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In this note one and two weight estimates are presented for one-sided
maximal functions and potentials in weighted Lebesgue spaces with variable
exponent. In particular we present:

1) one-weight inequality for one-sided maximal operators;
2) two-weight estimates (criteria) for one-sided fractional maximal oper-

ators;
3) Fefferman–Stein type inequality for one–sided fractional maximal func-

tions;
4) trace inequality for one-sided potentials;
5) a generalization of the Hardy-Littlewood theorem for the Riemann-

Liouville and Weyl transforms.
From the results regarding one–sided maximal operators we conclude that

the one–weight inequality for these operators automatically holds when both
the exponent of the space and the weight are monotonic functions.

One-sided integral operators in Lp(·) spaces were studied in [9]. In partic-
ular, the authors established the boundedness of one-sided Hardy-Littlewood
maximal functions, potentials and singular integrals in Lp(·)(I) spaces under
the condition on p which is weaker than the Log–Hölder continuity (weak
Lipschitz) condition.

For a solution of the two–weight problem under transparent integral con-
ditions on weights for one–sided maximal functions and potentials we refer
to the monographs [11], [6] (Ch.2) and also references cited therein.

Necessary and sufficient conditions on a power–type weight guaranteeing
weighted estimates for maximal and potential operators in Lp(·) spaces were
obtained in [16]–[19], [10], [22], [23].

Weighted inequalities for two–sided maximal and potential operators in
Lp(·) spaces with general weights were derived in [5], [7], [8], [12]–[15], [20],
[21].
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In [2] necessary and sufficient conditions on a weight function v gov-
erning the boundedness compactness of the generalized Riemann–Liouville

transform Rα(·) from Lp(·)(R+) to L
q(·)
v (R+), α− > 1/p−, were derived.

Let I be an open set in R and let p be a measurable function on I.
Suppose that

1 ≤ p− ≤ p+ < ∞,

where p− and p+ are the infimum and the supremum respectively of p on
I. We denote by ‖f‖Lp(·)(I) the norm of a measurable function f on I. If ρ
is a weight function on I, then we define

‖f‖
L

p(·)
ρ (I)

:= ‖fρ‖Lp(·)(I).

Further, we denote

p−(E) := inf
E

p; p+(E) := sup
E

p, E ⊂ I;

I+(x, h) := [x, x + h] ∩ I, I−(x, h) := [x − h, x] ∩ I;

I(x, h) := [x − h, x + h] ∩ I.

We deal with the following integral operators:

(
M−

α(·)f
)
(x) = sup

h>0

1

h1−α(x)

∫

I−(x,h)

|f(t)|dt, x ∈ I;

(
M+

α(·)f
)
(x) = sup

h>0

1

h1−α(x)

∫

I+(x,h)

|f(t)|dt, x ∈ I;

Rα(·)f(x) =

x∫

−∞

f(t)

(x − t)1−α(x)
dt;

Wα(·)f(x) =

∞∫

x

f(t)

(t − x)1−α(x)
dt, x ∈ R,

where 0 < α− ≤ α+ < 1 and I is an open set in R.

Definition A ([9]). Let P−(I) be the class of all measurable positive
functions p : I → R satisfying the following condition: there exist a positive
constant C1 such that for a.e x ∈ I and a.e y ∈ I with 0 < x − y ≤ 1

2 the
inequality

p(x) ≤ p(y) +
C1

ln
(

1
x−y

) (1)

holds. Further, we say that p belongs to P+(I) if p is positive function on I
and there exists a positive constant C2 such that for a.e x ∈ I and a.e y ∈ I
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with 0 < y − x ≤ 1
2 the inequality

p(x) ≤ p(y) +
C2

ln
(

1
y−x

) (2)

is fulfilled.

Definition B ([3]). We say that a measurable positive function on I
belongs to the class P∞(I) (p ∈ P∞(I)) if

|p(x) − p(y)| ≤
C

ln(e + |x|)
(3)

holds for all x, y ∈ I with |y| ≥ |x|. .

Definition C. Let p be a measurable function on an unbounded open
set I ⊂ R. We say that p ∈ G if there is a constant 0 < K < 1 such that

∫

I

Kp(x)p−/(p(x)−p−)dx < ∞.

Theorem A ([9]). Let I be a bounded interval in R. Suppose that

1 < p− ≤ p+ < ∞. Then

(i) if p ∈ P−(I), then M− is bounded in Lp(·)(I);
(ii) if p ∈ P+(I), then M+ is bounded in Lp(·)(I).

Theorem B ([9]). Let I be an open subset of R
n, 1 < p− ≤ p+ < ∞

and let (3) hold. Then

(i) if p ∈ P−(I), then M− is bounded in Lp(·)(I);
(ii) if p ∈ P+(I), then M+ is bounded in Lp(·)(I).

The next statement gives one–weight criteria for one-sided maximal op-
erators in classical Lebesgue spaces (see [1]).

Theorem C([1]). Let I ⊆ R be an interval. Assume that 0 ≤ α < 1
and 1 < p < 1/α, where p and α are constants (1/α = ∞ if α = 0). We set

1/q = 1/p − α.

(i) Let T := M−
α . Then the inequality

[ ∫

I

|Tf(x)|qv(x)dx

]1/q

≤ C

[ ∫

I

|f(x)|pvp/q(x)dx

]1/p

(4)

holds if and only if

sup
h>0

(
1

h

∫

I+(x,x+h)

v(t)dt

) 1
q

(
1

h

∫

I−(x−h,x)

v−p′/q(t)dt

) 1
p′

< ∞. (5)

(ii) Let T := M+
α . Then (4) holds if and only if
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sup
h>0

(
1

h

∫

I−(x−h,x)

v(t)dt

) 1
q

(
1

h

∫

I+(x,x+h)

v−p′/q(t)dt

) 1
p′

< ∞. (6)

Definition D. Let I ⊆ R+ be an interval. Suppose that 1 < p < q < ∞,
where p and q are constants. We say that the weight v ∈ A−

p,q(I) ( resp.

v ∈ A+
p,q(I) ) if (5) ( resp. (6)) holds.

If p = q, then we denote the class A+
p,q(I) (resp. A−

p,q(I) ) by A+
p (I)

(resp. A−
p (I)).

Notice that v ∈ A+
p,q(I) (resp. v ∈ A−

p,q(I)) is equivalent to the condition

v ∈ A+
1+q/p′

(I) (resp. v ∈ A−
1+q/p′

(I)).

Definition E. We say that a measure µ belongs to the class RD(d)(Rn)
(dyadic reverse doubling condition) if there exists a constant δ > 1, such

that for all dyadic cubes Q and Q′, Q ⊂ Q′, |Q| = |Q′|
2n , the inequality

µ(Q′) ≥ δµ(Q)

holds.

Now we formulate our main results regarding the one–sided maximal
functions.

Theorem 1. Let I be a bounded interval in R and let 1 < p− ≤ p+ < ∞.

(i) If p ∈ P+(I) and a weight function w satisfies the condition w(·)p(·) ∈

A+
p−

(I), then for all f ∈ L
p(·)
w (I) the inequality

‖(Nf)w‖Lp(·)(I) ≤ C‖wf‖Lp(·)(I) (7)

holds, where N = M+.

(ii) Let p ∈ P−(I) and let w(·)p(·) ∈ A−
p−

(I). Then inequality (7) holds

for all f ∈ L
p(·)
w (I), where N = M−.

The result similar to Theorem 1 has been derived in [20], [21] for the
maximal operator defined on Ω, where Ω is a bounded domain in R

n.

In the case of unbounded intervals we have the next statement.

Theorem 2. Let I = R+ and let 1 < p− ≤ p+ < ∞. Suppose that there

is a positive number a such that p(x) ≡ pc ≡ const outside (0, a).
(i) If p ∈ P+(I) and w(·)p(·) ∈ A+

p−
(I), then (7) holds for N = M+.

(ii) If p ∈ P−(I) and w(·)p(·) ∈ A−
p−

(I), then (7) holds for N = M−.

Corollary 1. Let p be increasing function on an interval I = (a, b) such

that 1 < p(a) ≤ p(b) < ∞. Suppose that w is increasing positive function

on I. Then the one–weight inequality

‖w1/p(·)(Nf)(·)‖Lp(·)(I) ≤ c‖w1/p(·)f(·)‖Lp(·)(I) (8)
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holds for N = M+.

Corollary 2. Let p be decreasing function on an interval I = (a, b) such

that 1 < p(b) ≤ p(a) < ∞. Suppose that w is decreasing positive function

on I. Then the inequality (8) holds for N = M−.

Theorem 3. Let I be a bounded interval and let 1 < p− ≤ p+ < ∞.

Suppose that α is constant satisfying 0 < α < 1/p+. Let q(x) = p(x)
1−αp(x) .

(i) If p ∈ P+(I) and a weight w satisfies the condition w(·)q(·) ∈
A+

p−,q−(I). Then the inequality

‖(Nαf)w‖Lq(·)(I) ≤ C‖wf‖Lp(·)(I), f ∈ Lp(·)
w (I) (9)

holds for Nα = M+
α .

(ii) If p ∈ P−(I) and let w(·)q(·) ∈ A−
p−,q−(I). Then inequality (9) holds

for Nα = M−
α .

Theorem 4. Let I = R+, 1 < p− ≤ p+ < ∞ and let p(x) ≡ pc ≡

const outside some interval (0, a). Suppose that q(x) = p(x)
1−αp(x) , where α is

constant satisfying 0 < α < 1/p+.

(i) If p ∈ P+(I) and w(·)q(·) ∈ A+
p−,q−(I), then (9) holds for Nα = M+

α .

(ii) If p ∈ P−(I) and w(·)q(·) ∈ A−
p−,q−(I), then (9) holds for Nα = M−

α .

Theorem 5. Let p, q and α be measurable functions on I = R, 1 < p− <
q− ≤ q+ < ∞, 0 < α− ≤ α+ < 1. Suppose also that p ∈ G(I). Further,

assume that w−(p−)′ ∈ RD(d)(I). Then M+
α(·) is bounded from L

p(·)
w (I) to

L
q(·)
v (I) if

B≡sup
a∈R

h>0

∥∥χ(a−h,a)(·)h
α(·)−1

∥∥
L

q(·)
v (R)

∥∥χ(a,a+h)w
−1

∥∥
L(p

−
)′ (R)

<∞. (10)

Theorem 6. Let p, q and α be measurable functions on I = R, 1 <
p− < q− ≤ q+ < ∞, 0 < α− ≤ α+ < 1. Suppose also that p ∈ G and that

w−(p−)′ ∈ RD(d)(I). Then M−
α(·) is bounded from Lp

w(I) to L
q(·)
v (I) if

sup
a∈R

h>0

∥∥χ(a,a+h)(·)h
α(·)−1v(·)

∥∥
Lq(·)(I)

∥∥χ(a−h,a)w
−1

∥∥
L(p

−
)′ (I)

<∞. (11)

Corollary 3. Let I = R and 1 < p < q− ≤ q+ < ∞, 0 < α− ≤ α+ < 1,

where p is constant. Assume that w−p′

∈ RD(d)(R). Then M+
α(·) is bounded

from Lp
w(I) to L

q(·)
v (I) if and only if

sup
a∈R

h>0

∥∥χ(a−h,a)(·) hα(·)−1
∥∥

L
q(·)
v (I)

∥∥χ(a,a+h)w
−1

∥∥
Lp′(I)

< ∞.
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Corollary 4. Let I = R and let 1 < p < q− ≤ q+ < ∞, where p is

constant. Suppose that α is measurable function on R satisfying 0 < α− ≤

α+ < 1. Suppose also that w−(p−)′ ∈ RD(d)(I). Then M−
α(·) is bounded from

from Lp
w(I) to L

q(·)
v (I) if and only if

sup
a∈I
h>0

∥∥χ(a,a+h)(·)h
α(·)−1v(·)

∥∥
Lq(·)(I)

∥∥χ(a−h,a)w
−1

∥∥
Lp′(I)

< ∞.

Corollary 5. Let I = R, 1 < p− < q− ≤ q+ < ∞, 0 < α− ≤ α+ < 1.

Suppose that p− = p(∞) and p ∈ P∞(I). Assume that w−(p−)′ ∈ RD(d)(R).
Then

(i) M+
α(·) is bounded from Lp

w(I) to L
q(·)
v (I) if (10) holds;

(ii) M−
α(·) is bounded from Lp

w(I) to L
q(·)
v (I) if (11) holds.

In the diagonal case we have

Theorem 7. Let I = R and let 1 < p < ∞, where p is constant. Suppose

that 0 < α− ≤ α+ < ∞. Then M+
α(·) is bounded from Lp

w(I) to Lp
v(I) if and

only if there is a positive constant C such that for all intervals J ⊂ R,
∫

R

vp(x)

(
M+

α(·)

(
w−p′

χJ

)
(x)

)p

dx ≤ C

∫

J

w−p′

(x)dx < ∞.

Theorem 8. Let I = R and let 1 < p < ∞, where p is constant. Suppose

that 0 < α− ≤ α+ < ∞.. Then M−
α(·) is bounded from Lp

w(I) to Lp
v(I) if

and only if
∫

R

vp(x)

(
M−

α(·)

(
w−p′

χJ

)
(x)

)p

dx ≤ C

∫

J

w−p′

(x)dx < ∞

for all intervals J ⊂ R.

Theorem 9. Let α, p and q be measurable functions on I = R. Suppose

that 1 < p− < q− ≤ q+ < ∞ and 0 < α− ≤ α+ < 1/p−. Suppose that

p ∈ G. Then the following inequalities hold:

‖ρ(·)(M+
α(·)f)(·)‖Lq(·)(R) ≤ c‖f(·)(Ñ−

α(·)ρ)(·)‖Lp(·)(R),

‖ρ(·)(M−
α(·)f)(·)‖Lq(·)(R) ≤ c‖f(·)(Ñ+

α(·)ρ)(·)‖Lp(·)(R),

where (
Ñ−

α(·)ρ
)
(x) = sup

h>0
h−1/p−‖ρ(·)hα(·)χ(x−h,x)(·)‖Lq(·)(R),

(
Ñ+

α(·)ρ
)
(x) = sup

h>0
h−1/p−‖ρ(·)hα(·)χ(x,x+h)(·)‖Lq(·)(R).

Further, we have
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Theorem 10. Let I = R and let measurable functions p, q, and α satisfy

the conditions 1 < p− < q− ≤ q+ < ∞, 0 < α− ≤ α+ < 1. Further, suppose

that p ∈ G(I).
(i) If

sup
J⊂R

∥∥χJ(·) |J |α(·)
∥∥

L
q(·)
v (R)

|J |
− 1

p
− < ∞,

where the supremum is taken over all bounded intervals J ⊂ R, then Rα(·)

and Wα(·) are bounded from Lp(·)(I) to L
q(·)
v (I).

Theorem 11. Let p be constant. Suppose that 1 < p < q− ≤ q+ < ∞.

Let 0 < α− ≤ α+ < 1. Then the following are equivalent:

(i) Rα(·) is bounded from Lp(I) to L
q(·)
v (I);

(ii) Wα(·) is bounded from Lp(I) to L
q(·)
v (I);

(iii)

sup
J⊂R

∥∥χJ (·) |J |α(·)
∥∥

L
q(·)
v (R)

|J |−
1
p < ∞. (12)

Corollary 6. Let I = R and let p, q and α satisfy the conditions of

Theorem 11. Then the following are equivalent:

(i) Rα(·) is bounded from Lp(I) to Lq(·)(I);

(ii) Wα(·) is bounded from Lp(I) to Lq(·)(I);
(iii) (12) holds for v ≡ 1.
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