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We show that the Hardy operator

Hf(x) =
1

x

x∫

0

f(t)dt

from L
p),θ
dec,w(I) to L

p),θ
w (I), 0 < p < ∞, θ > 0, I = (0, 1), is bounded if and only if the

weight w belongs to the well–known class Bp restricted to the interval I. This result

is applied to derive a similar assertion for the Riemann–Liouville fractional integral

operator and to establish criteria for the boundedness of the Hardy–Littlewood maximal

operator in the weighted grand Lorentz space Λ
p),θ
w . Bibliography: 23 titles.

Introduction

The paper is devoted to one weight criteria in grand Lebesgue spaces for the Hardy transform

on the cone of nonincreasing functions. In particular, we show that the operator

(Hf)(x) =
1

x

x∫

0

f(t)dt

from L
p),θ
dec,w(I) to L

p),θ
w (I) (0 < p <∞, θ > 0, I = (0, 1)) is bounded if and only if the weight w

belongs to the well–known Bp class defined on the interval I. The proof of this result is based

on the extrapolation for Bp weights. As a consequence, we derive a similar statement for the
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Riemann–Liouville transform

(Rαf)(x) = x−α

x∫

0

f(t)

(x− t)1−α
dt, 0 < α < 1.

The one weight result for the operator H is applied to establish criteria for the boundedness

of the Hardy–Littlewood maximal operator

Mf(x) = sup
Q�x

1

|Q|
∫

Q

f(y)dy, x ∈ R
n,

where the supremum is taken over all cubes Q containing x, in the weighted grand Lorentz

space Λ
p)
w .

In the last decade, the theory of grand Lebesgue spaces introduced by Iwaniec and Sbordone

[1] is one of the intensively developing directions of the modern analysis. The necessity to

investigate these spaces emerged from their rather essential role in various fields, in particular,

in the integrability problem of Jacobian under minimal hypothesis (cf. [1] for details).

As was proved in [2], the Hardy–Littlewood maximal operator is bounded in the weighted

grand Lebesgue spaces L
p)
w if and only if the weight w belongs to the Muckenhoupt class Ap. The

same phenomena was noticed in [3] for the Hilbert transform. We refer to [4, 5] for one–weight

results regarding maximal and singular integrals of various type in these spaces. In [6], the

author studied the boundedness of the fractional integral operator in weighted grand Lebesgue

spaces from the one weight viewpoint.

For the weight theory of Hardy type transforms and fractional integrals in classical Lebesgue

spaces we refer, for example, to [7]–[11] and the references therein. The one weight problem from

nonincreasing functions viewpoint for the kernel operators involving Hardy type transforms was

studied, in particular, in [12]–[14].

The paper is organized as follows. In Section 1, we give definitions and some well–known

properties of Hardy transforms, Hardy–Littlewood maximal functions, and grand Lebesgue

spaces. In Section 2, we prove the one weight inequality of general type for pairs of decreasing

functions in grand Lebesgue spaces. Section 3 deals with one weight criteria for the operators

H for nondecreasing functions in grand Lebesgue spaces. In Section 4, we apply the result of

Section 3 to derive one weight criteria for the operator Rα for nonincreasing functions in grand

Lebesgue spaces and to establish necessary and sufficient conditions for the boundedness of M

in weighted grand Lorentz spaces Λ
p),θ
w (I).

Finally, we point out that constants (often different constants in the same series of inequal-

ities) are generally denoted by c or C. The expression f(x) ≈ g(x) means that c1f(x) � g(x) �
c2f(x), where the positive constants c1 and c2 are independent of x.

1 Preliminaries

Let 0 < p < ∞ and let θ > 0. Throughout the paper, we use the notation I := (0, 1).

Suppose that w is integrable a.e. nonnegative function (i.e., a weight) on I. We assume that

r∫

0

w(x)dx > 0 ∀ r ∈ I.
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We denote by L
p),θ
w (I) the generalized grand Lebesgue space. This is the class of all measur-

able functions f : I → R for which

‖f‖
L
p),θ
w (I)

:= sup
0<ε�ε0

(
εθ

1∫

0

|f(t)|p−εw(t)dt

) 1
p−ε

<∞,

where ε0 = p− 1 if p > 1 and ε0 ∈ (0, p) if 0 < p � 1.

If w ≡ const, then we have unweighted space Lp),θ(I).

It is easy to check that

‖f‖
L
p),θ
w (I)

≈ sup
0<ε�σ0

εθ/p‖f‖Lp−ε
w (I)

for some small positive number σ0.

It turns out that the generalized grand Lebesgue spaces Lp),θ are appropriate for solving the

existence, uniqueness, and regularity problems for various nonlinear partial differential equations.

The space Lp),θ (defined on domains in R
n) for arbitrary positive θ was introduced in the

paper [15], where the existence and uniqueness of the inhomogeneous n-harmonic equation

div A(x,∇u) = μ was studied.

If θ = 1, then Lp),θ coincides with the Iwaniec–Sbordone space, denoted by Lp)(I).

For structural properties of grand Lebesgue spaces we refer, for example, to [16, 17].

Let us denote by D the class of all nonnegative nonincreasing functions on I. We denote by

L
p),θ
dec,w(I) the intersection L

p),θ
w ∩D.

Note that L
p),θ
dec,w(I) �= Lp

dec,w(I). Indeed, for example, if w ≡ const, then the function

f(x) = x−1/p belongs to L
p)
dec(I), but does not belong to Lp

dec(I).

Let us mention the following continuous embeddings of grand Lebesgue spaces:

Lp
w(I) ↪→ Lp),θ1

w (I) ↪→ Lp),θ2
w (I) ↪→ Lp−ε

w (I),

where 0 < ε � p− 1 and θ1 < θ2.

For the following statement we refer to [18] (cf. also [9]).

Theorem A. Let 0 < p <∞, and let w be nonnegative function on R+. Then the following

inequality holds:
∞∫

0

(
Hf(x)

)p
w(x)dx � c

∞∫

0

(f(x))pw(x)dx

for all nonnegative and nonincreasing functions f on R+ if and only if w ∈ Bp, i.e., there is a

positive constant B such that for all r > 0

rp
∞∫

r

w(x)

xp
dx � B

r∫

0

w(x)dx.

Let (cf. [19])

‖w‖Bp = inf

{
C > 0 :

r∫

0

w(t)dt+ rp
∞∫

r

w(t)

tp
dt � C

r∫

0

w(t)dt ∀r > 0

}
.
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Note that ‖w‖Bp > 1.

The class Bp possesses the following remarkable properties (cf. [18, 9]):

(i) if p < q, then w ∈ Bp ⇒ w ∈ Bq,

(ii) if w ∈ Bp, then there exists ε > 0 such that w ∈ Bp−ε; moreover,

‖w‖Bp−ε �
C0‖w‖Bp

1− εαp‖w‖Bp

, (1.1)

where C0 and α (0 < α < 1) are universal constants and ε <
1

αp‖w‖Bp

.

Proposition A ([18]). Let 1 < p < ∞. Suppose that w is decreasing on R+. Then w ∈ Bp

if and only if

sup
t>0

1

r

[ r∫

0

w(x)dx

]1/p[ r∫

0

w1−p′(x)dx

]1/p′

<∞, p′ =
p

p− 1
.

The classical Lorentz space Λp
w is defined as the set of functions g on R

n such that

‖g‖Λp
w
=

[ ∞∫

0

[g∗(x)]pw(x)dx

]1/p

<∞,

where g∗ is the decreasing rearrangement of g:

g∗(t) = inf{λ : |{x ∈ R
n : |g(x)| > λ}| � t}.

The following statement provides a solution of the one weight problem for the operator M

in weighted Lorentz spaces Λp
w defined on R

n (cf. [18], [9]).

Theorem B. Let 0 < p <∞, and let w be a nonnegative function on R+. Then the operator

M is bounded in Λp
w if and only if w ∈ Bp.

Let supp w ⊂ I. Together with grand Lebesgue spaces, we are interested in the space Λ
p),θ
w

defined as follows:

Λp),θ
w : =

{
g : ‖g‖

Λ
p),θ
w

:= sup
0<ε�ε0

(
εθ

∞∫

0

[g∗(x)]p−εw(x)dx

)1/(p−ε)

= sup
0<ε�ε0

(
εθ

1∫

0

[g∗(x)]p−εw(x)dx

)1/(p−ε)

<∞
}
,

where ε0 = p− 1 if p > 1 and 0 < ε0 < p if p � 1.

It is easy to see that if w = const on I, then Λ
p),θ
w is the generalized grand Lebesgue space

Lp),θ(Ω), where |Ω| = 1.
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Remark. The grand Lorentz–Karamata spaces Lq),p
b , introduced in [20, 21], are defined by

the quasinorm (we suppose that Lq),p
b is defined on I)

‖f‖Lq),p
b (I)

:= sup
0<σ<σ0

σ1/p

( 1∫

0

tp/(q−σ)
[
b(t)f∗(t)

]p dt
t

)1/p

,

where 0 < p, q <∞ and b is a positive continuous function defined on R+ and slowly varying in

the sense of Karamata. In particular, if p = q, then Lq),p
b (I) is the grand Lebesgue–Karamata

space defined by the quasinorm (cf. [21])

‖f‖Lq),p
b (I)

= ‖f‖Lp)
b (I)

= sup
0<ε<σ0

ε1/p

( 1∫

0

[
b(t)f∗(t)

]p−εdt

t

)1/(p−ε)

.

It is clear that, in general, the spaces Lp)
b and Λ

p)
w are different.

Let ϕ be a nonnegative nonincreasing locally integrable function on R+. Suppose that

Φ(x) =

x∫

0

ϕ(t)dt.

Let Sϕ be the Hardy type transform given by

(Sϕf)(x) =
1

Φ(x)

x∫

0

f(t)ϕ(t)dt. (1.2)

Lemma A (cf. [14, 19]). Let 0 < p <∞, and let w be a nonnegative function on R+. Then

the inequality

‖Sϕf‖Lp
w(R+) � A‖f‖Lp(R+)

holds for all nonnegative and nondecreasing functions f if and only if

r∫

0

w(x)dx+Φ(r)p
∞∫

r

w(x)

Φ(x)
dx � Ap

r∫

0

w(x)dx.

The following extrapolation theorem is taken from [19].

Theorem C. Suppose that 0 < p < ∞. Let ψ be a nonnegative nondecreasing function

on R+, and let w be a nonnegative function on R. Assume that (f, g) is a pair of nonnegative

nonincreasing functions on R+. Assume also that for every w ∈ Bp0

∞∫

0

fp0w � ψ(‖w‖Bp0
)

∞∫

0

gp0w.

626



Then for every p > 0 and w ∈ Bp

∞∫

0

fpw � ψ̃(‖w‖Bp)

∞∫

0

gpw,

where the function ψ̃ is defined as follows:

ψ̃(t) = inf
0<ε<

p0
tpαp

ψp/p0
(p0
ε

) C0t

1− εt p
p0
αp
, (1.3)

C0 and α are universal constants defined in (1.1).

2 General Type Theorem

In this section, we prove the general type theorem for couples of nonincreasing functions in

weighted grand Lebesgue spaces L
p),θ
w (I), where w is a weight on I. We need the following slight

modification of Theorem C for the interval I.

Definition. Let 0 < p <∞. We say that a nonnegative integrable function w on I belongs

to the class Bp(I) if there is a positive constant B̃ such that for all 0 < r � 1

rp
1∫

r

w(t)

tp
dt � B̃

r∫

0

w(t)dt.

We use the following notation:

‖w‖Bp(I) := inf
{
C > 0 :

r∫

0

w(t)dt+ rp
1∫

r

w(t)

tp
dt � C

r∫

0

w(t)dt ∀0 < r � 1
}
,

w̃(x) :=

{
w(x), x ∈ I,

0, x > 1.
.

It is clear that ‖w‖Bp(I) > 1.

The proof of the following lemma can be checked immediately.

Lemma 2.1. Let 0 < p <∞, and let w ∈ Bp(I). Then w̃ ∈ Bp. Moreover,

‖w‖Bp(I) = ‖w‖Bp .

Corollary 2.1. Let 0 < p < ∞. Suppose that w ∈ Bp(I). Then there is a positive number

ε such that w ∈ Bp−ε(I). Moreover,

‖w‖Bp−ε(I) �
C0‖w‖Bp(I)

1− εαp‖w‖Bp(I)
, (2.1)

where the constants C0 and α are the same as in (1.1).
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It is also clear that if p < q, then w ∈ Bp(I) implies w ∈ Bq(I).

The following statement is a restricted version of Lemma 2.3 in [19]. For the sake of com-

pleteness, we give the proof.

Lemma 2.2. Let 0 < p0 < ∞, and let ψ be a nondecreasing function on I. Suppose that

(f, g) is a pair of nonincreasing functions on I. Suppose that for every w ∈ Bp0(I)

1∫

0

fw � ψ(‖w‖Bp0 (I)
)

1∫

0

gw. (2.2)

Then for every 0 < ε < p0 and every t ∈ I

t∫

0

f(τ)τp0−1−εdτ � ψ
(p0
ε

) t∫

0

g(τ)τp0−1−εdτ. (2.3)

Proof. We take w(t) = v(t)tp0−1−ε, where v is a nonnegative nonincreasing function on I.

Then

r∫

0

w(t)dt+ rp0
1∫

r

w(t)

tp0
dt =

r∫

0

w(t)dt+ rp0
1∫

r

v(t)

t1+ε
dt �

r∫

0

w(t)dt+ ε−1v(r)rp0−ε

=

r∫

0

w(t)dt+
p0 − ε

ε
v(r)

r∫

0

tp0−ε−1dt � p0
ε

r∫

0

w(t)dt.

Consequently, w ∈ Bp0(I); moreover,

‖w‖Bp0 (I)
� p0

ε
.

Taking v(t) = χ(0,s)(t) (t ∈ I) and using (2.2), we obtain (2.3).

Lemma 2.3. Let 0 < p <∞. Suppose that Sϕ is defined by (1.2). Then the inequality

‖Sϕf‖Lp
w(I) � A‖f‖Lp

w(I)

holds for all nonnegative and nondecreasing functions f if and only if

r∫

0

w(x)dx+Φ(r)p
1∫

r

w(x)

Φ(x)
dx � Ap

r∫

0

w(x)dx.

The proof of this statement follows immediately if we take the weight function w̃ instead of

w in Lemma A and extend f by 0 outside I.

The following statement is a restricted version of Theorem C on I.

628



Lemma 2.4. Let ψ be a nonnegative and nondecreasing function on I. Assume that (f, g)

is a pair of nonnegative nonincreasing functions on I. Let 0 < p0 < ∞. Suppose that for every

w ∈ Bp0(I)
1∫

0

fp0w � ψ(‖w‖Bp0 (I)
)

1∫

0

gp0w.

Then for every p > 0 and w ∈ Bp(I)

1∫

0

fpw � ψ̃(‖w‖Bp(I))

1∫

0

gpw,

where the function ψ̃ is defined by (1.3).

Proof. Let w ∈ Bp(I), and let 0 < ε < p. Suppose that

ϕ(t) := tp0−1−ε.

Using Lemma 2.2 and the fact that f is decreasing, we see that

1∫

0

fp(t)w(t)dt �
1∫

0

(
p0 − ε

tp0−ε

t∫

0

fp0(s)sp0−1−εds

)p/p0

w(t)dt

� ψp/p0(p0/ε)

1∫

0

(
p0 − ε

tp0−ε

t∫

0

gp0(s)sp0−1−εds

)p/p0

w(t)dt

= ψp/p0(p0/ε)

1∫

0

(
Sϕg

p0(t)
)p/p0w(t)dt.

On the other hand, by Lemma 2.3, it suffices to compute a constant A such that

r∫

0

w(x)dx+ r
(p0−ε)p

p0

1∫

r

w(x)x
− (p0−ε)p

p0 dx � A

r∫

0

w(x)dx. (2.4)

Note that (2.4) is equivalent to the condition w ∈ B(p0−ε)p/p0(I) with A = ‖w‖B(p0−ε)p/p0
(I).

Since w ∈ Bp(I), there is a positive number η such that w ∈ Bp−η(I). Now, we choose ε so

small that

p− η =
(p0 − ε)p

p0
.

Then η = εp/p0. By (2.1), we have

A = ‖w‖Bp−η(I) �
C‖w‖Bp(I)

1− ε p
p0
αp‖w‖Bp(I)

.
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Summarizing the above–derived inequalities and taking into account that η can be taken suffi-

ciently small, we conclude that

1∫

0

fp(t)w(t)dt � ψp/p0
(p0
ε

) C‖w‖Bp(I)

1− ε p
p0
αp‖w‖Bp(I)

1∫

0

gp(t)w(t)dt

for every

0 < ε <
p0

pαp‖w‖Bp(I)
.

Now, we are ready to prove the main result of this section.

Theorem 2.1. Suppose that θ > 0 and ψ is a nonnegative nonincreasing function on I.

Assume that 0 < p0 <∞. Let (f, g) be a pair of nonnegative nonincreasing functions on I, and

let for every w ∈ Bp0(I)

1∫

0

fp0w � ψ(‖w‖Bp0 (I)
)

1∫

0

gp0w.

Then for every p > 0 and w ∈ Bp(I)

‖f‖
L
p),θ
w (I)

� c‖g‖
L
p),θ
w (I)

,

where the positive constant c depends only on p, θ, and w.

Proof. We prove the theorem for 1 < p < ∞. The proof for the case 0 < p � 1 is similar.

Let w ∈ Bp(I). Then there is a positive number σ such that w ∈ Bp−σ(I). Hence w ∈ Bp−ε(I)

for all 0 < ε � σ. We can assume that σ < p− 1. Further, if ε ∈ (σ, p− 1], then, by the Hölder

inequality,

‖f‖Lp−ε
w (I) �

( 1∫

0

f q−σ(x)w(x)dx

) 1
p−σ

w(I)
ε−σ

(p−σ)(p−ε)

because (
p− σ

p− ε

)′
=
p− σ

ε− σ
.

Further, the conditions σ < p− 1 and σ < ε < p− 1 yield

0 <
ε− σ

(p− σ)(p− ε)
<
p− 1− σ

p− σ
. (2.5)
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Simple calculations, (2.5), Lemma 2.4 and the fact that w is integrable on I yield that

‖f‖
L
p),θ
w (I)

= max

{
sup

0<ε�σ
ε

θ
p−ε ‖f‖Lp−ε

w (I), sup
σ<ε�p−1

ε
θ

p−ε ‖f‖Lp−ε
w (I)

}

� max

{
sup

0<ε�σ
ε

θ
p−ε ‖f‖Lp−ε

w (I), sup
σ<ε�p−1

ε
θ

p−ε ‖f‖Lp−ε
w
w(I)

ε−σ
(p−σ)(p−ε)

}

� max

{
1, sup

σ<ε�p−1
ε

θ
p−εσ−

θ
p−σw(I)

ε−σ
(p−σ)(p−ε)

}
sup

0<ε�σ
ε

θ
p−ε ‖f‖Lp−ε

w (I)

� max

{
1,

[
sup

σ<ε�p−1
ε

θ
p−ε

]
σ
− θ

p−σ
(
1 + w(I)

) p−1−σ
p−σ

}

× sup
0<ε�σ

ψε(‖w‖Bp−ε(I))ε
θ

p−ε ‖g‖Lp−ε
w ([0,1])

�
[
c(p, θ, w, σ) sup

0<ε�σ
ψε(‖w‖Bp−ε(I))

]
‖g‖

L
p),θ
w (I)

=: D‖g‖
L
p),θ
w (I)

,

where

c(p, θ, w, σ) := max

{
1,

[
sup

σ<ε�p−1
ε

θ
p−ε

]
σ
− θ

p−σ
(
1 + w(I)

) p−1−σ
p−σ

}

and the function ψε is defined by

ψε(t) = inf
0<η< p

t(p−ε)αp−ε

ψ
1
p

(p
η

)[ C0t

1− ηtp−ε
p αp−ε

] 1
p−ε

.

Here C0 and α are universal constant defined in (1.1).

Observe now that since ‖w‖Bp−ε(I) � ‖w‖Bp−σ(I), the following estimate holds:

D � c(p, θ, , σ, w) inf
0<η< 1

αp−σ‖w‖Bp−σ(I)

ψ
1
p

(p
η

)[
1 +

C0‖w‖Bp−σ(I)

1− ηαp−σ‖w‖Bp−σ(I)

] 1
p−σ

. (2.6)

3 Hardy Transforms

In this section, we derive criteria for the one weight inequality for the Hardy transform H

in grand Lebesgue spaces L
p),θ
w (I) for decreasing functions.

Our main result is the following statement.

Theorem 3.1. Let 0 < p < ∞, and let θ > 0. Suppose that w is a weight on I. Then the

inequality

‖Hf‖
L
p),θ
w (I)

� c‖f‖
L
p),θ
dec,w(I)

(3.1)

holds if and only if w ∈ Bp(I).
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Proof. Sufficiency. Since (Hf, f) is a pair of nonnegative and nonincreasing functions,

where f is nonnegative and nonincreasing, the result follows from Theorem 2.1. By Lemma 2.3

(taking ϕ(x) ≡ 1) and (2.6), the following inequality holds for the best possible constant c in

(3.1):

c � c(p, θ, , σ, w) inf
(p
η

) 1
p

[
1 +

C0‖w‖Bp−σ(I)

1− ηαp−σ‖w‖Bp−σ(I)

] 1
p−σ

.

where the infimum is taken over η such that 0 < η <
1

αp−σ‖w‖Bp−σ(I)
, the positive constant

c(p, θ, σ, w) depends only on p, θ, σ, w, and σ is a small positive number taken in such a way

that w ∈ Bp−σ(I).

Necessity. We consider the case 1 < p < ∞. The proof of the case 0 < p � 1 is the same.

Suppose that (3.1) holds. Since

0 <

r∫

0

w(x)dx ∀ r > 0,

there is a number εr ∈ (0, p− 1] such that

sup
0<ε�p−1

(
εθ

r∫

0

w(x)dx

) 1
p−ε

=

(
εθr

r∫

0

w(x)dx

) 1
p−εr

.

Hence, taking fr(x) = χ(0,r)(x), we have

‖f‖
L
p),θ
dec,w(I)

= ε
θ

p−εr
r

( r∫

0

w(x)dx

) 1
p−εr

.

On the other hand, for fr we have

‖Hf‖
L
p),θ
w (I)

� sup
0<σ�p−1

rσ
θ

p−σ

( 1∫

r

w(x)

xp−σ
dx

) 1
p−σ

� rε
θ

p−εr
r

( 1∫

r

w(x)

xp−εr
dx

) 1
p−εr

.

Taking (3.1) into account, we find

rp−εr

1∫

r

w(x)

xp−εr
dx � c

r∫

0

w(x)dx,

where the positive constant c is independent of r.

Consequently,

rp
1∫

r

w(x)

xp
dx = rp−εr+εr

1∫

r

w(x)

xp−εr+εr
dx � rp−εr

1∫

r

w(x)

xp−εr
dx � c

r∫

0

w(x)dx.

Finally, we conclude that w ∈ Bp(I).
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To prove the following statement we need some lemmas.

Lemma 3.1. Let 1 � p <∞, and let w be a weight on I. Then the following conditions are

equivalent:

(i) the inequality

w({x ∈ I : Hf(x) > λ}) � C

λp

1∫

0

fp(t)w(t)dt

holds for all nonnegative f ;

(ii) the inequality

1∫

0

(Hf)p(t)w(t)dt � C

1∫

0

fp(t)w(t)dt,

holds for all nonnegative f ;

(iii) the condition

sup
0<r<s<1

[
1

sp

s∫

r

w(x)dx

]1/p[ r∫

0

w1−p′(x)dx

]1/p′

<∞, p′ =
p

p− 1
, (3.2)

is satisfied.

The proof of this lemma can be found in [22] in the case R+, but the arguments remain also

valid for I. We omit details.

Lemma 3.2. Let 1 < p < ∞. Suppose that w is decreasing on I. Then w ∈ Bp(I) if and

only if

sup
0<r<1

1

r

[ r∫

0

w(x)dx

]1/p[ r∫

0

w1−p′(x)dx

]1/p′

<∞, p′ =
p

p− 1
. (3.3)

Proof. Sufficiency. First of all, we note that (3.3) implies (3.2). Now Lemma 3.1 completes

the proof of Sufficiency.

Necessity. Let us now show that if w is decreasing on I, then the condition w ∈ Bp(I) implies

(3.3). For this purpose it suffices to show that the boundedness of H in Lp
dec,w(I) yields (3.3).

We follow the proof of Theorem 1.10 in [18]. Suppose that

fn,r(x) = w1−p′
n (x)χ(0,r)(x),

where

wn(x) :=

{
w(x), w(x) > 1/n,

1/n, w(x) � 1/n
.

Since fn,r is nonincreasing, it follows that Hfn,r is nonincreasing. Hence, by using the

boundedness of H in Lp
dec,w(I) we find that

[
1

r

r∫

0

w1−p′
n (x)dx

]p r∫

0

w(x)dx �
r∫

0

(Hfn,r(x))
pw(x)dx � c

r∫

0

w1−p′
n (x)dx.
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Consequently,

1

rp

[ r∫

0

w1−p′
n (x)dx

]p−1 r∫

0

w(x)dx � C.

Passing now to the limit as n→ ∞ we have the desired result.

Corollary 3.1. Let 1 < p <∞, and let w be a decreasing weight on I. Then the inequality

(3.1) holds if and only if (3.3) is satisfied.

4 Applications to Fractional Integrals
and Maximal Functions

In this section, we apply the main result of Section 3 to derive criteria for the boundedness

of Rα from L
p),θ
dec,w(I) to L

p),θ
w (I) and to establish necessary and sufficient conditions for the

boundedness of M in weighted grand Lorentz spaces Λ
p),θ
w .

Theorem 4.1. Assume that 0 < p <∞, θ > 0, and 0 < α < 1. Suppose that w is a weight

on I. Then the inequality

‖Rαf‖Lp),θ
w (I)

� C‖f‖
L
p),θ
dec,w(I)

holds if and only if w ∈ Bp(I).

Proof. The proof of this theorem is based on Theorem 3.1 and the pointwise estimates

c1Rαf(x) � Hf(x) � c2Rαf(x), f ↓, f � 0, (4.1)

where the positive constants c1 and c2 are independent of x and f .

For the sake of completeness, we prove (4.1). The left–hand side estimate in (4.1) follows

from the inequalities

(Rαf)(x) = xα
x/2∫

0

f(t)

(x− t)1−α
dt+ xα

x∫

x/2

f(t)

(x− t)1−α
dt

� 21−α 1

x

x∫

0

f(t)dt+
2−α

α
f(x/2) � C

(
Hf(x) +

f(x/2)

x

x/2∫

0

dt

)
� CHf(x),

where the positive constant C depends only on α.

The right–hand side estimate in (4.1) can be checked immediately since (x − t)α−1 � xα−1

for 0 < t < x. In fact, c2 = 1.

Theorem 4.2. Let 0 < p < ∞. Suppose that w is a nonnegative function on R+ such that

supp w ⊂ I and w ∈ L(I). Then the operator M is bounded in Λ
p),θ
w if and only if w ∈ Bp(I).
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Proof. Sufficiency follows from the pointwise inequality (cf., for example, [23, P. 122]):

(Mg)∗(x) � An(Hg
∗)(x), x > 0,

and Theorem 3.1.

Necessity follows from Theorem 3.1 and the fact that if f is a nonincreasing function on R+,

then

(Mg)∗(t) � 4−nA ·Hf(t), t > 0,

for g(x) = f(A|x|n), x ∈ R
n, where A is the volume of the unit sphere in R

n (cf., for example,

[18] for details).

Acknowledgement

The work was partially supported by the Rustaveli National Science Foundation Grant

(Project No. GNSF/ST09 23 3-100).

The author expresses his gratitude to Professor V. Kokilashvili for his valuable remarks and

suggestions.

References

1. T. Iwaniec and C. Sbordone, “On the integrability of the Jacobian under minimal hypothe-
ses,” Arch. Ration. Mech. Anal. 119, 129–143 (1992).

2. A. Fiorenza, B. Gupta, and P. Jain, “The maximal theorem in weighted grand Lebesgue
spaces,” Studia Math. 188, No. 2, 123-133 (2008).

3. V. Kokilashvili and A. Meskhi, “A note on the boundedness of the Hilbert transform in
weighted grand Lebesgue spaces,” Georgian Math. J. 16, No. 3, 547–551 (2009).

4. V. Kokilashvili, “Boundedness criteria for singular integrals in weighted grand Lebesgue
spaces,” J. Math. Sci. (New York) 170, No. 1, 20–33 (2010).

5. V. Kokilashvili, “Boundedness criterion for the Cauchy singular integral operator in
weighted grand Lebesgue spaces and application to the Riemann problem,” Proc. A. Raz-
madze Math. Inst. 151, 129-133 (2009).

6. A. Meskhi, Criteria for the Boundedness of Potential Operators in Grand Lebesgue Spaces
arXiv:1007.1185v1 [math.FA] 7 July, 2010.

7. V. G. Maz’ya, Sobolev Spaces, Springer, Berlin etc. (1984).

8. A. Kufner and L.-E. Persson, Weighted Inequalities of Hardy Type, World Scientific Pub-
lishing Co, Singapore etc. (2003).

9. M. J. Carro, J. A. Raposo, and J. Soria, “Recent developments in the theory of Lorentz
spaces and weighted inequalities,” Mem. Am. Math. Soc. 187, No. 877 (2007).

10. V. Kokilashvili and M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces, World
Scientific Publishing Co, Singapore etc. (1991).

11. D. E. Edmunds, V. Kokilashvili, and A. Meskhi, Bounded and Compact Integral Operators,
Kluwer Academic Publishers, Dordrecht etc. (2002).

635



12. S. Lai, “Weighted norm inequalities for general operators on monotone functions,” Trans.
Am. Math. Soc. 340, No. 2, 811–836 (1993).

13. C. Andersen, “Weighted generalized Hardy inequalities for nonincreasing functions,” Can.
J. Math. 42, No. 6, 1121–1135 (1991).

14. M. J. Carro and J. Soria, “Boundedness of some integral operators,” Can. J. Math. 45,
195–231 (1993).

15. L. Greco, T. Iwaniec, and C. Sbordone, “Inverting the p-harmonic operator,” Manuscripta
Math. 92, 249–258 (1997).

16. A. Fiorenza, Duality and reflexivity in grand Lebesgue spaces, Collect. Math. 51, No. 2,
131–148 (2000).

17. C. Capone and A. Fiorenza, “On small Lebesgue spaces,” J. Funct. Spaces Appl. 3, No. 1,
73–89 (2005).

18. M. A. Arino and B. Muckenhoupt, “Maximal functions on classical Lorentz spaces and
Hardy’s inequality with weights for nonincreasing functions,” Trans. Am. Math. Soc. 320,
No. 2, 727–735 (1990).

19. M. J. Carro and M. Lorente, “Rubio de Francia’s extrapolation theorem for Bp weights,”
Proc. Am. Math. Soc. 138, No. 2, 629–640 (2010).

20. A. Fiorenza and G. E. Karadzhov, “Grand and small Lebesgue spaces and their analogs,”
Z. Anal. Anwend. 23, No. 4, 657–681 (2004).

21. C. Capone, A. Fiorenza, and G. E. Karadzhov, “Grand Orlicz spaces and integrability of
the Jacobian,” Math. Scand. 102, No. 1, 131–148 (2008).

22. K. Andersen and B. Muckenhoupt, “Weighted weak type inequalities with applications to
Hilbert transforms and maximal functions,” Studia Math. 72, 9–26 (1982).

23. C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Orlando (1988).

Submitted on June 11, 2011

636


	Abstract
	Introduction
	1 Preliminaries
	2 General Type Theorem
	3 Hardy Transforms
	4 Applications to Fractional Integralsand Maximal Functions
	Acknowledgement
	References

