)^{\frac{1}{p'}} < \infty.$$
(6)

Definition D. Let $I \subseteq \mathbb{R}_+$ be an interval. Suppose that 1 ,where p and q are constants. We say that the weight $v \in A_{p,q}^{-}(I)$ (resp. $v \in A^{+}_{p,q}(I)$) if (5) (resp. (6)) holds.

If p = q, then we denote the class $A_{p,q}^+(I)$ (resp. $A_{p,q}^-(I)$) by $A_p^+(I)$ (resp. $A_p^-(I)$).

Notice that $v \in A_{p,q}^+(I)$ (resp. $v \in A_{p,q}^-(I)$) is equivalent to the condition $v \in A^+_{1+q/p'}(I)$ (resp. $v \in A^-_{1+q/p'}(I)$).

Definition E. We say that a measure μ belongs to the class $RD^{(d)}(\mathbb{R}^n)$ (dyadic reverse doubling condition) if there exists a constant $\delta > 1$, such that for all dyadic cubes Q and Q', $Q \subset Q'$, $|Q| = \frac{|Q'|}{2^n}$, the inequality

$$\mu(Q') \ge \delta\mu(Q)$$

holds.

Now we formulate our main results regarding the one-sided maximal functions.

Theorem 1. Let I be a bounded interval in \mathbb{R} and let $1 < p_{-} \leq p_{+} < \infty$. (i) If $p \in \mathcal{P}_+(I)$ and a weight function w satisfies the condition $w(\cdot)^{p(\cdot)} \in$ A_n^+ (I), then for all $f \in L_w^{p(\cdot)}(I)$ the inequality

$$\|(Nf)w\|_{L^{p(\cdot)}(I)} \le C \|wf\|_{L^{p(\cdot)}(I)} \tag{7}$$

holds, where $N = M^+$.

(ii) Let $p \in \mathcal{P}_{-}(I)$ and let $w(\cdot)^{p(\cdot)} \in A^{-}_{p_{-}}(I)$. Then inequality (7) holds for all $f \in L_w^{p(\cdot)}(I)$, where $N = M^-$.

The result similar to Theorem 1 has been derived in [20], [21] for the maximal operator defined on Ω , where Ω is a bounded domain in \mathbb{R}^n .

In the case of unbounded intervals we have the next statement.

Theorem 2. Let $I = \mathbb{R}_+$ and let $1 < p_- \leq p_+ < \infty$. Suppose that there is a positive number a such that $p(x) \equiv p_c \equiv const$ outside (0, a). (i) If $p \in \mathcal{P}_+(I)$ and $w(\cdot)^{p(\cdot)} \in A^+_{p_-}(I)$, then (7) holds for $N = M^+$.

(ii) If $p \in \mathcal{P}_{-}(I)$ and $w(\cdot)^{p(\cdot)} \in A^{-}_{p_{-}}(I)$, then (7) holds for $N = M^{-}$.

Corollary 1. Let p be increasing function on an interval I = (a, b) such that $1 < p(a) \leq p(b) < \infty$. Suppose that w is increasing positive function on I. Then the one-weight inequality

$$\|w^{1/p(\cdot)}(Nf)(\cdot)\|_{L^{p(\cdot)}(I)} \le c\|w^{1/p(\cdot)}f(\cdot)\|_{L^{p(\cdot)}(I)}$$
(8)

holds for $N = M^+$.

Corollary 2. Let p be decreasing function on an interval I = (a, b) such that $1 < p(b) \leq p(a) < \infty$. Suppose that w is decreasing positive function on I. Then the inequality (8) holds for $N = M^{-}$.

Theorem 3. Let I be a bounded interval and let $1 < p_{-} \le p_{+} < \infty$. Suppose that α is constant satisfying $0 < \alpha < 1/p_{+}$. Let $q(x) = \frac{p(x)}{1-\alpha p(x)}$.

(i) If $p \in \mathcal{P}_+(I)$ and a weight w satisfies the condition $w(\cdot)^{q(\cdot)} \in$ $A^+_{p_-,q_-}(I)$. Then the inequality

$$\|(N_{\alpha}f)w\|_{L^{q(\cdot)}(I)} \le C \|wf\|_{L^{p(\cdot)}(I)}, \quad f \in L^{p(\cdot)}_{w}(I)$$
(9)

holds for $N_{\alpha} = M_{\alpha}^+$. (ii) If $p \in \mathcal{P}_{-}(I)$ and let $w(\cdot)^{q(\cdot)} \in A_{p_{-},q_{-}}^-(I)$. Then inequality (9) holds for $N_{\alpha} = M_{\alpha}^{-}$.

Theorem 4. Let $I = \mathbb{R}_+$, $1 < p_- \leq p_+ < \infty$ and let $p(x) \equiv p_c \equiv$ const outside some interval (0, a). Suppose that $q(x) = \frac{p(x)}{1-\alpha p(x)}$, where α is constant satisfying $0 < \alpha < 1/p_+$.

(i) If $p \in \mathcal{P}_+(I)$ and $w(\cdot)^{q(\cdot)} \in A^+_{p_-,q_-}(I)$, then (9) holds for $N_\alpha = M^+_\alpha$. (ii) If $p \in \mathcal{P}_{-}(I)$ and $w(\cdot)^{q(\cdot)} \in A^{-}_{p_{-},q_{-}}(I)$, then (9) holds for $N_{\alpha} = M^{-}_{\alpha}$.

Theorem 5. Let p, q and α be measurable functions on $I = \mathbb{R}$, $1 < p_{-} < p_{-}$ $q_{-} \leq q_{+} < \infty, \ 0 < \alpha_{-} \leq \alpha_{+} < 1.$ Suppose also that $p \in \mathcal{G}(I)$. Further, assume that $w^{-(p_-)'} \in RD^{(d)}(I)$. Then $M^+_{\alpha(\cdot)}$ is bounded from $L^{p(\cdot)}_w(I)$ to $L_v^{q(\cdot)}(I)$ if

$$B \equiv \sup_{\substack{a \in \mathbb{R} \\ h > 0}} \left\| \chi_{(a-h,a)}(\cdot) h^{\alpha(\cdot)-1} \right\|_{L_{v}^{q(\cdot)}(\mathbb{R})} \left\| \chi_{(a,a+h)} w^{-1} \right\|_{L^{(p_{-})'}(\mathbb{R})} < \infty.$$
(10)

Theorem 6. Let p, q and α be measurable functions on $I = \mathbb{R}, 1 < \mathbb{R}$ $p_- < q_- \le q_+ < \infty, \ 0 < \alpha_- \le \alpha_+ < 1.$ Suppose also that $p \in \mathcal{G}$ and that $w^{-(p_-)'} \in RD^{(d)}(I)$. Then $M^{-}_{\alpha(\cdot)}$ is bounded from $L^p_w(I)$ to $L^{q(\cdot)}_v(I)$ if

$$\sup_{\substack{a \in \mathbb{R} \\ h > 0}} \left\| \chi_{(a,a+h)}(\cdot) h^{\alpha(\cdot)-1} v(\cdot) \right\|_{L^{q(\cdot)}(I)} \left\| \chi_{(a-h,a)} w^{-1} \right\|_{L^{(p_{-})'}(I)} < \infty.$$
(11)

Corollary 3. Let $I = \mathbb{R}$ and $1 , <math>0 < \alpha_{-} \leq \alpha_{+} < 1$, where p is constant. Assume that $w^{-p'} \in RD^{(d)}(\mathbb{R})$. Then $M^{+}_{\alpha(\cdot)}$ is bounded from $L^p_w(I)$ to $L^{q(\cdot)}_v(I)$ if and only if

$$\sup_{\substack{a \in \mathbb{R} \\ h > 0}} \|\chi_{(a-h,a)}(\cdot) h^{\alpha(\cdot)-1}\|_{L^{q(\cdot)}_{v}(I)} \|\chi_{(a,a+h)}w^{-1}\|_{L^{p'}(I)} < \infty.$$

130

Corollary 4. Let $I = \mathbb{R}$ and let 1 , where <math>p is constant. Suppose that α is measurable function on \mathbb{R} satisfying $0 < \alpha_{-} \leq \alpha_{+} < 1$. Suppose also that $w^{-(p_{-})'} \in RD^{(d)}(I)$. Then $M^{-}_{\alpha(\cdot)}$ is bounded from from $L^{p}_{w}(I)$ to $L^{q(\cdot)}_{v}(I)$ if and only if

$$\sup_{\substack{a \in I \\ h > 0}} \left\| \chi_{(a,a+h)}(\cdot) h^{\alpha(\cdot)-1} v(\cdot) \right\|_{L^{q(\cdot)}(I)} \left\| \chi_{(a-h,a)} w^{-1} \right\|_{L^{p'}(I)} < \infty.$$

Corollary 5. Let $I = \mathbb{R}$, $1 < p_- < q_- \le q_+ < \infty$, $0 < \alpha_- \le \alpha_+ < 1$. Suppose that $p_- = p(\infty)$ and $p \in \mathcal{P}_{\infty}(I)$. Assume that $w^{-(p_-)'} \in RD^{(d)}(\mathbb{R})$. Then

(i) $M^+_{\alpha(\cdot)}$ is bounded from $L^p_w(I)$ to $L^{q(\cdot)}_v(I)$ if (10) holds;

(ii) $M_{\alpha(\cdot)}^{-}$ is bounded from $L_w^p(I)$ to $L_v^{q(\cdot)}(I)$ if (11) holds.

In the diagonal case we have

Theorem 7. Let $I = \mathbb{R}$ and let 1 , where <math>p is constant. Suppose that $0 < \alpha_{-} \leq \alpha_{+} < \infty$. Then $M^{+}_{\alpha(\cdot)}$ is bounded from $L^{p}_{w}(I)$ to $L^{p}_{v}(I)$ if and only if there is a positive constant C such that for all intervals $J \subset \mathbb{R}$,

$$\int_{\mathbb{R}} v^p(x) \left(M^+_{\alpha(\cdot)} \left(w^{-p'} \chi_J \right)(x) \right)^p dx \le C \int_J w^{-p'}(x) dx < \infty.$$

Theorem 8. Let $I = \mathbb{R}$ and let 1 , where <math>p is constant. Suppose that $0 < \alpha_{-} \leq \alpha_{+} < \infty$.. Then $M^{-}_{\alpha(\cdot)}$ is bounded from $L^{p}_{w}(I)$ to $L^{p}_{v}(I)$ if and only if

$$\int_{\mathbb{R}} v^p(x) \left(M^{-}_{\alpha(\cdot)} \left(w^{-p'} \chi_J \right)(x) \right)^p dx \le C \int_J w^{-p'}(x) dx < \infty$$

for all intervals $J \subset \mathbb{R}$.

Theorem 9. Let α , p and q be measurable functions on $I = \mathbb{R}$. Suppose that $1 < p_{-} < q_{-} \leq q_{+} < \infty$ and $0 < \alpha_{-} \leq \alpha_{+} < 1/p_{-}$. Suppose that $p \in \mathcal{G}$. Then the following inequalities hold:

$$\begin{aligned} \|\rho(\cdot)(M^+_{\alpha(\cdot)}f)(\cdot)\|_{L^{q(\cdot)}(\mathbb{R})} &\leq c \|f(\cdot)(\widetilde{N}^-_{\alpha(\cdot)}\rho)(\cdot)\|_{L^{p(\cdot)}(\mathbb{R})}, \\ \|\rho(\cdot)(M^-_{\alpha(\cdot)}f)(\cdot)\|_{L^{q(\cdot)}(\mathbb{R})} &\leq c \|f(\cdot)(\widetilde{N}^+_{\alpha(\cdot)}\rho)(\cdot)\|_{L^{p(\cdot)}(\mathbb{R})}, \end{aligned}$$

where

$$(\widetilde{N}_{\alpha(\cdot)}^{-}\rho)(x) = \sup_{h>0} h^{-1/p_{-}} \|\rho(\cdot)h^{\alpha(\cdot)}\chi_{(x-h,x)}(\cdot)\|_{L^{q(\cdot)}(\mathbb{R})},$$
$$(\widetilde{N}_{\alpha(\cdot)}^{+}\rho)(x) = \sup_{h>0} h^{-1/p_{-}} \|\rho(\cdot)h^{\alpha(\cdot)}\chi_{(x,x+h)}(\cdot)\|_{L^{q(\cdot)}(\mathbb{R})}.$$

Further, we have

Theorem 10. Let $I = \mathbb{R}$ and let measurable functions p, q, and α satisfy the conditions $1 < p_{-} < q_{-} \le q_{+} < \infty$, $0 < \alpha_{-} \le \alpha_{+} < 1$. Further, suppose that $p \in \mathcal{G}(I)$.

(i) *If*

$$\sup_{J\subset\mathbb{R}} \left\| \chi_J(\cdot) \ |J|^{\alpha(\cdot)} \right\|_{L^{q(\cdot)}_v(\mathbb{R})} |J|^{-\frac{1}{p_-}} < \infty,$$

where the supremum is taken over all bounded intervals $J \subset \mathbb{R}$, then $R_{\alpha(\cdot)}$ and $W_{\alpha(\cdot)}$ are bounded from $L^{p(\cdot)}(I)$ to $L_v^{q(\cdot)}(I)$.

Theorem 11. Let p be constant. Suppose that 1 . $Let <math>0 < \alpha_{-} \le \alpha_{+} < 1$. Then the following are equivalent:

- (i) $R_{\alpha(\cdot)}$ is bounded from $L^p(I)$ to $L_v^{q(\cdot)}(I)$;
- (ii) $W_{\alpha(\cdot)}$ is bounded from $L^p(I)$ to $L^{q(\cdot)}_v(I)$; (iii)

$$\sup_{U \subset \mathbb{R}} \left\| \chi_J(\cdot) \left| J \right|^{\alpha(\cdot)} \right\|_{L^{q(\cdot)}_v(\mathbb{R})} |J|^{-\frac{1}{p}} < \infty.$$

$$\tag{12}$$

Corollary 6. Let $I = \mathbb{R}$ and let p, q and α satisfy the conditions of Theorem 11. Then the following are equivalent:

- (i) $R_{\alpha(\cdot)}$ is bounded from $L^p(I)$ to $L^{q(\cdot)}(I)$;
- (ii) $W_{\alpha(\cdot)}$ is bounded from $L^p(I)$ to $L^{q(\cdot)}(I)$;
- (iii) (12) holds for $v \equiv 1$.

ŝ

Acknowledgement

The first two authors were supported by the Grant GNSF/ST07/3-169.

References

- K. Andersen and E. Sawyer, Weighted norm inequalities for the Riemann-Liouville and Weyl fractional operators. *Trans. Amer. Math. Soc.* 308(1988), No. 2, 547–558.
- 2. U. Ashraf, V. Kokilashvili, and A. Meskhi, Weight characterization of the trace inequality for the generalized Riemann-Liouville transform in $L^{p(x)}$ spaces. *Math. Ineq. Appl.* (to appear).
- D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer, The maximal function on variable L^p spaces. Ann. Acad. Sci. Fenn. Math. 28(2003), No. 1, 223–238.
- L. Diening, Maximal function on generalized Lebesgue spaces L^{p(·)}. Math. Inequal. Appl. 7(2004), No. 2, 245–253.
- L. Diening, Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129(2005), No. 8, 657–700.
- D. E. Edmunds, V. Kokilashvili, and A. Meskhi, Bounded and compact integral operators, Mathematics and its Applications 543, Kluwer Academic Publishers, Dordrecht, 2002.
- D. E. Edmunds, V. Kokilashvili and A. Meskhi, A trace inequality for generalized potentials in Lebesgue spaces with variable exponent. J. Funct. Spaces Appl. 2(2004), No. 1, 55–69.
- 8. D. E. Edmunds, V. Kokilashvili and A. Meskhi, Two-weight estimates in $L^{p(x)}$ spaces with applications to Fourier series. *Houston J. Math.* (to appear).

- D. E. Edmunds, V. Kokilashvili and A. Meskhi, One-sided operators in L^{p(x)} spaces. Math. Nachr. 281(2008), No. 11, 1525–1548.
- D. E. Edmunds and A. Meskhi, Potential-type operators in L^{p(x)} spaces. Z. Anal. Anwendungen 21(2002), No. 3, 681–690.
- I. Genebashvili, A. Gogatishvili, V. Kokilashvili and M. Krbec, Weight theory for integral transforms on spaces of homogeneous type. *Pitman Monographs and Surveys* in Pure and Applied Mathematics 92, Longman, Harlow, 1998.
- V. Kokilashvili and A. Meskhi, On two-weight criteria for maximal function in L^{p(x)} spaces defined on an interval. Proc. A. Razmadze Math. Inst. 145(2007), 100–102.
- V. Kokilasvili and A. Meskhi, Weighted criteria for generalized fractional maximal functions and potentials in Lebesgue spaces with variable exponent. *Integ. Transforms Spec. Func.* 18(2007), No. 9–10, 609–628.
- V. Kokilasvili and A. Meskhi, On the maximal and Fourier operators in weighted Lebesgue spaces with variable exponent. Proc. A. Razmadze Math. Inst. 146(2008), 120–123.
- M. I. A. Canestro and P. O. Salvador, Weighted weak type inequalities with variable exponents for Hardy and maximal operators, *Proc. Japan Acad.* 82(A)(2006), 126– 130.
- V. Kokilashvili and S. Samko, On Sobolev theorem for Riesz-type potentials in Lebesgue spaces with variable exponent. Z. Anal. Anwendungen 22(2003), No. 4, 899–910.
- V. Kokilashvili and S. Samko, Singular integrals in weighted Lebesgue spaces with variable exponent. *Georgian Math. J.* 10(2003), No. 1, 145–156.
- 18. V. Kokilashvili and S. Samko, Maximal and fractional operators in weighted $L^{p(x)}$ spaces. *Rev. Mat. Iberoamericana* **20(2)**(2004), 493–515.
- V. Kokilashvili and S. Samko, Boundedness of maximal operators and potential opertators on Carleson curves in Lebesgue spaces with variable exponent. Acta Mathematica Sinica, 2008, DoI: 10.1007/s10114-008-6464-1 (to appear in 2009).
- V. Kokilashvili and S. Samko, The maximal operator in weighted variable spaces on metric measure spaces. Proc. A. Razmadze Math. Inst. 144(2007), 137–144
- V. Kokilashvili and S. Samko, Operators of Harmonis Analysis in weighted spaces with non-standard growth. J. Math. Anal. Appl. (2008); doi:10, 1016/j.jmaa 2008.06.056.
- S. Samko, E. Shargorodsky and B. Vakulov, Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators II. J. Math. Anal. Appl. 325(2007), No. 1, 745–751.
- S. Samko and B. Vakulov, Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators. J. Math. Anal. Appl. 310(2005), No. 1, 229–246.

Authors' addresses:

V. Kokilashvili and A. Meskhi

A. Razmadze Mathematical Institute

1, M. Aleksidze St., Tbilisi 0193, Georgia

M. Sarwar

Abdus Salam School of Mathematical Sciences GC University University Lahore, Pakistan