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1 Introduction

In the paper we study the behavior of one-sided maximal functions, Calderón–Zygmund integrals and potentials
in Lp(·)(I) spaces, where I := (a, b), −∞ ≤ a < b ≤ ∞. Namely, we show that if I is a bounded interval, then
these operators are bounded in Lp(·)(I) if p belongs to a certain class which is larger than the class of all functions
satisfying the Dini–Lipschitz (log-Hölder continuity) condition. From these general results we conclude that left-
sided (right-sided) operators are bounded in Lp(·)(I) if p is non-increasing (resp. non-decreasing). In the case
I = R+ or I = R we assume, in addition, that p satisfies the “decay condition” at infinity.

Motivation for the study of one-sided operators acting between classical Lebesgue spaces is provided in [30],
[22], [11]. Our extension of this study to the setting of variable exponent spaces is not only natural but has the
advantage that it shows that one-sided operators may be bounded under weaker conditions on the exponent than
were known for two-sided operators.

The paper is organized as follows: in Section 2 we introduce some basic notation and definitions. Sections
3 deals with one-sided maximal function, while in Sections 4 and 5 we study boundedness of the one-sided
potentials and one-sided singular integrals respectively.

Constants (often different constants in the same series of inequalities) will generally be denoted by c or C.

2 Preliminaries

Let I be an open set in R. We denote

p−E = ess inf
E

p, p+
E = ess sup

E
p

for measurable functions p : I → R and measurable sets E ⊆ I .
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Let P−(I) be the class of all measurable functions p : I → R satisfying the conditions:
1)

1 < p−I ≤ p(x) ≤ p+
I < ∞; (2.1)

2) there exists a positive constant c1 such that for a.e. x ∈ I and a.e. y ∈ I with 0 < x−y ≤ 1/2 the inequality

p(x) ≤ p(y) +
c1

ln(1/(x − y))
(2.2)

holds. Further, we say that p belongs to P+(I) if (2.1) holds and there exists a positive constant c2 such that for
a.e. x ∈ I and a.e. y ∈ I with 0 < y − x ≤ 1/2 the inequality

p(x) ≤ p(y) +
c2

ln(1/(y − x))
(2.3)

holds.
It is easy to see that if p is a non-increasing function on I , then condition (2.2) is satisfied, while for non-

decreasing p condition (2.3) holds.
Let 1 ≤ p(x) ≤ p+

I < ∞. For a measurable function f : I → R, we say that f ∈ Lp(·)(I) (or f ∈ Lp(x)(I))
if

Sp(·)(f) =
∫
I

∣∣f(x)
∣∣p(x)

dx < ∞.

It is known that Lp(·)(I) is a Banach space with the norm

‖f‖Lp(·)(I) = inf
{
λ > 0 : Sp(·)

(
f/λ

) ≤ 1
}
.

For properties of Lp(·) spaces see e.g. [23], [21], [34], [35], [15], [25], [26], [27], [6], [14].
In the sequel we will use the notation that p′(·) := p(·)/(p(·) − 1) for the function p satisfying (2.1).

Theorem A [6] Let Ω be a bounded domain in Rn. Then the maximal operator

(MΩf
)
(x) = sup

r>0

1
rn

∫
B(x,r)∩Ω

|f(y)| dy, x ∈ Ω,

is bounded in Lp(x)(Ω) if p ∈ P(Ω), that is,

(a) 1 < p−Ω ≤ p(x) ≤ p+
Ω < ∞;

(b) p satisfies the Dini–Lipschitz (log-Hölder continuity) condition (p ∈ DL(Ω)): there exists a positive
constant A such that for all x, y ∈ Ω with 0 ≤ |x − y| ≤ 1

2 the inequality

∣∣p(x) − p(y)
∣∣ ≤ A

log 1
|x−y|

holds.

In the same paper, L. Diening proved the following statement:

Proposition A Let Ω be a bounded domain in Rn. Then p ∈ DL(Ω) if and only if there exists a positive
constant C such that∣∣B∣∣p−(B)−p+(B) ≤ C

for all balls B in Rn such that |B ∩ Ω| > 0.

c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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The boundedness of the Hardy–Littlewood maximal operator in Lp(·)(Rn) was established in [24], [5] under
the conditions that p belong to P(Ω) and satisfies the “decay condition” at infinity (see [6] for the case when p is
constant outside some ball). In particular the following statement holds:

Theorem B [5] Let Ω be an open subset of Rn. Then MΩ is bounded in Lp(·)(Ω) if
(i) p ∈ P(Ω);

(ii)

|p(x) − p(y)| ≤ C

log(e + |x|) (2.4)

for all x, y ∈ Ω, |y| ≥ |x|.
Definition A We say that p ∈ P∞(I) if (2.1) and (2.4) hold.

In [9], [4] the boundedness of the Calderón–Zygmund singular integral was established in Lp(x)(Rn), while
Sobolev-type theorems for the Riesz potentials have been obtained in [26], [27], [7], [4]. Weighted inequalities
with power-type weights for the Hardy transforms, Hardy–Littlewood maximal functions, singular and fractional
integrals were established in [18], [19], [13], [29], [32], [31], [20], [12], [10] and for general-type weights in [8],
[17], [12] (see also [28], [16]).

Let

I+(x, h) := [x, x + h] ∩ I, I−(x, h) := [x − h, x] ∩ I;

I(x, h) := [x − h, x + h] ∩ I.

Observe that either I+(x, h) = ∅ or |I+(x, h)| > 0 because I is an open set. The same conclusion is true for
I−(x, h) and I(x, h).

Proposition B Let p satisfy (2.1). The following conditions are equivalent:

(a) condition (2.2) holds;

(b) there exists a positive constant C1 such that for a.e. x ∈ I and all r with 0 < r ≤ 1
2 and I−(x, r) �= ∅

the inequality

r
p−

I−(x,r)−p(x) ≤ C1 (1.2′)

holds;

(c) the inequality

r
p(x)−p+

I+(x,r) ≤ C2

holds, for a.e. x ∈ I and all r with 0 < r ≤ 1/2 and I+(x, r) �= ∅.

P r o o f. Let us show that (a) is equivalent to (b). The fact (a) ⇔ (c) can be obtained in a similar way. We
follow [5]. Let (1.2′) be fulfilled and let us take x, y ∈ I so that 0 < x − y ≤ 1/2. We choose r with
0 < r/2 ≤ x − y ≤ r. Then

C1 ≥ r
p−

I−(x,r)−p(x) ≥ cp

(
1

x − y

)p(x)−p−
I−(x,r)

,

where cp = 2p−
I −p+

I . Hence

p(x) ≤ p−I−(x,r) +
c

ln(1/(x − y))
.

Consequently, (2.2) holds.
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Conversely, suppose that (2.2) holds and let us take r so that 0 < r ≤ 1/2 and I−(x, r) �= ∅. Observe that if

Sr,x := (1/2) ess sup
y∈I−(x,r)

(p(x) − p(y)) ≤ 0,

then p(x) ≤ p(y) for a.e. y, y ∈ I−(x, r). Therefore p(x) ≤ p−I−(x,r) and, consequently, (1.2′) holds for such r

and x. Further, if Sr,x > 0, then we take x0, x0 ∈ I−(x, r), so that

0 < (1/2)Sr,x ≤ p(x) − p(x0).

Hence

r
p−

I−(x,r)−p(x) ≤
(

1
x − x0

)2(p(x)−p(x0))

≤
(

1
x − x0

)2c/ ln(1/(x−x0))

≤ C.

The next statement can be proved in a similar manner; therefore we omit the proof.

Proposition B′ Suppose that p satisfies (2.1). The following conditions are equivalent:
(a) condition (2.3) holds;
(b) the inequality

r
p−

I+(x,r)−p(x) ≤ C1

holds for a.e. x ∈ I and all r with 0 < r ≤ 1
2 and I+(x, r) �= ∅;

(c) the inequality

r
p(x)−p+

I−(x,r) ≤ C2

holds, for all x ∈ I and all r satisfying 0 < r ≤ 1
2 and I−(x, r) �= ∅.

Remark 2.1 Let I be a bounded interval in R and let p be continuous on I . Then P(I) = P−(I) ∩ P+(I).
Proposition B implies

Proposition C
a) p′ ∈ P−(I) if and only if p ∈ P+(I);
b) Let s be a positive constant. If p satisfies (2.2) (resp. (2.3)), then s · p also satisfies (2.2) (resp. (2.3)).

Let us introduce the following maximal operators:(Mf
)
(x) = sup

h>0

1
2h

∫
I(x,h)

|f(t)| dt,

(M−f
)
(x) = sup

h>0

1
h

∫
I−(x,h)

|f(t)| dt,

(M+f
)
(x) = sup

h>0

1
h

∫
I+(x,h)

|f(t)| dt,

where I is an open set in R and x ∈ I .

Let

Rr(x) := (e + |x|)−r; R(x) := R1(x).

Lemma A ([5], [3]) Let r and s be nonnegative functions on a set G ⊆ R. Assume that β is a measurable
function on G with values in R. Suppose that

0 ≤ s(x) − r(x) ≤ C

log(e + |β(x)|)
c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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for a.e. x ∈ G. Then there exists a positive constant Cr such that for every function f ,∫
G

|f(x)|r(x) dx ≤ Cr

∫
G

|f(x)|s(x) dx +
∫
G

Rr(β(x))r−
G dx.

Lemma B ([3]) Let r and s be nonnegative functions on a set G ⊆ R. Suppose that for a.e. x ∈ G,

|s(x) − r(x)| ≤ C

log(e + |x|) .

Then there exists a positive constant Cr such that for every function f such that f(x) ≤ 1, x ∈ G,∫
G

|f(x)|r(x) dx ≤ Cr

∫
G

|f(x)|s(x) dx +
∫
G

Rr(x)r−
G dx.

Definition 2.2 Let I = R+ or I = R. Suppose that p is a constant, 1 < p < ∞. We say that w ∈ A+
p (I) if

there exists c > 0 such that⎛⎝ 1
h

x∫
x−h

w(t) dt

⎞⎠1/p⎛⎝ 1
h

x+h∫
x

w1−p′
(t) dt

⎞⎠1/p′

≤ c, h, x > 0, h < x,

for I = R+ and⎛⎝ 1
h

x∫
x−h

w(t) dt

⎞⎠1/p⎛⎝ 1
h

x+h∫
x

w1−p′
(t) dt

⎞⎠1/p′

≤ c; x ∈ R, h > 0,

for I = R, where p′ = p
p−1 .

We say that w ∈ A+
1 (I) if there exists c > 0 such that (M−w)(x) ≤ cw(x) for a.e. x ∈ R when I = R and

for a.e. x ∈ R+ whenever I = R+.
Further, w ∈ A−

p (I) if there exists c > 0 such that⎛⎝ 1
h

x+h∫
x

w(t) dt

⎞⎠1/p⎛⎝ 1
h

x∫
x−h

w1−p′
(t) dt

⎞⎠1/p′

≤ c, h, x > 0, h < x,

for I = R+ and⎛⎝ 1
h

x+h∫
x

w(t) dt

⎞⎠1/p⎛⎝ 1
h

x∫
x−h

w1−p′
(t) dt

⎞⎠1/p′

≤ c; x ∈ R, h > 0,

for I = R, where p′ = p
p−1 .

We say that w ∈ A−
1 (I) if there exists c > 0 such that (M+w)(x) ≤ c w(x) for a.e. x ∈ R when I = R and

for a.e. x ∈ R+ whenever I = R+.

It is easy to verify that A+
1 (I) ⊂ A+

p (I), p > 1 (see also [33] for I = R).
Let ρ be locally integrable a.e. positive function (weight) on an interval I . Suppose that 1 < r < ∞, where

r is a constant. We denote by Lr
ρ(I) the Lebesgue space with weight ρ, which is the space of all measurable

functions f : I → R for which

‖f‖Lr
ρ(I) =

⎛⎝∫
I

|f(x)|rρ(x) dx

⎞⎠1/r

< ∞.

The following statements can be found in [33] for R and [2] for R+.
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Theorem 2.3 Let I = R or I = R+. Suppose that p is a constant and that 1 < p < ∞. Then
(i) M+ is bounded in Lp

w(I) if and only if w ∈ A+
p (I);

(ii) M− is bounded in Lp
w(I) if and only if w ∈ A−

p (I).

We shall also need

Definition 2.4 Let p and q be constants such that 1 < p < ∞, 1 < q < ∞. We say that U ∈ A+
pq(R+) if

sup
0<h≤x

⎛⎝ 1
h

x∫
x−h

Uq(t) dt

⎞⎠
1
q
⎛⎝1

h

x+h∫
x

U−p′
(t) dt

⎞⎠
1
p′

< ∞.

Further, U ∈ A−
pq(R+) if

sup
0<h≤x

⎛⎝ 1
h

x+h∫
x

Uq(t) dt

⎞⎠
1
q
⎛⎝1

h

x∫
x−h

U−p′
(t) dt

⎞⎠
1
p′

< ∞.

Theorem 2.3′ ([2]) Let p and α be constants. Suppose that 1 < p < 1
α and q = p

1−αp . Then the Weyl
operator Wα given by

Wαf(x) =

∞∫
x

f(t)(t − x)α−1 dt, x ∈ R+,

is bounded from Lp
Up(R+) to Lq

Uq(R+) if and only if U ∈ A+
pq(R+). Further, the Riemann–Liouville operator

Rαf(x) =

x∫
0

f(t)(x − t)α−1 dt, x ∈ R+,

is bounded from Lp
Up(R+) to Lq

Uq(R+) if and only if U ∈ A−
pq(R+).

Now we prove a one-sided version of Rubio de Francia’s extrapolation theorem for variable exponent Lebesgue
spaces. For a related statement in the two-sided case see [4].

Theorem 2.5 Let I = R+ or I = R. Let F be a family of pairs of nonnegative functions such that for some
p0 and q0 with 0 < p0 ≤ q0 < ∞ the inequality⎛⎝∫

I

f(x)q0w(x) dx

⎞⎠
1

q0

≤ c0

⎛⎝∫
I

g(x)p0w(x)p0/q0 dx

⎞⎠
1

p0

(2.5)

holds for all (f, g) ∈ F , where w ∈ A+
1 (I) (resp. A−

1 (I)) and the positive constant c0 depends on the A+
1 (I)

constant of the weight w. Given p satisfying (2.1) and also the condition p0 < p−I ≤ p+
I < p0q0

q0−p0
, define a

function q by

1
p(x)

− 1
q(x)

=
1
p0

− 1
q0

, x ∈ I. (2.6)

If M−
(
resp. M+

)
is bounded in L(q(·)/q0)′(I), then for all (f, g) ∈ F such that f ∈ Lq(·)(I) the inequality

‖f‖Lq(·)(I) ≤ c ‖g‖Lp(·)(I)

holds.

c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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P r o o f. Let us prove the theorem for I = R+ and w ∈ A+
1 (I). The proof for other cases is the same. First

notice that q satisfies (2.1). Let p̄(x) := p(x)
p0

and q̄(x) := q(x)
q0

. Observe that 1 < (q̄′)−I ≤ (q̄′)+I < ∞. By

assumption, M+ is bounded in L(q̄)′(·)(R+), i.e.,

‖M−f‖L(q̄)′(·)(R+) ≤ B ‖f‖L(q̄)′ (R+).

Let us define H on L(q̄)′(·)(R+) as follows:

Hφ(x) =
+∞∑
k=0

(M(k)
− φ

)
(x)

2kBk
,

where,

M(k)
− = M− ◦ M− ◦ · · · ◦ M−︸ ︷︷ ︸

k

; M(0)
− = Id.

From the definition it follows that
(a) if φ ≥ 0, then φ(x) ≤ (Hφ

)
(x);

(b)

‖Hφ‖L(q̄)′(·)(R+) ≤ 2 ‖φ‖L(q̄)′(·)(R+);

(c)

M−
(Hφ

)
(x) ≤ 2B Hφ(x)

for every x ∈ R+.
The last implies that Hφ ∈ A+

1 (R+) with an A+
1 (R) constant independent of φ.

Further, by the definition and elementary properties of Lp(·) spaces (see e.g. [21]) we have

‖f‖q0

Lq(·)(R+)
= ‖ |f |q0‖Lq̄(·)(R+) ≤ sup

∫
R+

|f(x)|q0h(x) dx,

where the supremum is taken over all nonnegative h ∈ L(q̄)′(·)(R+) with ‖h‖L(q̄)′(·)(R+) = 1. Let us fix such an
h. We will show that∫

R+

|f |q0h(x) dx ≤ c ‖g‖q0

Lp(·)(R+)
,

where c is independent of h and f ∈ Lq(·)(R). By (a), (b) and Hölder’s inequality for Lp(·) spaces (see e.g. [21])
we have ∫

R+

|f |q0h(x) dx ≤
∫

R+

|f |q0 Hh(x) dx

≤ 2 ‖ |f |q0‖Lq̄(R+)‖Hh‖L(q̄)′ (R+)

≤ 2c ‖f‖q0

Lq(·)(R+)
‖h‖L(q̄)′(·)(R+)

= 2c ‖f‖q0

Lq(·)(R+)

< ∞.

Using the fact that the A+
1 (I) constant of Hh is bounded by 2B, applying (2.5) and Hölder’s inequality with

respect to p̄ we find that

∫
R+

|f |q0Hh(x) dx ≤ c

⎡⎢⎣∫
R+

g(x)p0
(Hh(x)

) p0
q0 dx

⎤⎥⎦
q0
p0

≤
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≤ c ‖gp0‖
q0
p0
Lp̄(R+)

∥∥(Hh)
p0
q0
∥∥ q0

p0

L(p̄)′ (R+)

= c ‖g‖q0

Lp(·)(R+)

∥∥(Hh)
p0
q0
∥∥ q0

p0

L(p̄)′ (R+)
.

Taking into account these estimates, it remains to show that∥∥(Hh)
p0
q0
∥∥ q0

p0

L(p̄)′ (R+)
≤ c,

where c is independent of h. From (2.6) we have

(p̄)′(x) =
p(x)

p(x) − p0
=

q0

p0

q(x)
q(x) − q0

=
q0

p0
(q̄)′(x)

for x ∈ R+. Hence by (b) we conclude that∥∥(Hh)
p0
q0
∥∥ q0

p0

L(p̄)′(·)(R+)
= ‖Hh‖L(q̄)′(·)(R+) ≤ c ‖h‖L(q̄)′(·)(R+) = c,

where c does not depend on h.

3 One-sided maximal functions

In this section we establish the boundedness of one-sided maximal functions in Lp(x) spaces. According to the
next statement, a jumping exponent p implies the failure of the boundedness for the operator M in Lp(·)(I) but
one of the one-sided maximal operators is bounded in the same space. In particular, we have

Proposition 3.1 Let I = [0, b] be a bounded interval. Then
(a) there exists a discontinuous function p on I such that M− is bounded in Lp(·)(I) but M is not bounded

in Lp(·)(I).
(b) there exists a discontinuous function p on I such that M+ is bounded in Lp(·)(I) but M is not bounded

in Lp(·)(I).

P r o o f. Let p1 and p2 be constants such that 1 < p2 < p1 < ∞ and let

p(x) =

{
p1, x ∈ (0, β],
p2, x ∈ (β, b],

where 0 < β < b.
It is easy to see that the operator M+ (and consequently M) is not bounded in Lp(·)(I). Indeed, let f(x) =

(x − β)−1/p1χ(β,b)(x). Then
b∫
0

(f(x))p(x) dx < ∞, while
b∫
0

(M+f
)p(x)(x) dx = ∞ since

M+f(x) = sup
β−x≤h≤b−x

F (h) = F ((β − x)p1) = c (β − x)−1/p1

for x ∈ (0, β], where the positive constant c depends only on p1.
We shall now show that M− is bounded in Lp(·)(I). Let ‖f‖Lp(·)(I) ≤ 1 and let us represent f as follows:

f = f1 + f2, where f1(x) = χ(0,β](x)f(x), f2(x) = f(x) − f1(x). Then we have

b∫
0

(M−f
)p(x)(x) dx ≤ c

⎡⎢⎣ β∫
0

(M−f1

)p1(x) dx +

b∫
β

(M−f1

)p2(x) dx

+

β∫
0

(M−f2

)p1(x) dx +

b∫
β

(M−f2

)p2(x) dx

⎤⎥⎦
:= c

4∑
i=1

Ii.

c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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By the boundedness of ML on Lp1(I), we have

I1 ≤
b∫

0

(M−f1

)p1(x) dx ≤ c

b∫
0

|f(x)|p1 dx ≤ c

b∫
0

|f(x)|p(x) dx ≤ c.

Further, it is easy to check that
(M−f1

)
(x) ≤ supx−β≤h≤x

(β−x+h)1/p′
1

h = c (x − β)−1/p′
1 when x ∈ (β, b).

Consequently, since p2 < p1, we have I2 < ∞.
It is also obvious that I3 = 0, while due to the boundedness of M− in Lp2(I), we see that

I4 ≤
b∫

c

(M−f2

)p2(x) dx ≤ c

b∫
c

|f(x)|p2 dx ≤ c.

Analogously we can prove part (b).

Proposition 3.1 motivates us to establish the boundedness of one-sided maximal function under a condition on
p(·) which is weaker than the log-Hölder condition.

Theorem 3.2 Let I be a bounded interval and let p ∈ P−(I). Then M− is bounded in Lp(·)(I).

P r o o f. We use the arguments from [6]. For simplicity let us assume that I = (0, b). First we show the
inequality

(M−,hf
)p(x)(x) ≤ C(p)

⎛⎜⎝ 1
h

∫
I−(x,h)

|f(t)|p(t) dt + 1

⎞⎟⎠ , 0 < h < x, (3.1)

holds for all f with ‖f‖Lp(·) ≤ 1, where

(M−,hf
)
(x) :=

1
h

∫
I−(x,h)

|f(y)| dy

and the positive constant C(p) depends only on p.
If h ≥ 1

2 , then

(M−,hf
)p(x)(x) =

⎛⎜⎝ 1
h

∫
I−(x,h)

|f(y)| dy

⎞⎟⎠
p(x)

≤

⎛⎜⎝ 1
h

∫
I−(x,h)∩{|f |≥1}

|f(y)|p(y) dy + 1

⎞⎟⎠
p(x)

≤

⎛⎜⎝ 1
h

∫
I−(x,h)

|f(y)|p(y) dy + 1

⎞⎟⎠
p(x)

≤ (2 + 1)p(x)

≤ 3p+
I

which proves (3.1) for this case.
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Let h < 1/2. Then using Hölder’s inequality we have

(M−,hf
)p(x)(x) ≤

⎛⎜⎝ 1
h

∫
I−(x,h)

|f(y)|p
−
I−(x,h) dy

⎞⎟⎠
p(x)

p
−
I−(x,h)

≤

⎛⎜⎝ 1
h

∫
I−(x,h)∩{|f |≥1}

|f(y)|p(y) dy + 1

⎞⎟⎠
p(x)

p
−
I−(x,h)

≤ h
− p(x)

p
−
I−(x,h)

⎛⎜⎝ ∫
I−(x,h)

|f(y)|p(y) dy + h

⎞⎟⎠
p(x)

p
−
I−(x,h)

.

Since
b∫
0

|f(x)|p(x) dx ≤ 1 and 0 < h < 1
2 , we have that 1

2

∫
I−(x,h)

|f(y)|p(y) dy + 1
2h ≤ 1.

Consequently, taking into account the last estimate and the condition p ∈ P−(I) we find that

(M−,h)p(x)(x) ≤ Ch
− p(x)

p
−
I−(x,h)

(
1
2

∫
I−(x,h)

|f(y)|p(y) dy +
1
2
h

)

= Ch

p
−
I−(x,h)−p(x)

p
−
I−(x,h)

⎛⎜⎝ 1
h

∫
I−(x,h)

|f(y)|p(y) dy + 1

⎞⎟⎠
≤ C

(M−,h

(|f |p(·))(x) + 1
)
.

Thus (3.1) has been proved. Inequality (3.1) immediately implies(M−f
)p(x)(x) ≤ C(p)

[(M−
(|f |p(·)))(x) + 1

]
. (3.2)

Suppose now that q(x) = p(x)
p−

. Then using the fact q ∈ P−(I), inequality (3.2) and the boundedness of ML

in Lp−(I) we find that

b∫
0

(M−f(x)
)p(x)

dx ≤ c

b∫
0

(M−
(|f |q(·)(x)

))p−
dx + C ≤ C

b∫
0

|f(x)|p(x) dx + C ≤ C.

The next theorem follows analogously. Therefore we omit the proof.

Theorem 3.3 Let I be a bounded interval and let p ∈ P+(I). Then M+ is bounded in Lp(·)(I).

Now we investigate the boundedness of one-sided maximal functions in Lp(x) spaces defined on unbounded
intervals.

We have the following one-sided version of Theorem 4.1 of [3] (see also Lemmas 2.3 and 2.5 of [5] for the
two-sided case).

Proposition 3.4 Let I be an open subset of R. Suppose that p ∈ P+(I) ∩ P∞(I). Suppose also that
Sp(·)(f) ≤ 1. Then there exists a positive constant C such that

(M+f(x)
)p(x) ≤ C

(M+

(|f(·)|p(·)/p−
I

)
(x)

)p−
I + S(x) (3.3)

for a.e. x ∈ I , where S ∈ L1(R).
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P r o o f. We use the arguments of Lemmas 2.3 and 2.5 in [5] and Theorem 4.1 in [3].
Let f ≥ 0. We shall see that there exists a positive constant C such that for a.e. x ∈ I and all h > 0,

⎛⎜⎝ 1
h

∫
I+(x,h)

f(t) dt

⎞⎟⎠
p(x)

≤ C

⎛⎜⎝ 1
h

∫
I+(x,h)

(f(t))p(t)/p−
I dt

⎞⎟⎠
p−

I

+ S(x).

Let us denote

M+,hf(x) :=
1
h

∫
I+(x,h)

f(t) dt.

We divide the proof into two parts:
(a) f(x) ≥ 1 or f(x) = 0, x ∈ I;
(b) f(x) ≤ 1 on I .

P r o o f o f (a). Case 1 (h < |x|/4). Denote p̄(x) = p(x)/p−I . Then it is obvious that p̄ ∈ P+(I) ∩ P∞(I).
It is also clear that p̄(x) ≥ 1 a.e. on I . Further, let us see that for a.e. t ∈ I+(x, h),

0 ≤ p̄(t) − p−I+(x,h) ≤
C

log(e + |t|) . (3.4)

Indeed, if z ∈ I+(x, h) and |z| ≥ |t|, then

p̄(t) − p̄(z) ≤ C/ log(e + |t|) (3.5)

On the other hand, if |z| < |t| we observe that

|t| ≤ h + |x| ≤ 5(|x| − 3h) ≤ 5|z|.

Hence |z| > |t|/5. Consequently, by the condition p ∈ P∞(I),

p̄(t) − p̄(z) ≤ C/ log(e + |z|) ≤ C/ log(e + |t|).

Taking the infimum in (3.5) with respect to z we will find that (3.4) holds.
Further, Hölder’s inequality and Lemma A yield

(
here r(·) ≡ p̄−I+(x,h), s(t) = p̄(t), β(t) = t, r = 1

)
(M+,hf(x)

)p(x) ≤

⎛⎜⎝ 1
h

∫
I+(x,h)

(f(t))
p̄−

I+(x,h) dt

⎞⎟⎠
p(x)/p̄−

I+(x,h)

≤

⎛⎜⎝C

h

∫
I+(x,h)

(f(t))p̄(t) dt +
1
h

∫
I+(x,h)

R(t)
p̄−

I+(x,h) dt

⎞⎟⎠
p(x)/p̄−

I+(x,h)

≤

⎛⎜⎝C

h

∫
I+(x,h)

(f(t))p̄(t) dt + C(R(x))p̄−
I(x,h)

⎞⎟⎠
p(x)/p̄−

I+(x,h)

≤ C

⎛⎜⎝C

h

∫
I+(x,h)

(f(t))p̄(t) dt

⎞⎟⎠
p(x)/p̄−

I+(x,h)

+ C(R(x))p(x).
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Moreover, by Hölder’s inequality and the condition Sp(·)(f) ≤ 1 we have⎛⎜⎝ 1

h

∫
I+(x,h)

(f(t))p̄(t) dt

⎞⎟⎠
p(x)/p̄−

I+(x,h)

=

⎛⎜⎝ 1

h

∫
I+(x,h)

(f(t))p̄(t) dt

⎞⎟⎠
p−

I
⎛⎜⎝ 1

h

∫
I+(x,h)

(f(t))p̄(t) dt

⎞⎟⎠
p(x)/p̄−

I+(x,h)−p−
I

≤

⎛⎜⎝ 1

h

∫
I+(x,h)

(f(t))p(t) dt

⎞⎟⎠
(p(x)/p̄−

I+(x,h)−p−
I

)/p−
I
⎛⎜⎝ 1

h

∫
I+(x,h)

(f(t))p̄(t) dt

⎞⎟⎠
p−

I

.

Now observe that

− 1
p−I

[
p(x)

p̄−I+(x,h)

− p−I

]
= p(x)

[
1

p(x)
− 1

p−I+(x,h)

]
= p(x)

[
p−I+(x,h) − p(x)

p(x)p−I+(x,h)

]
≤ 0.

Hence

A(x, h) := h
−(p(x)/p̄−

I+(x,h)−p−
I )/p−

I ≤ 1

for h ≥ 1, while by Proposition B′,

A(x, h) ≤ h
(p−

I+(x,h)−p(x))p+
I /(p−

I )2 ≤ C

when h ≤ 1. In addition,⎛⎜⎝ ∫
I+(x,h)

(f(t))p(t) dt

⎞⎟⎠
(p(x)/p̄−

I+(x,h)−p−
I )/p−

I

≤ 1

because Sp(·)(f) ≤ 1 and
(
p(x)/p̄−I+(x,h)

)− p−I ≥ 0. Consequently,⎛⎜⎝ 1
h

∫
I+(x,h)

(f(t))p̄(t) dt

⎞⎟⎠
p(x)/p̄−

I+(x,h)

≤ C

⎛⎜⎝ 1
h

∫
I+(x,h)

(f(t))p̄(t) dt

⎞⎟⎠
p−

I

and the desired inequality follows.

Case 2 (|x| ≤ 1 and r ≥ |x|/4). In this case, it is easy to check that

0 ≤ p̄(t) − p̄−I+(x,h) ≤ p̄+
I − p̄−I ≤ C

log(e + |x|) ,

where t ∈ I+(x, h), because |x| ≤ 1.
Consequently, Hölder’s inequality and Lemma A yield

(
with r(·) ≡ p̄−I+(x,x+h), s(·) = p̄(·), β(·) ≡ x and

r = 1
)

(M+,hf(x)
)p(x) ≤

⎛⎜⎝ 1
h

∫
I+(x,h)

(f(t))
p̄−

I+(x,h) dt

⎞⎟⎠
p(x)/p̄−

I+(x,h)

≤

⎛⎜⎝C

h

∫
I+(x,h)

(f(t))p̄(t) dt +
1
h

∫
I+(x,h)

R(x)
p̄−

I+(x,h) dt

⎞⎟⎠
p(x)/p̄−

I+(x,h)

≤ C

⎛⎜⎝1
h

∫
I+(x,h)

(f(t))p̄(t) dt

⎞⎟⎠
p(x)/p̄−

I+(x,h)

+ CR(x)p(x).
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Now using the arguments from Case 1 we obtain the desired estimate.

Case 3 (|x| ≥ 1 and h ≥ |x|/4). By the conditions Sp(·)(f), f ≥ 1 or f = 0, we have

(M+,hf(x)
)p(x) ≤ h−p(x)

⎛⎜⎝ ∫
I+(x,h)

(f(y))p(y) dy

⎞⎟⎠
p(x)

≤ h−p(x) ≤ C|x|−p(x) ≤ CR(x)p(x).

P r o o f o f (b). The proof is the same as in the previous argument except for Case 3 because the condition
f ≥ 1 or f = 0 was used only in this case. Assume that |x| ≥ 1 and h ≥ |x|/4. We have

(M+,hf(x)
)p(x) ≤ C

⎛⎜⎝1
h

∫
I+(x,h)∩I(0,|x|)

f(t) dt

⎞⎟⎠
p(x)

+C

⎛⎜⎝ 1
h

∫
I+(x,h)\I(0,|x|)

f(t) dt

⎞⎟⎠
p(x)

:= I1+I2.

Let E := I+(x, h) \ I(0, |x|). By the condition p ∈ P∞(I) we find that

|p̄(t) − p̄(z)| ≤ |p̄(t) − p̄(x)| + |p̄(z) − p̄(x)| ≤ C

log(e + |x|)
when t, z ∈ E because in this case |x| ≤ |y| and |x| ≤ |z|. Hence

0 ≤ p̄(t) − p̄−E ≤ C

log(e + |x|)
for all t ∈ E. Consequently, by Hölder’s inequality and Lemma A with r(·) ≡ p̄−E , s(·) = p̄(·), β(·) ≡ x and
r = 1 we find that⎛⎝1

h

∫
E

f(t) dt

⎞⎠p(x)

≤
⎛⎝ 1

h

∫
E

(f(t))p̄−
E dt

⎞⎠p(x)/p̄−
E

≤
⎛⎝C

h

∫
E

(f(t))p̄(t) dt +
1
h

∫
E

(R(x))p̄−
E dt

⎞⎠p(x)/p̄−
E

≤ C

⎛⎜⎝ 1
h

∫
I+(x,h)

(f(y))p̄(t) dt

⎞⎟⎠
p(x)/p̄−

E

+ C(R(x))p(x)

:= S(x, h) + C(R(x))p(x).

Notice that p̄(x) ≥ p̄−E for a.e. x ∈ E. Now we use arguments from Case 1. We have

S(x, h) =

⎛⎜⎝ 1
h

∫
I+(x,h)

(f(t))p̄(t) dt

⎞⎟⎠
p−

I
⎛⎜⎝1

h

∫
I+(x,h)

(f(t))p̄(t) dt

⎞⎟⎠
(p(x)/p̄−

E)−p−
I

= h−(p(x)/p̄−
E)−p−

I

⎛⎜⎝ ∫
I+(x,h)

(f(t))p̄(t) dt

⎞⎟⎠
(p(x)/p̄−

E)−p−
I
⎛⎜⎝ 1

h

∫
I+(x,h)

(f(t))p̄(t) dt

⎞⎟⎠
p−

I

.

Observe that since −(p(x)/p̄−E
)

+ p−I ≤ 0 we have

h−(p(x)/p̄−
E)+p−

I ≤ 1.
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Indeed, for h with h ≥ 1, the inequality is obvious, while for h < 1, using Proposition B′, we find that

h−(p(x)/p̄−
E)+p−

I = h(p−
I /p−

E)(p−
E−p(x)) ≤ h

(p−
I /p+

I )(p−
I+(x,h)−p(x)) ≤ C.

Consequently,

I2 ≤ C

⎛⎜⎝ 1
h

∫
I+(x,h)

(f(t))p̄(t) dt

⎞⎟⎠
p−

I

+ C(R(x))p(x).

To estimate I1, we denote F := I(0, |x|) ∩ I+(x, h). Using again the condition p ∈ P∞(I) we see that

|p̄(x) − p̄(t)| ≤ C

log(e + |t|) ,

because if t ∈ F , then |t| ≤ |x|. Applying Hölder’s inequality and Lemma B with r(·) ≡ p̄(x), s(t) = p̄(t) and
r = 1, we see that⎛⎝1

h

∫
F

f(t) dt

⎞⎠p(x)

≤
⎛⎝ 1

h

∫
F

(f(t))p̄(x) dt

⎞⎠p(x)/p̄(x)

≤

⎛⎜⎝C

h

∫
F

(f(t))p̄(t) dt +
1
h

∫
I(0,|x|)

(R(t))p̄(x) dt

⎞⎟⎠
p−

I

≤ C

⎛⎝ 1
h

∫
F

(f(t))p̄(t) dt

⎞⎠p−
I

+ C

⎛⎜⎝ 1
h

∫
I(0,|x|)

(R(t))p̄(x) dt

⎞⎟⎠
p−

I

≤

⎛⎜⎝ 1
h

∫
I+(x,h)

(f(t))p̄(t) dt

⎞⎟⎠
p−

I

+ C

⎛⎜⎝ 1
|x|

∫
I(0,|x|)

(R(t))p̄(x) dt

⎞⎟⎠
p−

I

because h > |x|/4, F ⊂ I+(x, h) and F ⊂ I(0, |x|).
Further, let us take r so that 1 < r < p−I . Then by Hölder’s inequality,

⎛⎜⎝ 1
|x|

∫
I(0,|x|)

(R(t))p̄(x) dt

⎞⎟⎠
p−

I

≤ |x|−p−
I /r

⎛⎜⎝ ∫
I(0,|x|)

(R(t))p̄(x)r dt

⎞⎟⎠
p−

I /r

.

Now observe that p̄(x)r ≥ p̄−I r > 1 and R(t) ≤ 1. Therefore simple estimates give us∫
I(0,|x|)

(R(t))p̄(x)r dt ≤
∫

I(0,|x|)

(R(t))p̄−
I r dt ≤ C.

Further, since |x| > 1 we see that

|x|−p−
I /r ≤ C(e + |x|)−p−

I /r = CRp−
I /r(x).

Since the last function is in L1(R), we finally have the desired result.
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Proposition 3.5 Let I be an open subset of R. Suppose that p ∈ P−(I) ∩ P∞(I). Suppose also that
Sp(·)(f) ≤ 1. Then there exists a positive constant C such that

(M−f(x)
)p(x) ≤ C

(M−
(|f(·)|p(·)/p−

I

)
(x)

)p−
I + S(x)

for a.e. x ∈ I , where S ∈ L1(R).

The proof of this statement is similar to that of Proposition 3.4. In this case we need Proposition B instead of
Proposition B′. The proof is omitted.

Proposition 3.6 Let I be an open set in R. Suppose that p ∈ P+(I) ∩ P∞(I). Then the operator M+ is
bounded in Lp(·)(R+).

P r o o f. By inequality (3.3) and the boundedness of the operator M+ in the Lebesgue space with constant
exponent p−I we have the desired result.

In a similar way there follows

Proposition 3.7 Let I be an open set in R. Suppose that p ∈ P−(I) ∩ P∞(I). Then the operator M− is
bounded in Lp(·)(R+).

Theorem 3.8 Let I = R+. Suppose that p ∈ P+(I). Assume also that there is a positive number a such that
p ∈ P∞((a,∞)). Then M+ is bounded in Lp(·)(R+).

P r o o f. SinceM+ is positive and sublinear, it is sufficient to show that ‖M+f‖Lp(·)(R) < ∞ if ‖f‖Lp(·)(R) <

∞. Let f1(x) = χ[0,a](x)f(x), f2(x) = f(x) − f1(x). Then we have

∞∫
0

(M+f
)p(x)(x) dx ≤ c

⎡⎣ a∫
0

(M+f1

)p(x)(x) dx +

∞∫
a

(M+f1

)p(x)(x) dx

+

a∫
0

(M+f2

)p(x)(x) dx +

∞∫
a

(M+f2

)p(x)(x) dx

⎤⎦
:= c

4∑
k=1

Ik.

Since
a∫
0

|f1(x)|p(x) dx ≤
∞∫
0

|f(x)|p(x) dx < ∞ and p ∈ P+([0, a]), using Theorem 3.3 we have that I1 ≤ c.

It is obvious that I2 = 0.

Let us evaluate I3. Notice that if 0 < h ≤ a− x, then 1
h

x+h∫
x

|f2(t)| dt = 0, while for h > a− x > 0, we have

1
h

x+h∫
x

|f2(t)| dt =
1
h

x+h∫
a

|f(t)| dt ≤ 1
x + h − a

x+h∫
a

|f(t)| dt ≤ (M+f
)
(a).

Due to Theorem 3.3 we have that
(M+f

)
(x) < ∞ a.e. on every finite interval. Thus we can take a so

that
(M+f

)
(a) < ∞. Hence

(M+f2

)
(x) ≤ (M+f

)
(a) < ∞ when x ∈ [0, a] and, consequently, I3 ≤

a
(M+f

)p−([0,a])(a) < ∞ if
(M+f

)
(a) ≤ 1; I3 ≤ a

(M+f
)p+([0,a])(a) < ∞ if

(M+f
)
(a) > 1.

The boundedness of M+ in Lp(·)((a,∞)) (see Proposition 3.6) yields

I4 =

∞∫
a

(M+f2

)p(x)(x) dx < ∞.
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Corollary 3.9 Let I = R+. Suppose that p satisfies condition (2.1) and is non-decreasing on I . Suppose also
that there exists a positive number a such that

p(x) ≤ p(y) +
C

log(e + y)
, a < y < x.

Then M+ is bounded in Lp(·)(R+).
This follows from Theorem 3.8 and the fact that for non-decreasing p the condition (2.2) is satisfied.

Theorem 3.10 Let I = R+ and let p ∈ P−(I). Suppose that p ∈ P∞((a,∞)) for some positive a. Then
M− is bounded in Lp(·)(I).

P r o o f. Keeping the notation of Theorem 3.8 we have
(
we assume that ‖f‖Lp(·)(R+) < ∞)

∞∫
0

(M−f
)p(x)(x) dx ≤ c

[
4∑

k=1

Ik

]
.

It is obvious that I1 ≤ c because of Theorem 3.2. Further,

I2 =

∞∫
a

(M−f1

)p(x)(x) dx =

∞∫
a

⎛⎝ sup
x−a≤h≤x

h−1

x∫
x−h

|f1(y)| dy

⎞⎠p(x)

dx =

2a∫
a

+

∞∫
2a

:= I21 + I22.

Notice that for x ∈ [a, 2a],

sup
x−a≤h≤x

h−1

x∫
x−h

|f(y)| dy = sup
x−a≤h≤x

h−1

a∫
x−h

|f(y)| dy ≤ (M−f
)
(a).

By Theorem 3.2 we can assume that
(M−f

)
(a) < ∞. Consequently, I21 ≤ a

(M−f
)p−

[a,2a](a) < ∞ if(M−f
)
(a) ≤ 1 and I21 ≤ a

(M−f
)p+

[a,2a](a) < ∞ if
(M−f

)
(a) > 1.

Let us now estimate I22. Assume that a > 1. Then for x − a ≤ h < x we have

1
h

a∫
x−h

∣∣f1

∣∣ ≤ 1
h
‖f‖Lp(·)(R+)‖χ(x−h,a)(·)‖Lp′(·)(R+) ≤ Ca1/(p′)−I /(x − a).

Hence, since a > 1, we have

I22 ≤ c

∞∫
2a

(x − a)−p−
I dx = c

∞∫
a

x−p−
I dx < ∞.

Further, it is clear that I3 = 0, while Proposition 3.7 yields

I4 ≤
∞∫

a

(M−f2

)p(x)(x) dx < ∞.

Corollary 3.11 Let I = R+. Suppose that p satisfies condition (2.1) and is non-increasing on I . Suppose
also that there exists a positive number a such that

p(x) ≤ p(y) +
C

log(e + x)
, a < x < y.

Then M− is bounded in Lp(·)(R+).
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Theorem 3.12 Let I = R and let p ∈ P+(I). Suppose that there is a positive number a such that p ∈
P∞(R \ [−a, a]). Then M+ is bounded in Lp(·)(I).

P r o o f. Let ‖f‖Lp(·)(R) < ∞. We have∫
R

(M+f(x))p(x) dx ≤ c

a∫
−a

(M+f1)p(x)(x) dx + c

a∫
−a

(M+f2)p(x)(x) dx

+ c

∫
R\[−a,a]

(M+f1)p(x)(x) dx + c

∫
R\[−a,a]

(M+f2)p(x)(x) dx

≡ c
4∑

k=1

Ik

where f1 = fχ[−a,a], f2 = fχR\[−a,a].
It is easy to see that by the definition of M+ we have

I2 =

a∫
−a

(M+(fχ(a,∞)(x))p(x) dx;

I3 =

−a∫
−∞

(M+(f1(x))p(x) dx.

To evaluate I2, observe that when x ∈ (−a, a),

(M+f3

)
(x) = sup

r>a−x

1
r

x+r∫
a

|f(t)| dt ≤ sup
r>a−x

1
x + r − a

x+r∫
a

|f(t)| dt ≤ (M+f
)
(a) < ∞.

Further,
(M+f

)
(a) < ∞ because we can always choose such an a.

Hence

I2 ≤ a

⎧⎨⎩ a
(M+f

)p−
[−a,a](a), if

(M+f
)
(a) ≤ 1;

a
(M+f

)p+
[−a,a](a), if

(M+f
)
(a) > 1.

This implies that I2 < ∞.
Further,

I3 ≤
−2a∫

−∞
(M+f1(x))p(x) dx +

−a∫
−2a

(M+f1(x))p(x) dx := I(1)
3 + I(2)

3 .

By Hölder’s inequality and simple calculations we have (we can assume that a > 1)

I(1)
3 ≤

−2a∫
−∞

(−a − x)p(x)

⎛⎝ a∫
−a

|f(t)| dt

⎞⎠p(x)

dx

≤
−2a∫

−∞
(−a − x)p−

I

∥∥χ(−a,a)f
∥∥p(x)

Lp(·)
∥∥χ(−a,a)

∥∥p(x)

Lp′(·) dx

≤ c

∞∫
a

dt

tp
−
I

≤ C < ∞,
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where the positive constant C depends on a, f and p.
Notice that

I(2)
3 ≤

a∫
−2a

(M+f1(x))p(x) dx < ∞

because
∥∥f1

∥∥
Lp(·)([−2a,a])

< ∞ and p ∈ P+([−2a, a]).
Finally, Theorem 3.3 and Proposition 3.6 yield respectively

I1 < ∞; I4 < ∞.

Theorem 3.13 Let I = R and let p ∈ P−(I). Suppose that there exists a positive number a such that
p ∈ P∞(R \ [−a, a]). Then M− is bounded in Lp(·)(I).

The proof of this statement is similar to that of Theorem 3.12 and is therefore omitted.

4 One-sided potentials

In this section we assume that I = [0, b), where 0 < b ≤ ∞ and let

(Iα(·)f
)
(x) =

b∫
0

f(t)|x − t|α(x)−1 dt, x ∈ (0, b),

(Rα(·)f
)
(x) =

x∫
0

f(t)(x − t)α(x)−1 dt, x ∈ (0, b),

(Wα(·)f
)
(x) =

b∫
x

f(t)(t − x)α(x)−1 dt, x ∈ (0, b),

where 0 < α(x) < 1.

If α(x) := α = const, then we denote Iα(·), Rα(·), Wα(·) by Iα, Rα and Wα respectively.
We analyze these operators in much the same way as the maximal operators were handled earlier.

Proposition 4.1 Let I = [0, b] be a bounded interval and let α ∈ (0, 1) be a constant. Then

(a) there exists a discontinuous function p on I such that Rα is bounded from Lp(·)(I) to Lq(·)(I) and Iα is
not bounded from Lp(·)(I) to Lq(·)(I), where q(x) = p(x)

1−αp(x) and 0 < α < 1/p+
I ;

(b) there exists a discontinuous function p on I such that Wα is bounded from Lp(·)(I) to Lq(·)(I) and Iα is
not bounded from Lp(·)(I) to Lq(·)(I), where q(x) = p(x)

1−αp(x) and 0 < α < 1/p+
I .

P r o o f. We prove part (a). The proof of (b) is similar; therefore it is omitted.
Let

p(x) =

{
p1, 0 ≤ x ≤ a,

p2, a < x ≤ b,

where p1 and p2 are constants, a ∈ I , q2 < p1 and qi = pi

1−αpi
, i = 1, 2.
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It is clear that p2 < q2 < p1. Let f ≥ 0 and let ‖f‖Lp(·)([0,b]) ≤ 1. We have

b∫
0

⎛⎝ x∫
0

f(t)
(x − t)1−α

dt

⎞⎠q(x)

dx

≤ c

⎡⎣ a∫
0

⎛⎝ x∫
0

f1(t)
(x − t)1−α

dt

⎞⎠q1

dx +

a∫
0

⎛⎝ x∫
0

f2(t)
(x − t)1−α

dt

⎞⎠q1

dx

+

b∫
a

⎛⎝ x∫
0

f1(t)
(x − t)1−α

dt

⎞⎠q2

dx +

b∫
a

⎛⎝ x∫
0

f2(t)
(x − t)1−α

dt

⎞⎠q2

dx

⎤⎦
:= c

[
4∑

k=1

Ik

]
,

where f1 = fχ(0,a) and f2 = fχ[a,b).

It is obvious that I1 ≤ c because
a∫
0

(f1(t))p1 dt ≤ 1 and consequently, Rα is bounded from Lp1([0, a]) to

Lq2([0, a]). It is also clear that I2 = 0. Now let x ∈ (a, b). Then

x∫
0

f1(t)
(x − t)1−α

dt ≤ c xα
(M−f1

)
(x).

Hence by the boundedness of M− in Lp2(I) and Hölder’s inequality we have

I3 ≤ c bαp2

b∫
0

(M−f1)
p2 (x) dx ≤ c

⎛⎝ b∫
0

(f(t))p(t) dt

⎞⎠
p2
p1

≤ c.

Using the boundedness of R̃α from Lp2([a, b]) to Lq2([a, b]) (see e.g. [30]), where

(R̃α

)
(x) =

x∫
a

f(t)(x − t)α−1 dt, x ∈ (a, b),

we have I4 < ∞ because
b∫

a

(f2(t))p2 dt ≤
b∫
0

(f(t))p(t) dt ≤ 1.

Let us now prove that Wα is not bounded from Lp(·)(I) to Lq(·)(I). Let f(x) = χ[a,b)(x)(x − a)λ, where

λ = −α − 1
q1

. Then
b∫
0

(f(x))p(x) dx < ∞, because −α − 1
q1

= − 1
p1

> − 1
p2

.

On the other hand, it is easy to see that, for x ∈ (0, a), we have
(Wαf

)
(x) ≥ c(a − x)λ+α. Hence

‖Wαf‖Lp(·)(I) = ∞.

Finally we conclude that Wα is not bounded from Lp(·)([0, b]) to Lq(·)([0, b]) and, consequently, Iα is not
bounded from Lp(·)([0, b]) to Lq(·)([0, b]).

Theorem 4.2 Let I = R+ and let p ∈ P+(I). Suppose that there exists a positive constant a such that
p ∈ P∞((a,∞)). Suppose that α is a constant on I , 0 < α < 1

p+
I

and q(x) = p(x)
1−αp(x) . Then Wα is bounded

from Lp(·)(I) to Lq(·)(I).

P r o o f. By Proposition C we have that the condition p ∈ P+(I) implies q̄′ ∈ P−(I), where q̄(x) = q(x)
q0

and q0 is a constant such that 1 < q0 < q−I . Let us choose p0 so that 1
p0

− 1
q0

= 1
p(x) − 1

q(x) = α. Then

p+
I < 1

α = p0q0
q0−p0

. It is clear that p0 = q0
αq0+1 <

q−
I

αq−
I +1

= p−I .
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It remains to apply Theorems 2.3′, 2.5 and 3.10 together with the fact that ρq0 ∈ A+
1 (I) ⇒ ρ ∈ A+

p0q0
(R+)

(see Section 2).

Theorem 4.3 Let I = R+ and let p ∈ P+(I). Let α be a constant on I , 0 < α < 1
p+

I

and let q(x) = p(x)
1−αp(x) .

Suppose that p ∈ P∞((a,∞)) for some positive number a. Then Rα is bounded from Lp(·)(I) to Lq(·)(I).

The proof of this theorem is similar to that of the previous one.

Theorem 4.4 Let I := [0, b] be a bounded interval, p ∈ P+(I), 0 < α−
I and let (αp)+I < 1. Suppose that

q(x) = p(x)
1−α(x)p(x) . Then Wα(·) is bounded from Lp(·)(I) to Lq(·)(I).

Remark 4.5 Notice that if p ∈ P+([0, b]), then there exists a positive constant c such that for a.e. x ∈ [0, b]
and all r with 0 < r < 1/2 and I+(x, r) �= ∅, the inequality

r

1(
p
−
I+(x,r)

)′ − 1
p′(x)

≤ c

holds.

To prove Theorem 4.4 we need

Lemma 4.6 Let I = [0, b] be bounded and let ‖f‖Lp(·)(I) ≤ 1. Suppose that p ∈ P+(I), 0 < α < 1
p+

I

and

q(x) = p(x)
1−α(x)p(x) . Then there exists a positive constant c depending only on p and α such that

Wα(·)(|f |)(x) ≤ c
[
(M+f)(x)

] p(x)
q(x) , x ∈ I.

P r o o f. For the sake of simplicity we assume that b = 1, i.e., I = [0, 1]. We have

Wα(·)(|f |)(x) ≤
∫

0≤t−x≤1

|f(t)|
(t − x)1−α(x)

dt

≤ c

∫
0≤t−x≤1

|f(t)|

⎛⎜⎝ 2(t−x)∫
t−x

rα(x)−2dr

⎞⎟⎠ dt

≤ c

2∫
0

rα(x)−2

⎛⎜⎝ ∫
0≤t−x≤min{r,1}

|f(t)| dt

⎞⎟⎠ dr

= c

ε∫
0

(·) + c

2∫
ε

(·)

:= c(I1 + I2),

where ε will be chosen later (if ε > 2 we assume that I2 = 0). It is easy to check that

I1 =

ε∫
0

rα(x)−1

⎛⎜⎝1
r

∫
[x,x+r]∩(0,1)

|f(t)| dt

⎞⎟⎠ dr.

Further, if x + r ≤ 1, then

1
r

∫
[x,x+r]∩(0,1)

|f(t)| dt ≤ 1
r

x+r∫
x

|f(t)| dt ≤ M+f(x);
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if x + r > 1, then

1
r

∫
[x,x+r]∩(0,1)

|f(t)| dt ≤ 1
1 − x

1∫
x

|f(t)| dt ≤ M+f(x).

So, for all 0 < r < 2 we have

1
r

∫
[x,x+r]∩(0,1)

|f(t)| dt ≤ M+f(x).

Taking into account the latter we find that

I1 ≤ M+f(x)
εα(x)

α(x)
≤ cαM+f(x)εα(x).

Now by Hölder’s inequality for variable Lebesgue spaces (see e.g. [21]) and elementary properties of Lp(·) spaces
together with Remark 4.5 we find that

I2 ≤ 2

2∫
ε

rα(x)−2
∥∥χ[x,x+r]f

∥∥
Lp(·)([0,1])

∥∥χ[x,x+r]

∥∥
Lp′(·)([0,1])

dr

≤ c

2∫
ε

rα(x)−2r

1
(p−

[x,x+r])
′
dr

≤ c

2∫
ε

r
α(x)−2+ 1

p′(x) dr

= cεα(x)− 1
p(x) .

Taking ε =
(M+f(x)

)−p(x)
we have

Wα(·)(|f |)(x) ≤ cα,p

[
(M+f)(x)

] p(x)
q(x) .

P r o o f o f T h e o r e m 4.4. Let ‖f‖Lp(·)([0,b]) ≤ 1 which is equivalent to say that
b∫
0

|f(x)|p(x) dx ≤ 1.

By Lemma 4.6 and Theorem 3.3 we have

b∫
0

|Wα(·)f(x)|q(x) dx ≤ c

b∫
0

(M+f(x)
)p(x)

dx ≤ c.

The theorem has been proved.

The next statement follows analogously.

Theorem 4.7 Let I = [0, b] be a bounded interval and let p ∈ P−(I). Suppose that 0 < α−. Assume also
that (αp)+I < 1 and q(x) = p(x)

1−α(x)p(x) . Then Rα(·) is bounded from Lp(·)(I) to Lq(·)(I).

5 Calderón–Zygmund operators

We begin this section with the following definition:

Definition 5.1 We say that a function k in L1
loc

(
R \ {0}) is a Calderón–Zygmund kernel if the following

properties are satisfied:
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(a) there exists a finite constant B1 such that∣∣∣∣∣∣∣
∫

ε<|x|<N

k(x) dx

∣∣∣∣∣∣∣ ≤ B1

for all ε and all N , with 0 < ε < N, and furthermore

lim
ε→0

∫
ε<|x|<N

k(x) dx

exists;
(b) there exists a positive constant B2 such that∣∣k(x)

∣∣ ≤ B2

|x| , x �= 0;

(c) there exists a positive constant B3 such that for all x and y with |x| > 2|y| > 0 the inequality

|k(x − y) − k(x)| ≤ B3
|y|
|x|2

holds.

It is known (see [22], [1]) that conditions (a)–(c) are sufficient for the boundedness of the operators:

T ∗f(x) = sup
ε>0

∣∣Tεf(x)
∣∣;

Tf(x) = lim
ε→0

Tεf(x),

where

Tεf(x) =
∫

|x−y|>ε

k(x − y)f(y) dy,

in Lr(R), 1 < r < ∞.
It is clear that Tf(x) ≤ T ∗f(x).
The following example shows that there exists a nontrivial Calderón–Zygmund kernel with support contained

in (0, +∞).
Example 5.2 The function

k(x) =
1
x

sin(ln x)
ln x

χ(0,+∞)(x)

is a Calderón–Zygmund kernel (for details see e.g. [22], [1]).

There exists also a nontrivial Calderón–Zygmund kernel supported in (−∞, 0).
The next results are well-known (see [22], [1]).

Theorem 5.3 Let p be a constant, 1 < p < ∞, and let k be a Calderón–Zygmund kernel with support in
(−∞, 0). Then the condition w ∈ A+

p (R) implies the inequality∫
R

∣∣T ∗f(x)
∣∣pw(x) dx ≤ c

∫
R

∣∣f(x)
∣∣pw(x) dx, f ∈ Lp

w(R).

Theorem 5.4 Let k be a Calderón–Zygmund kernel with support in (0, +∞) and let p be a constant, 1 < p <
∞. If w ∈ A−

p (R), then it follows that T ∗ is bounded in Lp
w(R).

Theorems 2.5, 3.12, 3.13, 5.2, 5.3 and Proposition D yield our main results of this section:

Theorem 5.5 Let I = R and let p ∈ P+(I). Suppose that p ∈ P∞(R \ [−a, a]) for some positive number a.
Then T ∗, with kernel k supported in (−∞, 0), is bounded in Lp(·)(I).

Theorem 5.6 Let I = R and let p ∈ P−(I). Assume that p ∈ P∞(R \ [−a, a]) for some positive number a.
Then T ∗, with kernel k supported in (0, +∞), is bounded in Lp(·)(I).
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