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WEIGHTED KERNEL OPERATORS IN Lp(x)(R+) SPACES

ALEXANDER MESKHI AND MUHAMMAD ASAD ZAIGHUM ∗

(Communicated by J. Pečarić)

Abstract. Necessary and sufficient conditions on a weight v governing the boundedness/ com-
pactness of the weighted kernel operator Kv f (x) = v(x)

∫ x
0 k(x,t) f (t)dt from the variable ex-

ponent Lebesgue spaces Lp(·)(R+) into another one Lq(·)(R+) is established under the local
log–Hölder continuity condition and the decay condition at infinity on exponents. The distance
between Kv and the class of compact integral operators acting from Lp(·)(R+) to Lq(·)(R+)
(measure of non–compactness) is also estimated from above and below.

1. Introduction

The paper is devoted to the criteria for the kernel operator

Kv f (x) = v(x)
∫ x

0
k(x,t) f (t)dt, x > 0,

to be bounded/compact in variable exponent Lebesgue spaces when exponents of spaces
satisfy the local log– Hölder continuity condition and decay condition at infinity. This
operator involves, for example, one–sided potentials such as the weighted Riemann-
Liouville transform with variable parameter. In the case when the operator Kv is not
compact, we establish two–sided estimates of the measure of non–compactness for this
operator in terms of the weight v and kernel k . The paper can be considered as a
continuation of the research carried out in the paper [10], where the same problems
were studied under the local log–Hölder continuity condition on exponents provided
that they are constants outside some large interval.

The space Lp(·) is a special case of the Musielak-Orlicz space (see [18], [19]).
Historically, the first systematic study of modular spaces is due to H. Nakano [20].

Variable exponent Lebesgue and Sobolev spaces arise e.g., in the study of math-
ematical problems related to applications to mechanics of the continuum medium (see
[24], [5]). The list of those references, where mapping properties of operators of Har-
monic Analysis in Lp(x) spaces were studied is quite long. For those properties we refer
e.g., to the monographs [24], [5], the survey paper [9] and references therein.

Mathematics subject classification (2010): 46E30, 47B34.
Keywords and phrases: Variable exponent Lebesgue spaces, positive kernel operator, boundedness,

compactness, measure of non–compactness.
* Corresponding Author.

c© � � , Zagreb
Paper JMI-10-50

623

http://dx.doi.org/10.7153/jmi-10-50


624 ALEXANDER MESKHI AND MUHAMMAD ASAD ZAIGHUM

The main statements of this paper generalize also appropriate results of [15], where
the similar problems were studied for Kv in the classical Lebesgue spaces (Lebesgue
spaces with constant exponents).

The paper consists of five sections. Section 2 gives well–known results about
Lp(·) spaces. Section 3 is devoted to the boundedness criteria for the operator Kv ,
while Section 4 is devoted to the compactness problem in Lp(·) spaces. In Section 5 we
derive two–sided estimates of the measure of non-compactness for Kv acting in variable
exponent Lebesgue spaces.

Throughout the paper constants (often different constants in the same series of
inequalities) will mainly be denoted by c or C ; under the symbol p′(x) we mean the

function p(x)
p(x)−1 , 1 < p(x) < ∞ . The symbol χE means the characteristic function of a

set E , in particular, χ(a,b) is the characteristic function of an interval (a,b) .

2. Preliminaries

Let E be a measurable set in R with positive measure. We denote:

p−(E) := inf
E

p, p+(E) := sup
E

p

for a measurable function p on E . By P(E) we denote the class of measurable
function p for which 1 < p−(E) � p+(E) < ∞ . We say that a measurable function f
on E belongs to Lp(·)(E) (or to Lp(x)(E)) if

Sp(·)( f ) =
∫
E

∣∣ f (x)∣∣p(x)
dx < ∞.

It is a Banach space with respect to the norm (see e.g., [9], [12], [26], [27])

‖ f‖Lp(·)(E) = inf
{

λ > 0 : Sp(·)
(
f/λ

)
� 1

}
.

In the sequel we will denote by Z and Z− the set of all integers and the set of
non-positive integers respectively.

To prove the main results we need some known statements:

PROPOSITION A. ([12], [26], [27]) Let E be a measurable subset of R . Suppose
that p ∈ P(E) . Then

(i) ‖ f‖p+(E)
Lp(·)(E)

� Sp(·)( f χE) � ‖ f‖p−(E)
Lp(·)(E)

, ‖ f‖Lp(·)(E) � 1;

‖ f‖p−(E)
Lp(·)(E)

� Sp(·)( f χE) � ‖ f‖p+(E)
Lp(·)(E)

, ‖ f‖Lp(·)(E) � 1;

(ii) Hölder’s inequality

∣∣∣
∫
E

f (x)g(x)dx
∣∣∣ �

( 1
p−(E)

+
1

(p+(E))′
)
‖ f‖Lp(·)(E) ‖g‖Lp′(·)(E)
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holds, where f ∈ Lp(·)(E) , g ∈ Lp′(·)(E) .

PROPOSITION B. ([12], [26], [27]) Let 1 � r(x) � p(x) , x ∈ E . Then the follow-
ing inequality

‖ f‖Lr(·)(E) � (|E|+1)‖ f‖Lp(·)(E)

holds.

DEFINITION 2.1. We say that p satisfies the weak Lipschitz (log-Hölder conti-
nuity) condition on E (p ∈ P log(E)) , if there is a positive constant A such that for all
x and y in E with 0 < |x− y|< 1/2, the inequality

|p(x)− p(y)| � A/(− ln |x− y|)

holds.

DEFINITION 2.2. Let E be an unbounded set. We say that p satisfies the decay
condition on E at infinity (p∈P∞(E)) , if there are constants A∞ � 0 and p∞ ∈ (1,∞)
such that for all x in E the inequality

|p(x)− p∞| � A∞

ln(e+ |x|)
holds.

In the sequel we will use the notation: P log(E)∩P∞(E) =: P log
∞ (E) .

It is known (see [4]) that if p ∈ P log , then the Hardy–Littlewood maximal oper-
ator M is bounded in Lp(x) space defined on a bounded domain, while the condition
p ∈ P log

∞ implies the boundedness of M in Lp(x) space on unbounded domain. The
latter result was derived in [3].

LEMMA A. ([4]) Let I0 be an interval in R . Then p ∈ P log(I0) if and only if
there exists a positive constant C such that

|J|p−(J)−p+(J) � C

for all intervals J ⊆ I0 with |J| > 0 .

REMARK 2.1. If p ∈ P log
∞ (R+) , then following conditions are satisfied at 0 and

∞ :

|p(x)− p(0)|� A0

|ln|x|| |x| � 1, (2.1)

|p(x)− p∞| � A∞

ln|x| |x| > 1. (2.2)
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REMARK 2.2. Let I = R+ . It is known that ‖χ(0,r)‖Lp(·)(I) ≈ r1/p(0) as r → 0 if

p(x) satisfies the local log-Hölder continuity condition, and ‖χ(0,r)‖Lp(·)(I) ≈ r1/p∞ as

r → ∞ , if p ∈ P log
∞ (I) .

LEMMA B. Let D be a constant greater than 1 and p ∈ P log
∞ (R+) . Then

1
c0

r
1

p(0) � ‖χ(r,Dr)‖Lp(·) � c0r
1

p(0) f or 0 < r � 1 (2.3)

and
1
c∞

r
1

p∞ � ‖χ(r,Dr)‖Lp(·) � c∞r
1

p∞ f or r � 1 (2.4)

holds, where c0 � 1 and c∞ � 1 depend on D, but do not depend on r .

Proof. We follow the proof of Lemma 4.6 in [25]. We prove only (2.4). The

proof for (2.3) is similar. Recall that
∫

R+

∣∣∣∣ f (x)
λ

∣∣∣∣
p(x)

dx � 1 ⇔ ‖ f‖Lp(·) � λ for λ > 0;

∫
R+

∣∣∣∣ f (x)
λ

∣∣∣∣
p(x)

dx � 1⇔‖ f‖Lp(·) � λ for λ > 0. Therefore the right–hand side inequality

of (2.4) holds if and only if

Dr∫
r

dx

(c∞r
1

p∞ )p(x)
� 1dot is removed from here (2.5)

holds.
The left–hand side of (2.5) is estimated as follows

Dr∫
r

dx

(c∞r
1

p∞ )p(x)
� 1

cp−
∞

Dr∫
r

dx

( x
D )

p(x)
p∞

� D
p+
p∞

cp−
∞

Dr∫
r

dx

x
p(x)
p∞

.

By (2.2) we have e
−A∞
p∞ x � x

p(x)
p∞ � e

A∞
p∞ x for x � 1.

Therefore,

Dr∫
r

dx

(c∞r
1

p∞ )p(x)
� e

A∞
p∞ D

p+
p∞

cp−
∞

Dr∫
r

dx
x

=
e

A∞
p∞ D

p+
p∞

cp−
∞

lnD.

Hence, by choosing cp−
∞ = e

A∞
p∞ D

p+
p∞ lnD we prove the right–hand side of inequality

(2.4). The proof for the left–hand side of (2.4) is similar.
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In the sequel the following notation will be used:

En := [2n,2n+1); In := [2n−1,2n+1).

For the next statements we refer to [11] and [1].

PROPOSITION C. Let p and q be measurable functions on I := (a,b) (−∞ < a <
b � +∞) satisfying the condition 1 < p−(I) � p(x) � q(x) < q+(I) < ∞ , x∈ I . Let p ,q
∈ P log

∞ (I) . Then there is a positive constant c depending only on p and q such that
for all f ∈ Lp(·)(I) , g ∈ Lq′(·)(I) and all sequences of intervals Sk := [xk,xk+1) , where
[xk,xk+1) are disjoint intervals satisfying the condition ∪k[xk,xk+1) = I , the inequality

∑
k

‖ f χSk‖Lp(·)(I)‖gχSk‖Lq′(·)(I) � c‖ f‖Lp(·)(I)‖g‖Lq′(·)(I)

holds.

In the next statement the intervals Sk are replaced by Ia,b
k , where

Ia,b
k :=

[
a+

b−a
2k+1 ,a+

b−a
2k−1

)
, k ∈ N,

for b < ∞ ;
Ia,∞
k :=

[
a+2k−1,a+2k+1), k ∈ Z.

PROPOSITION D. Let p and q be measurable functions on I := (a,b) (−∞ <
a < b � +∞) satisfying the condition 1 < p−(I) � p(x) � q(x) < q+(I) < ∞ , x ∈ I .
Let p ,q ∈ P log

∞ (I) . Then there is a positive constant c depending only on p and q
such that for all f ∈ Lp(·)(I) , g ∈ Lq′(·)(I) and all intervals Ia,b

k , the inequality

∑
k

‖ f χ
Ia,b
k
‖Lp(·)(I)‖gχ

Ia,b
k
‖Lq′(·)(I) � c‖ f‖Lp(·)(I)‖g‖Lq′(·)(I)

holds.

Proof. The proof in the case of I = (0,1) can be found in [1]. For simplicity let
us assume that I = R+ . In this case a = 0, b = ∞ and consequently, I0,∞

k = Ik . Now
the proof follows in same manner as in [11] Proposition 3.4, since the map g := I →
(−1/2,1/2) defined by g(x) = arctan x

π keeps the property ∑
k

χg(Ik)(x) � 2. Details are

omitted.

Let v and w be a.e. positive measurable function on R+ and let

(Hv,w f )(x) = v(x)
x∫

0

f (t)w(t)dt, x ∈ R+.
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THEOREM A. Let I = R+ and 1 < p−(I) � p(x) � q(x) � q+(I) < ∞ . Suppose
that p,q ∈ P log

∞ (I) . Then Hv,w is bounded from Lp(·)(I) to Lq(·)(I) if and only if

D∞:= sup
t>0

D∞(t) =sup
t>0

‖χ(t,∞)(·)v(·)‖Lq(·)(I)‖χ(0,t)(·)w(·)‖Lp′(·)(I) < ∞.

Proof. Sufficiency. Let f � 0, and
∞∫
0

f (t)w(t)dt = ∞ . We construct a sequence

{xk} so that
xk∫

0

f w =

xk+1∫
xk

f w = 2k.

It is easy to check that [0,∞) = ∪k[xk,xk+1) . Let g be a function satisfying the condi-
tion, ‖g‖Lq′(·)(R+) � 1. By applying Hölder’s inequality for variable exponent Lebesgue
spaces and Proposition D we have that

∞∫
0

(
Hv,w f

)
g � ∑

k

( xk+1∫
xk

gv

)( xk+1∫
0

f w

)

= 4∑
k

( xk+1∫
xk

gv

)( xk∫
xk−1

f w

)

� 4∑
k

‖χ(xk,xk+1)(·)g(·)‖Lq′(·)(I)‖χ(xk,xk+1)(·)v(·)‖Lq(·)(I)

×‖χ(xk−1,xk)(·) f (·)‖Lp(·)(I)‖χ(xk−1,xk)(·)w(·)‖Lp′(·)(I)

� 4D∞ ∑
k

‖χ(xk,xk+1)(·)g(·)‖Lq′(·)(I)‖χ(xk−1,xk)(·) f (·)‖Lp(·)(I)

� 4D∞‖ f (·)‖Lp(·)(I)‖g(·)‖Lq′(·)(I).

Taking now the supremum with respect to g gives sufficiency.
Necessity follows by the standard way taking the test function f supported in (0,t)
with ‖ f‖Lp(·) � 1.

We refer for the two–weight criteria for the Hardy transform in the classical Lebesgue
spaces e.g. to [8], [14], [17], [13].

REMARK 2.3. If w is constant and p ∈ P log
∞ (I) , then D∞ < ∞ is equivalent to

the condition:

D∞ := sup
n∈Z

‖χEn(·)v(·)‖Lq(·)(I)‖χ(0,2n)(·)‖Lp′(·)(I) < ∞.

The norm ‖χ(0,2n)‖Lp′(·)(I) can be replaced by ‖χEn(·)‖Lp′(·)(I) . This follows from Lemma

B and Remark 2.2. The fact that D∞ < ∞ implies D∞ < ∞ is obvious.
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Conversely, let D∞ < ∞ . Let us now take t ∈ I . Then t ∈ [2m,2m+1) for some m ∈ Z .
Consequently,

D∞(t) �
∞

∑
n=m

‖χEn(x)v(x)‖Lq(x)(I)‖χ(0,2m+1)(·)‖Lp′(·)(I)

� D∞
( ∞

∑
n=m

‖χ(0,2n)(·)‖−1
Lp′(·)(I)

)‖χ(0,2m+1)(·)‖Lp′(·)(I).

Hence,

D∞(t)�

⎧⎪⎨
⎪⎩

D∞[
( 0

∑
n=m

2−n/p′(0))2m/p′(0) +
( ∞

∑
n=0

2−n/(p∞)′)2m/(p∞)′ ] � c1(p)D∞ if m < 0,

D∞
( ∞

∑
n=m

2−n/(p∞)′
)
2m/(p∞)′ � c2(p)D∞ if m � 0.

where c1(p) and c2(p) are constants depending only on p . Finally, D∞ < cD∞ .

THEOREM B. ([6]) Let p(x) and q(x) be measurable functions on an interval
I ⊆ R+ . Suppose that 1 < p−(I) � p+(I) < ∞ and 1 < q−(I) � q+(I) < ∞ . If

∥∥∥‖k(x,y)‖Lp′(y)(I)

∥∥∥
Lq(x)(I)

< ∞,

where k is a non-negative kernel, then the operator

K f (x) =
∫
I

k(x,y) f (y)dy

is compact from Lp(·)(I) to Lq(·)(I) .

DEFINITION 2.3. Let I := (0,a) , 0 < a � ∞ . We say that a kernel k : {(x,y) : 0 <
y < x < a}→ (0,∞) belongs to the class V (I) (k ∈V (I)) if there exists a constant c1

such that for all x,y, t with 0 < y < t < x < a , the inequality

k(x,y) � c1k(x,t)

holds.

DEFINITION 2.4. Let r be a measurable function on I = (0,a) , 0 < a � ∞ with
values in (1,+∞) . We say that a kernel k belongs to the class Vr(·)(I) if there exists a
positive constant c2 such that for a.e. x ∈ (0,a) , the inequality

‖χ( x
2 ,x)(·)k(x, ·)‖Lr(·)(I) � c2‖χ( x

2 ,x)‖Lr(·)(I)k
(
x,

x
2

)

is fulfilled.
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These conditions on a kernel k were introduced by the first named author in the
paper [15] for the constant p .

REMARK 2.4. Using Lemmas A and B we have ‖χ( x
2 ,x)‖Lr(·) ≈ x1/r(0) ≈ x1/r(x)

near zero. Similarly by Lemma B we see that ‖χ( x
2 ,x)‖Lr(·) ≈ x1/r∞ near infinity.

EXAMPLE 2.1. Let I := R+ . Let α be a measurable function on I satisfying the
condition 0 < α−(I) � α+(I) � 1 . Let r ∈ P log

∞ (I) . Suppose that r be non-increasing
on (a,∞) for some large a > 0 . Then k(x,t) = (x− t)α(x)−1 ∈ V (I)∩Vr(·)(I) when
(αr′)+(I) > 1 .

Indeed, first it is easy to check that k ∈V (I) . Further to prove that k ∈Vr(·)(I) we need
to show

I(x) := ‖(x−·)α(x)−1χ(x/2,x)(·)‖Lr(·) � c‖χ(x/2,x)(·)‖Lr(·)xα(x)−1, (2.6)

where the constant c does not depend on x . Since r ∈ P log
∞ (I) , by Lemma A for

x− t < 1, we have
(x− t)r(t) � c1(x− t)r(x) � c2(x− t)r(t) (2.7)

where c1 and c2 does not depend on x .
Since r is non-increasing, for x− t � 1, we have

(x− t)r(t) � (x− t)r(x). (2.8)

Consequently,

S(x) :=
x∫

x/2

(x− t)(α(x)−1)r(t)dt =
∫

{t:t∈(x/2,x),(x−t)<1}
(· · ·)+

∫

{t:t∈(x/2,x),(x−t)�1}
(· · ·)

:= S1(x)+S2(x).

First we estimate S1(x) . Taking into account (2.7) we have the following pointwise
estimate

S1(x) �
∫

{t:t∈(x/2,x),(x−t)<1}
(x− t)(α(x)−1)r(x)dt

�
x∫

x/2

(x− t)(α(x)−1)r(x)dt = cx(α(x)−1)r(x)+1

By using (2.8) for S2(x) , we have

S2(x) �
∫

{t:t∈(x/2,x),(x−t)�1}
(x− t)(α(x)−1)r(x)dt

�
x∫

x/2

(x− t)(α(x)−1)r(x)dt = cx(α(x)−1)r(x)+1.
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Since I(x) � d for some positive constant d , by Proposition A and Lemma B we have

I(x)
d

� cS(x)1/r−([x/2,x]) = cS(x)1/r(x)

= cx
α(x)−1+ 1

r(x) � cxα(x)−1+ 1
r∞

= c‖χ(x/2,x)(·)‖Lr(·)(I)k(x/2,x).

Hence, we have estimate (2.6).

For other examples of kernels in the classical and variable exponent Lebesgue
spaces we refer to the papers [15], [10].

3. Boundedness in Lp(x) spaces

In this section we derive boundedness criteria for the operator Kv from Lp(·)(R+)
to Lq(·)(R+) .

Now we formulate and prove the main results of this section.

THEOREM 3.1. Let I := R+ and let 1 < p−(I) � p(x) � q(x) � q+(I) < ∞ . Sup-
pose that k ∈V (I)∩Vp′(·)(I) . Further, assume that p,q ∈ P log

∞ (I) . Then the following
statements are equivalent

(i) ‖Kv f‖Lq(·)(I) � c‖ f‖Lp(·)(I), f ∈ Lp(·)(I) ,

(ii) C∞ := sup
n∈Z

C∞(n) := sup
n∈Z

∥∥∥χEn(x)v(x)k(x,
x
2)

∥∥∥
Lq(x)(I)

‖χ(0,2n)(·)‖Lp′(·)(I) < ∞ ,

(iii) C∞ := sup
t>0

C∞(t) := sup
t>0

∥∥∥χ(t,∞)(x)v(x)k(x, x
2)

∥∥∥
Lq(x)(I)

‖χ(0,t)(·)‖Lp′(·)(I) < ∞ .

Moreover, ‖Kv‖Lp(·)(I)→Lq(·)(I) ≈C∞ ≈C∞.

Proof. (iii)⇒(i): Suppose that f � 0.

(Kv f )(x) = v(x)
∫ x/2

0
k(x,t) f (t)dt + v(x)

∫ x

x/2
k(x,t) f (t)dt

=: (K(1)
v f )(x)+ (K(2)

v f )(x).

Hence,

‖(Kv f )(x)‖Lq(x)(I) � ‖(K(1)
v f )(x)‖Lq(x)(I) +‖(K(2)

v f )(x)‖Lq(x)(I) =: S(1) +S(2).
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It is easy to see that if 0 < t < x/2, then k(x,t) � c1k(x, x
2 ) . Hence, taking Theo-

rem A into account we have that

S(1) � c

∥∥∥∥v(x)k(x,
x
2
)
( x∫

0

f (t)dt

)∥∥∥∥
Lq(x)(I)

� cC∞‖ f‖Lp(·)(I).

Suppose now that g � 0, ‖g‖Lq′(·)(I) � 1. Applying Hölder’s inequality twice with

respect to the pairs of exponents (p(·), p′(·)) , (q(·),q′(·)) (see (ii) of Proposition A),
Lemmas A, B, Proposition D and the condition k ∈Vp′(·)(I) we find that

∞∫
0

v(x)
( x∫

x/2

k(x,t) f (t)dt

)
g(x)dx

� c ∑
n∈Z

∫
En

v(x)‖χ(x/2,x)(·) f (·)‖Lp(·)(I)‖χ(x/2,x)(·)k(x, ·)‖Lp′(·)(I)g(x)dx

� c ∑
n∈Z

‖χIn(·) f (·)‖Lp(·)(I)

∫
En

v(x)‖χ(x/2,x)(·)‖Lp′(·)(I)k(x,
x
2
)g(x)dx

� c ∑
n∈Z

‖χIn(·) f (·)‖Lp(·)(I)‖χIn(·)‖Lp′(·)(I)

∫
En

v(x)k(x,
x
2
)g(x)dx

� c ∑
n∈Z

‖χIn(·) f (·)‖Lp(·)(I)‖χ(0,2n)(·)‖Lp′(·)(I)

∥∥∥χEn(x)v(x)k(x,
x
2
)
∥∥∥

Lq(x)(I)

×‖χEn(·)g(·)‖Lq′(·)(I)

� cC∞‖ f‖Lp(·)(I)‖g‖Lq′(·)(I) � cC∞‖ f‖Lp(·)(I).

Taking the supremum with respect to g and summarizing the estimates for S(1)

and S(2) we have the desired result.

(i)⇒(ii): For necessity take the test function fn(x) = χ(0,2n)(x) . Then by Remark
2.2 we see that

‖ fn‖Lp(·)(I) ≈ 2n/p(0) n < 0,

‖ fn‖Lp(·)(I) ≈ 2n/p∞ n � 0.

Hence,

‖Kv fn‖Lq(·)(I)� ‖K(2)
v fn‖Lq(·)(I) �c2n‖χEn−1(x)v(x)k(x,

x
2
)‖Lq(·)(I)

Using the boundedness we have

‖χEn−1(x)v(x)k(x,
x
2
)‖Lq(·)(I)2

n/p′(0) < ∞ for n < 0 (3.1)

‖χEn−1(x)v(x)k(x,
x
2
)‖Lq(·)(I)2

n/p
′
∞ < ∞ for n � 0. (3.2)

Combining (3.1) and (3.2) we have the required conclusion. The implication (ii)⇒(iii)
can be proved in similar manner as in Remark 2.3; therefore we omit details.
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4. Compactness

In this section we derive criteria for the compactness of Kv from Lp(·) to Lq(·) .
For the compactness problems in variable exponent Lebesgue spaces we refer e.g., to
[1], [6], [7], [10], [22], [23], (see also [16] and references cited therein).

THEOREM 4.1. Let I = R+ . Suppose that 1 < p−(I) � p(x) � q(x) � q+(I) < ∞.
Suppose also that k ∈ V (I)∩Vp′(·)(I) . Further, assume that p,q ∈ P log

∞ (I) . Then the
following statements are equivalent:

(i) Kv is compact from Lp(·)(I) to Lq(·)(I);

(ii) C∞ < ∞ and lim
n→−∞

C∞(n) = lim
n→∞

C∞(n) = 0 ,

where C∞ and C∞(n) are defined in Theorem 3.1.

(iii) C∞ < ∞ and lim
d→0+

Cd = lim
b→+∞

Cb = 0 ,

where C∞ is defined in Theorem 3.1 and

Cd := sup
0<t<d

Cd(t) := sup
0<t<d

∥∥∥χ(t,∞)(x)v(x)k(x,
x
2
)
∥∥∥

Lq(x)(I)
‖χ(0,t)(·)‖Lp′(·)(I);

Cb := sup
t�b

Cb(t) := sup
t�b

∥∥∥χ(t,∞)(x)v(x)k(x,
x
2
)
∥∥∥

Lq(x)(I)
‖χ(0,t)(·)‖Lp′(·)(I).

Proof. First we show that the implication (iii)⇒(i) holds. We represent Kv f =
∑4

n=1 K(n)
v f , where

K(1)
v f (x) = χ(0,d)(x)(Kv(χ(0,d) f )(x),

K(2)
v f (x) = χ[d,b)(x)Kv(χ(0,b) f )(x),

K(3)
v f (x) = χ[b,∞)(x)Kv(χ(0,b/2] f )(x),

K(4)
v f (x) = χ[b,∞)Kv(χ(b/2,∞) f )(x),

where 0 < d < 1 < b < ∞ . Now observe that

K(2)
v f (x) =

∫
I

k(2)(x,y) f (y)dy,
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where k(2)(x,y) = v(x)χ[d,b)(x)k(x,y) when 0 < y < x < ∞ and k(2)(x,y) = 0 if 0 <

x � y < ∞ . Consequently, since k ∈V (I)∩Vp′(·)(I) , we have for K(2)
v ,

∥∥∥∥χ[d,b](x)v(x)
∥∥∥k(2)(x,y)

∥∥∥
Lp′(y)(I)

∥∥∥∥
Lq(x)(I)

=
∥∥∥∥χ[d,b](x)v(x)

∥∥∥χ(0,x)(y)k(x,y)
∥∥∥

Lp′(y)(I)

∥∥∥∥
Lq(x)(I)

�
∥∥∥∥χ[d,b](x)v(x)

∥∥∥χ(0,x/2)(y)k(x,y)
∥∥∥

Lp′(y)(I)

∥∥∥∥
Lq(x)(I)

+
∥∥∥∥χ[d,b](x)v(x)

∥∥∥χ[x/2,x)(y)k(x,y)
∥∥∥

Lp′(y)(I)

∥∥∥∥
Lq(x)(I)

�
∥∥∥∥χ[d,b](x)v(x)k(x,

x
2
)
∥∥∥∥

Lq(x)(I)

∥∥∥χ(0,b/2)(y)
∥∥∥

Lp′(y)(I)

+
∥∥∥∥χ[d,b](x)v(x)k(x,

x
2
)
∥∥∥∥

Lq(x)(I)

∥∥∥∥χ(d/2,b)(y)
∥∥∥

Lp′(y)(I)

� 2

∥∥∥∥χ[d,b](x)v(x)k(x,
x
2
)
∥∥∥∥

Lq(x)(I)

∥∥∥∥χ(0,b)(y)
∥∥∥

Lp′(y)(I)
=: J.

It is easy to see that J < ∞ because C∞ < ∞ . Hence, by Theorem B we conclude that

K(2)
v is compact. Similarly we can show that K(3)

v is compact. Applying now Theorem
3.1 for the interval (0,d) (see also [10]) we find that

‖K(1)
v ‖Lp(·)(I)→Lq(·)(I) = ‖Kv‖Lp(·)([0,d))→Lq(·)([0,d)) � c sup

0<t<d
Cd(t)

as d → 0+ , where the positive constant c depends only on p , q . Further following the
proof of Theorem 3.1 we have

∥∥∥ K(4)
v f (x)

∥∥∥
Lp(x)([b,∞))→Lq(x)([b,∞))

� csup
t�b

‖χ(t,∞)(x)v(x)k(x,
x
2
)‖Lq(·)‖χ(0,t)(·)‖Lp′(·) = csup

t�b
Cb(t).

Further,

‖Kv −K(2)
v −K(3)

v ‖Lp(·)(I)→Lq(·)(I)�‖K(1)
v ‖Lp(·)(I)→Lq(·)(I) +‖K(4)

v ‖Lp(·)(I)→Lq(·)(I)

�c

(
sup

0<t<d
Cd(t)+ sup

t�b
Cb(t)

)

where the positive constant c depends only on p , q and α . Passing d to 0+ and b to
+∞ we have that Kv is compact.
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(i)⇒(ii): Suppose that fn(x) = 2−n/p(0)χIn(x) , n∈Z− and fn(x) = 2−n/p∞ χIn(x) ,
n > 0. Let us denote pn = p(0) for n < 0 and pn = p∞ for n � 0. Hence by the
condition k ∈V (I) and Proposition A, Lemmas A, B we have that

∣∣∣∣
∫ ∞

0
fn(x)ϕ(x)dx

∣∣∣∣ � cp‖ fn(·)‖Lp(·)(I)‖ϕ(·)χ(0,2n)(·)‖Lp′(·)(I)

� c2−n/pn‖χIn(·)‖Lp(·)‖ϕ(·)χ(0,2n)(·)‖Lp′(·)(I)

� c‖ϕ(·)χIn(·)‖Lp′(·)(I) → 0

for all ϕ ∈ Lp′(x)(I) as n →±∞ . Hence, fn converges weakly to 0 as n →±∞ .
Further, it is obvious that

‖Kv fn‖Lq(·)(I) � c2n/p′(0)
∥∥∥χEn(x)v(x)k(x,

x
2
)
∥∥∥

Lq(x)(I)
.

for n � −1,

‖Kv fn‖Lq(·)(I) � c2n/p
′
∞
∥∥∥χEn(x)v(x)k(x,

x
2
)
∥∥∥

Lq(x)(I)
.

for n > 1.
Finally we conclude that lim

n→±∞
C∞(n)= 0 because a compact operator maps weakly

convergent sequence into strongly convergent one. The implication (ii)⇒(iii) follows
from estimates similar to those given in Remark 2.3; therefore we omit details.

5. Measure of Non–compactness

This section deals with two-sided estimates of the distance between the operator
Kv and the class of compact linear operators from Lp(·)(I) to Lq(·)(I) .
Let X and Y be Banach spaces. Suppose that K (X ,Y ) (resp. FR(X ,Y )) denotes the
class of compact linear operators (resp. finite rank operators) acting from X to Y . Let

‖T‖K (X ,Y ) := dist{T,K (X ,Y )}; α(T ) := dist{T,FR(X ,Y )},

where T is a bounded linear operator from X to Y , dist{T,K (X ,Y )} and dist{T,FR(X ,Y )}
denote the distance from T to K(X ,Y ) and to FR(X ,Y ) respectively.

THEOREM C. [16, p. 80] Let I := (0,a) , where 0 < a � ∞ . Let q ∈ P log
∞ (I) .

Assume that X is a Banach space. Suppose that 1 < q−(I) � q+(I) < ∞ . Then

‖T‖
K

(
X ,Lq(·)(I)

) = α(T ),

where T is a bounded linear operator from X to Lq(·)(I) .
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THEOREM 5.1. Let I := R+ . Suppose that 1 < p−(I) � p(x) � q(x) � q+(I) <

∞. Let p,q ∈ P log
∞ (I) and let C∞ < ∞ ( see Theorem 3.1 for the definition of C∞ ) .

Then there exist two positive constants b1 and b2 depending only on p, q and the
constants c1 and c2 defined in Definitions 2.3 and 2.4 respectively such that

b1J � ‖Kv‖K (Lp(·)(I),Lq(·)(I)) � b2J, (5.1)

where

J = lim
n→∞

C∞(n)+ lim
n→−∞

C∞(n),

and C∞(n) is defined in Theorem 3.1.

Proof. The upper estimate follows immediately from the inequalities

‖Kv −K(2)
v −K(3)

v ‖Lp(·)(I)→Lq(·)(I)�‖K(1)
v ‖Lp(·)(I)→Lq(·)(I) +‖K(4)

v ‖Lp(·)(I)→Lq(·)(I)

� c[sup
i�m
i∈Z

C∞(i)+ sup
j�n
j∈Z

C∞( j)]

where K(i)
v , i = 1 · · ·4 are defined in Theorem 4.1 assuming d = 2m , b = 2n , m < 0

and n > 0 (see the proof of Theorem 4.1 for the details) and the fact that K(2)
v and K(3)

v

are compact according to Theorem B.
To get the lower estimate we take a positive number λ so that λ > ‖Kv‖K (Lp(·)(I),Lq(·)(I)).

Consequently, by Theorem C we have that λ > α(Kv). Hence, there exist g1, . . . ,gN ∈
Lq(·)(I) such that

α(Kv) � ‖Kv −F‖ < λ ,

where F f (x) = ∑N
j=1 α j( f )g j(x) , α j are linear bounded functionals in Lp(·)(I) and gi

are linearly independent. Further, there exist g1, . . . , gN such that supports of gi are in
[σi,ηi] , 0 < σi < ηi < ∞ , and

‖Kv −F0‖ < λ ,

where F0 f (x) = ∑N
j=1 α j( f )g j(x). Suppose that σ = min{σ j} , η = max{η j} . Then

obviously, suppF0 f ⊂ [σ ,η ] . Let fn := χ(2n−1,2n+1) . Then by applying the condition

k ∈V (I) for a negative integer n chosen so that 2n+1 < σ , we find that

λ ‖ fn‖Lp(·)(I) � ‖χEn(x)(Kv fn(x)−F0 fn(x))‖Lq(x)(I)

� ‖χEn(x)(Kv fn)(x)‖Lq(x)(I)

�
∥∥∥∥χEn(x)v(x)

∫ x

x/2
k(x,y) fn(y)dy

∥∥∥∥
Lq(x)(I)

� c1

∥∥∥∥χEn(x)v(x)xk(x,x/2)
∥∥∥∥

Lq(x)(I)

� c12
n ·

∥∥∥∥χEn(x)v(x)k(x,x/2)
∥∥∥∥

Lq(x)(I)
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Further, by using the condition p∈P log
∞ (I) the condition k ∈V (I) , Lemma B we

find that

λ � d1

∥∥∥∥χEn(x)v(x)k(x,x/2)
∥∥∥∥

Lq(x)(I)
2n/p′(0),

where the positive constant d1 depends only on p , q and the constant c1 from Defini-
tion 2.3. Consequently, we have λ � d1 lim

n→−∞
C∞(n) .

Similarly let fm := χ(2m−1,2m+1) . Now choosing a positive integer m so that 2m+1 >
η and using Lemma A we find that

λ � d2

∥∥∥∥χEm(x)v(x)k(x,x/2)
∥∥∥∥

Lq(x)(I)
2m/(p∞)′ .

where the positive constant d2 depends only on p , q and the constant c1 from Defini-
tion 2.3. Hence, we have λ � d2 lim

m→+∞
C∞(m) .

Since λ is arbitrarily close to ‖Kv‖K (Lp(·)(I),Lq(·)(I)) , hence we conclude that the
lower estimate of (5.1) holds.

Analogously follows the next statement, proof of which is omitted

THEOREM 5.2. Let I := R+ . Suppose that 1 < p−(I) � p(x) � q(x) � q+(I) <
∞. Let p,q ∈P log

∞ (I) and let C∞ < ∞ (see Theorem 3.1 for the definition of C∞ ). Then
there exist two positive constants e1 and e2 depending only on p, q and the constants
c1 and c2 defined in Definitions 2.3 and 2.4 respectively such that

e1U � ‖Kv‖K (Lp(·)(I),Lq(·)(I)) � e2U,

where,
U = lim

d→0+
Cd + lim

b→+∞
Cb,

Cb and Cd are defined in Theorem 4.1.

For estimates of the measure of non-compactness of kernel operators with singularity
in the classical Lebesgue spaces we refer e.g., to the monograph [16] and references
cited therein.
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