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Abstract

Our aim is to establish sharp weighted bounds for the Hilbert transform of odd and even functions in terms of the mixed type
characteristics of weights. These bounds involve A p and A∞ type characteristics. As a consequence, we obtain weighted bounds
in terms of so-called Andersen–Muckenhoupt type characteristics.
c⃝ 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In this paper, we investigate sharp weighted bounds, involving Ap and A∞ characteristics of weights, for
the Hilbert transform of odd and even functions. Following general results we derive these sharp weighted Ap
bounds in terms of so-called Andersen-Muckenhoupt characteristics. Let X and Y be two Banach spaces. Given a
bounded operator T : X → Y , we denote the operator norm by ∥T ∥B(X,Y ) which is defined in the standard way
i.e. ∥T ∥B(X,Y ) = sup∥ f ∥X ≤1 ∥T f ∥Y . If X = Y we use the symbol ∥T ∥B(X).

A non-negative locally integrable function (i.e. a weight function) w defined on Rn is said to satisfy the Ap(Rn)

condition (w ∈ Ap(Rn)) for 1 < p < ∞ if

∥w∥Ap(Rn) := sup
Q


1

|Q|


Q
w(x)dx


1

|Q|


Q
w(x)1−p′

dx

p−1

< ∞,

where p′
=

p
p−1 and supremum is taken over all cubes Q in Rn with sides parallel to the coordinate axes. We call

∥w∥Ap(Rn) the Ap characteristic of w.
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In 1972, B. Muckenhoupt [1] showed that ifw ∈ Ap(Rn), where 1 < p < ∞, then the Hardy–Littlewood maximal
operator

M f (x) = sup
x∈Q

1
|Q|


Q

| f (y)|dy

is bounded in L p
w(Rn). S. Buckley [2] investigated the sharp Ap bound for the operator M . In particular, he established

the inequality

∥M∥L p
w(Rn) ≤ C∥w∥

1
p−1
Ap(Rn)

, 1 < p < ∞. (1.1)

Moreover, he showed that the exponent 1
p−1 is best possible in the sense that we cannot replace ∥w∥

1
p−1
Ap

by ψ(∥w∥Ap )

for any positive non-decreasing function ψ growing slowly than x
1

p−1 . From here it follows that for any λ > 0,

sup
w∈Ap

∥M∥L p
w

∥w∥

1
p−1 −λ

Ap

= ∞.

Let H be the Hilbert transform given by

(H f )(x) = p.v.
1
π


∞

−∞

f (t)

x − t
dt, x ∈ R.

In 1973 R. Hunt, B. Muckenhoupt and R. L. Wheeden [3] solved the one-weight problem for the Hilbert transform in
terms of Muckenhoupt condition. In particular, they established the inequality

∥H f ∥L p
w(R) ≤ cp∥w∥

β

Ap(R)∥ f ∥L p
w(R) (1.2)

for some positive constant β and some constant cp depending on p. S. Petermichl showed that the value of the
exponent β = max{1, p′/p} in (1.2) is sharp. In particular, the following statement holds (see [4] for p = 2, [5] for
p ≠ 2):

Theorem A. Let 1 < p < ∞ and let w be a weight function on R. Then there is a positive constant cp depending
only on p such that

∥H∥B(L p
w)

≤ cp∥w∥
β

Ap(R), (1.3)

where β = max


1, p′

p


. Moreover, the exponent in (1.3) is sharp.

We say that w ∈ A∞(Rn) if w ∈ Ap(R) for some p > 1. In what follows we will use the symbol ∥ρ∥A∞
for the

A∞ characteristic of a weight function ρ:

∥ρ∥A∞
= sup

I

1
ρ(I )


I

M(ρχI )(x)dx .

This characteristic appeared first in the papers by Fiji [6] and Wilson [7,8] and is lower than that the one introduced
by Hruščev [9]:

[ρ]A∞
= sup

I


1
|I |


I
ρ(x)dx


exp


1
|I |


I

log ρ−1(x)dx


.

In 2012, Hytönen, Perez and Rela [10] improved Buckley’s result and obtained a sharp weighted bound involving
A∞ constant:

∥M∥B(L p
w)

≤ cn


1

p − 1
∥w∥Ap∥σ∥A∞

1/p

, 1 < p < ∞, σ = w1−p′

.



26 J. Gilles, A. Meskhi / Transactions of A. Razmadze Mathematical Institute 171 (2017) 24–31

Later, in [11], it was proved that the sharp weighted bound involving the A∞ characteristic for the Calderón–
Zygmund operator provides an improved estimate than the one obtained by Hytönen in his celebrated paper [12]
about the A2 conjecture. We recall the result of [10] for the Hilbert transform H in the following theorem.

Theorem B. Let H be the Hilbert transform and let p ∈ (1,∞). Then if w ∈ Ap(R+), we have

∥H∥B(L p
w)

≤

∥w∥
2/p
Ap

∥σ∥
2/p−1
A∞

, if p ∈ (1, 2],

∥w∥
2/p
Ap

∥w∥
1−2/p
A∞

, if p ∈ [2,∞),
(1.4)

where σ := w1−p′

.

It is known (see [11]) that

cn∥ρ∥A∞
≤ [ρ]A∞

≤ ∥ρ∥Ap . (1.5)

It can be checked that

[σ ]
p−1
A∞

≤ ∥σ∥
p−1
A′

p
= ∥w∥Ap .

In the sequel we will use the following relation between weights w : R → R+ and W : R+ → R+ (resp. between
σ : R → R+ and Σ : R+ → R+)

w(x) :=
W (

√
|x |)

2
√

|x |


resp. σ(x) :=

Σ (
√

|x |)

2
√

|x |


,

where x ≠ 0.
Finally we mention that weighted sharp estimates for one-sided operators on the real line in terms of one-sided

Muckenhoupt characteristics were established in [13] (see also [14] for related topics regarding multiple integral
operators).

The relation A ≈ B means that there are positive constants c1 and c2 (in general these constants will depend only
on the space exponents r or p) such that c1 B ≤ A ≤ c2 B.

For a weight function ρ and a measurable set E ⊂ R, we denote

ρ(E) :=


E
ρ(x)dx .

Constants will be denoted by c or C (the same notation will be used even if they can differ from line to line).

2. Preliminaries

Let f : R → R+ be odd. Then it is easy to check that H f is even and given by (H f )(x) = (H0 f )(x) for x > 0,
where

(H0 f )(x) =
2
π


∞

0

t f (t)

t2 − x2 dt, x > 0.

If f is even, then H f is odd and is given by (H f )(x) = (He f )(x) for x > 0, where

(He f )(x) =
2
π


∞

0

x f (t)

t2 − x2 dt.

Our aim is to investigate the sharp weighted bound of the type (1.4) for operators H0 and He, and to derive sharp
estimates of the type:

∥H0 f ∥L p
W (R+)

≤ cp∥W∥
β

A0
p(R+)

∥ f ∥L p
W (R+)

, (2.1)

∥He f ∥L p
W (R+)

≤ cp∥W∥
γ

Ae
p(R+)

∥ f ∥L p
W (R+)

(2.2)
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where 1 < p < ∞ and

∥W∥A0
p(R+)

:= sup
[a,b]⊂(0,∞)


1

b2 − a2

 b

a
W (x)dx


1

b2 − a2

 b

a
x p′

W 1−p′

(x)dx

p−1

∥W∥Ae
p(R+) := sup

[a,b]⊂(0,∞)


1

b2 − a2

 b

a
x pW (x)dx


1

b2 − a2

 b

a
W 1−p′

(x)dx

p−1

.

K. Andersen [15] showed that if 1 < p < ∞, then

(i) H0 is bounded in L p
W (R+) if and only if ∥W∥A0

p(R+)
< ∞;

(ii) He is bounded in L p
W (R+) if and only if ∥W∥Ae

p(R+) < ∞.
The following lemma was proved in [15] but we give the proof because of the exponents of characteristics of

weights.

Lemma 2.1. Let 1 < r < ∞ and let w be a non-negative measurable function on (0,∞). Then

∥W∥A0
r (R+)

≈ ∥w∥Ar (R)

with constants depending only on r.

Proof. First we show that

∥w∥Ar (R) ≤ cr∥W∥A0
r (R+)

.

Let [a, b] ⊂ (0,∞). Then b

a
w(x)dx

 b

a
w1−r ′

(x)dx

r−1

=

 b

a
W (

√
x)

dx

2
√

x

 b

a
W 1−r ′

(
√

x)
dx

(2
√

x)1−r ′

r−1

= 2r
 √

b

√
a

W (x)dx

 √
b

√
a

xr ′

W 1−r ′

(x)dx

r−1

.

If ∥W∥A0
r (R+)

< ∞, then the latter expression is bounded by

2r
∥W∥A0

r (R+)
((

√
b)2 − (

√
a)2)r = 2r

∥W∥A0
r (R+)

(b − a)r .

This follows from the definition of ∥W∥A0
r (R+)

.
Suppose now that [a, b] ⊂ (−∞, 0). Arguing as before, we see that b

a
w(x)dx

 b

a
w1−r ′

(x)dx

r−1

= 2r
 √

−a

√
−b

W (x)dx

 √
−a

√
−b

xr ′

W 1−r ′

(x)dx

r−1

≤ 2r
∥W∥A0

r (R+)
(b − a)r .

Now let a < 0 < b. Suppose that c > 0 is a number such that [a, b] ⊂ [−c, c], and [a, b] and [−c, c] have at least
one common endpoint. Then by using the above arguments we see that b

a
w(x)dx

 b

a
w1−r ′

(x)dx

r−1

≤ 2r
 c

0
w(x)dx

 c

0
w1−r ′

(x)dx

r−1

≤ cr∥W∥A0
r (R+)

(b − a)r

where cr is a positive constant depending only on r . Finally,

∥w∥Ar (R) ≤ cr∥W∥A0
r (R+)

.

Inequality ∥W∥A0
r (R+)

≤ cr∥w∥Ar (R) follows from the arguments similar to those used above. �
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Now we introduce Wilson type A∞ characteristic for weights defined on R+. The classes A0
∞ and Ae

∞ are defined
as follows:

A0
∞ = ∪p>1 A0

p; Ae
∞ = ∪p>1 Ae

p.

Let ∥W∥A0
∞

be the A0
∞ characteristic of a W on R+ defined as follows:

∥W∥A0
∞

= sup
(a,b)⊂R+

1
W ([a, b])

 b

a
x

M(Wχ(a,b))


(x)dx,

where

M f (x) = sup
(c,d)∋x

1

d2 − c2

 d

c
W (t)dt. (2.3)

Here the supremum is taken over all interval (c, d) ⊂ R+ containing x .
The next statement will be useful to prove the main Theorem.

Lemma 2.2. Let w be a weight on R. Then the following relation holds:

∥w∥A∞(R) ≈ ∥W∥A0
∞(R+)

(2.4)

with constants independent of w.

Proof. At first suppose that I := (a, b) ⊂ R+. Then it is easy to see that

1
w(I )


I

M(wχI )(x)dx ≈
1

W ([
√

a,
√

b])

 √
b

√
a

x M

Wχ

[
√

a,
√

b]


(x)dx, (2.5)

with constants independent of I and w, where M is defined by formula (2.3).
Next, we use the following observation: let x ∈ (a, b),

M

wχ(a,b)


(x) ≈ M


Wχ(

√
|a|,

√
|b|)


(
√

x)

which can be obtained from the relation between w and W . In a similar manner, if I := (a, b) ⊂ R−, we have

1
w(I )

 b

a
M(wχI )(x)dx ≈

1

W ([
√

−a,
√

−b])

 √
−a

√
−b

x M

Wχ(

√
a,

√
b)


(x)dx . (2.6)

Let now 0 ∈ I . Then we represent I = (a, 0] ∪ (0, b) to get

1
w(I )


I

M(wχI )(x)dx ≤
1

w(I )


(a,0)

M(wχ(a,0))(x)dx

+
1

w(I )


(a,0)

M(wχ(0,b))(x)dx +
1

w(I )


(0,b)

M(wχ(a,0))(x)dx

+
1

w(I )


(0,b)

M(wχ(0,b))(x)dx := S1 + S2 + S3 + S4.

We have to estimate S2 and S3. Estimates for S1 and S4 can be derived in a similar manner by using the estimates

1
w(I )

 0

a
M(wχ[a,0])(x)dx ≤

1
w([a, 0])

 0

a
M(wχ[a,0])(x)dx

and

1
w(I )

 b

0
M(wχ[0,b])(x)dx ≤

1
w([0, b])

 b

0
M(wχ[0,b])(x)dx .
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Simple observations lead us to the estimates:

Si ≤ C
1

W ([0,
√

A])

 √
A

0
x M


Wχ

[0,
√

A]


(x)dx ≤ C∥W∥A0

∞
, i = 2, 3,

where A := max{|a|, |b|}. Finally we have that

∥w∥A∞(R) ≤ C∥W∥A0
∞

with a constant C independent of w. The reverse estimate can be obtained in a similar manner. �

The next lemma is a consequence of (1.5), Lemmas 2.2 and 2.1.

Lemma 2.3. Let 1 < p < ∞. Then

∥W∥A0
∞

≤ C∥W∥A0
p
.

In the sequel we assume that σ = w1−p′

. Taking into account the definition of Σ ,we have that

Σ (u) = W 1−p′

(u)(2u)p′

. (2.7)

Theorem 2.1. Let 1 < p < ∞. Then (i)

∥H0∥B(L p
W )

≤

∥W∥
2/p
A0

p
(∥Σ∥A0

∞
)2/p−1, if p ∈ (1, 2],

∥W∥
2/p
A0

p
(∥W∥A0

∞
)1−2/p, if p ∈ [2,∞),

(2.8)

(ii)

∥He∥B(L p
W )

≤

∥W∥
2/p
Ae

p
(∥W 1−p′

∥A0
∞
)1−2/p′

, if p ∈ (1, 2],

∥W∥
2/p
Ae

p
(∥Wp∥A0

∞
)2/p′

−1, if p ∈ [2,∞),
(2.9)

where W and Σ are related by (2.7) and Wp(x) = W (x)(2x)p.

Proof. Let us prove (i). The proof for (ii) is a consequence of the dual arguments and will be discussed afterwards.
Let us denote g(x) := f (

√
x), x > 0, g(x) = 0 otherwise. Suppose that w and W are related as in Lemma 2.1, we

have 
+∞

−∞

|g(x)|pw(x)dx =


∞

0
| f (

√
x)|pw(x)dx =


∞

0
| f (

√
x)|p W (

√
x)

2
√

x
dx =


∞

0
| f (u)|pW (u)du.

Furthermore, for x > 0,

(Hg)(x) =
1
π


∞

0

f (
√

t)

t − x
dt =

1
π


∞

0

2t f (t)

t2 − x
dt = (H0 f )(

√
x).

By definition, we have

∥H0 f ∥
p
L p

W (R+)
=


∞

0
|(H0 f )(x)|pW (x)dx =


∞

0
|(H0 f )(

√
u)|pW (

√
u)

du

2
√

u

=


∞

0
|(H0 f )(

√
u)|pw(u)du

=


∞

0
|(Hg)(u)|pw(u)du ≤ ∥Hg∥

p
L p
w(R)

.

Let 1 < p ≤ 2. Then by Theorem B and Lemmas 2.1 and 2.2 we have that

∥H∥B(L p
w(R)) ≤ ∥w∥

2/p
Ap(R)∥σ∥

2/p−1
A∞(R) ≈ ∥W∥

2/p
A0

p(R+)
∥Σ∥

2/p−1
A0

∞(R+)
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where σ = w1−p′

, σ(x) = Σ (
√

|x |)/(2
√

|x |). Observe that W and Σ are related also by (2.7). The case p ≥ 2
follows analogously. Thus we have (2.8).

To prove (2.9) we use the duality arguments. First observe that the Riesz identity for the classical Hilbert transform
H and the appropriate substitution of the variable yields that

R+

(H0 f )(x)g(x)dx = −


R+

(Heg)(x) f (x)dx .

Hence, it follows that the adjoint of Ho is He with the equation

∥He∥B(L p
w(R+))

= ∥Ho∥B(L p′

σ (R+))
.

By applying case (i) and Lemmas 2.1 and 2.2 we have the desired result also for (ii). �

The next statement gives sharp weighted bound in terms of Ap characteristics.

Theorem 2.2. Let 1 < p < ∞ and let W be a weight function on R+. Then the following estimates hold
(a)

∥H0∥L p
W (R+)

≤ cp∥W∥
β

A0
p(R)

; (2.10)

(b)

∥He∥L p
W (R+)

≤ C p∥W∥
β

Ae
p(R+)

(2.11)

with some positive constants cp and C p, respectively, depending only on p, where β = max{1, p′

p }. Moreover the
exponent β in (2.10) and (2.11) is best possible.

Proof. We prove (a). The estimate (b) follows from the duality arguments. Let 1 < p ≤ 2. To show the validity of (a)
we use (2.8), Lemma 2.1 and relations

∥Σ∥A0
∞(R+)

≈ ∥σ∥A∞(R) ≤ ∥σ∥Ap′ (R) = ∥w∥
p′

−1
Ap(R) ≈ ∥W∥

p′
−1

A0
p(R+)

.

The case p > 2 follows from the estimates:

∥W∥A0
∞(R+)

≈ ∥w∥A∞(R) ≤ ∥w∥Ap(R) ≈ ∥W∥A0
p(R).

Sharpness: First we will show the sharpness for p = 2. Let

g(x) = xε−1χ(0,1), w(x) = |x |
1−ε.

Then (see [4]) the following estimate holds:

∥g∥L2(R) ≈
1
ε
; ∥w∥A2(R) ≈

1
ε
; ∥Hg∥L2

w(R) ≥ 4ε−3.

Let now

f (x) = x2(ε−1)χ(0,1), W (x) = |x |
3−ε.

Hence by using the same changing of variable we find that

∥ f ∥
2
L2

W (R)
≈

1
ε
; ∥H0 f ∥

2
L2

W (R+)
≥ ε−3.

Consequently, if the exponent 1 − ε is the best possible for the A0
2 characteristic in the one-weight inequality for some

λ > 0, we have

4ε−3
≤ ∥H0 f ∥L2

W (R+)
≤ C∥W∥

1−λ

A0
2

∥ f ∥L2
W (R)

≤ C∥W∥
1−ε

A0
2

≤ Cελ−3.

Let 1 < p < 2. Suppose that 0 < ϵ < 1 and that w(x) = |x |
(1−ϵ)(p−1). Then it is easy to check that (see also [4])

∥w∥
1/(p−1)
Ap

≈
1
ϵ
.
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Observe also, that for the function defined by

f (x) = xϵ−1χ(0,1), (2.12)

the relation ∥ f ∥L p
w

≈
1

ϵ
1
p

holds. Let

g(x) = x2(ε−1), W (x) = |x |
2(1−ε)(p−1).

Then the following estimates can be checked easily by using the appropriate change of variables:

∥H0g∥L p
w(R+)

= 2−1/p
∥H f ∥L p

w(R) ≥ 2−1/p 1
ϵ
∥ f ∥L p

w(R)

≈ ∥w∥
p′/p
Ap

∥ f ∥L p
w(R) ≈ ∥W∥

p′/p
A0

p
∥g∥L p

W (R+)

are fulfilled. Thus we have sharpness in (2.10) for 1 < p < 2.
It remains to consider the case when p > 2. In the same manner as above, we can argue for the operator He

and obtain the sharpness in (2.11) for 1 < p < ∞. The duality arguments now imply the sharpness in (2.10) for
2 < p < ∞. �
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