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Potential-Type Operators in Lp(x) Spaces
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Abstract. In this paper we derive weight inequalities for one-sided and Riesz potentials in
Lp(x) spaces under the condition that p satisfies a weak Lipschitz condition. Compactness
of these operators in Lp(x) spaces is also established.
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0. Introduction

Our aim is to establish some weight inequalities for one-sided and Riesz potentials
in Lebesgue spaces Lp(x) with variable exponent. Diening (see [1]) proved that if p
satisfies a weak Lipschitz condition, then the Hardy-Littlewood maximal operator is
bounded in Lp(x)(Ω), where Ω is a bounded domain in Rn. Sobolev-type theorems
for Riesz potentials were derived by Samko (see [10 - 11]). For further properties of
Lebesgue and Sobolev spaces with variable exponent see the papers [2- 3, 6]. Finally,
we mention that necessary and sufficient integral conditions on the weight function v
governing the boundedness/compactness of the Riemann–Liouville operator Rα from
the classical Lebesgue space Lp(R+) to the weighted space Lp

v(R+) (1 < p < ∞, 1
p <

α < 1) were derived in [7] (for p = 2 see [8]).

The paper is organized as follows:

In Section 1 we establish some properties of Lp(x) spaces. In Section 2 we derive
weight inequalities for one-sided and Riesz potentials in these spaces. Section 3 is
devoted to the compactness problems of the operators mentioned above in Lebesgue
spaces with variable exponent. Constants (often different constants in the same series
of inequalities) will generally be denoted by c.
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1. Preliminaries

Let Ω be a domain in Rn and let p : Ω → (1,∞) be a measurable function. Through-
out the paper we shall assume that

P ≡ ess sup
x∈Ω

p(x) < ∞ and p0 ≡ ess inf
x∈Ω

p(x) > 1.

Definition 1.1. By Lp(x) we denote the set of all measurable functions f defined
on Ω such that

Ip(f) :=
∫

Ω

|f(x)|p(x)dx < ∞.

It is known (see, e.g., [6, 9, 12]) that the functional

‖f‖p(·) := inf
{
λ > 0 : Ip

(
f
λ

) ≤ 1
}

is a norm on Lp(x)(Ω).

Proposition 1.1 (see, e.g., [6, 10]).
(i) The inequalities

‖f‖P
p(·) ≤ Ip(f) ≤ ‖f‖p0

p(·), ‖f‖p(·) ≤ 1

‖f‖p0
p(·) ≤ Ip(f) ≤ ‖f‖P

p(·), ‖f‖p(·) ≥ 1

hold.
(ii) If E is a measurable set in Ω and χE is its characteristic function, then

|E| 1
p0 ≤ ‖χE‖p(·) ≤ |E| 1

P , |E| ≥ 1

|E| 1
p0 ≥ ‖χ

E
‖p(·) ≥ |E| 1

P , |E| < 1.

(iii) The generalization of Hölder’s inequality
∣∣∣∣
∫

Ω

f(x)ϕ(x) dx

∣∣∣∣ ≤ k‖f‖p(·)‖ϕ‖p′(·)

holds, where p′(x) = p(x)
p(x)−1 and the constant k > 0 depends only on p.

Furthermore, if we introduce another norm ‖ · ‖∗p(·) by

‖f‖∗p(·) = sup
‖ϕ‖p′(·)≤1

∣∣∣∣
∫

Ω

f(x)ϕ(x)
∣∣∣∣,

then this norm is equivalent to ‖ · ‖p(·).

Definition 1.2. A function g is said to belong to W -Lip (Ω) (or to satisfy a
weak Lipschitz condition) if g ∈ C(Ω) and there exists a constant A > 0 such that
for all x, y ∈ Ω with 0 < |x− y| < 1

2 the inequality |g(x)− g(y)| ≤ A
− log |x−y| holds.

The next lemma follows immediately:
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Lemma 1.1. The function p : (0, 1) → R belongs to W -Lip (0, 1) if and only if
p′ ∈ W -Lip(0, 1), where p′(x) = p(x)

p(x)−1 .

Lemma 1.2. Let the function α : (0, 1) → (0, 1] belong to W -Lip (0, 1). Then
there exists a constant c > 0 such that for all x, y ∈ (0, 1) the inequality (x−y)α(x)−1 ≤
c (x− y)α(y)−1 holds.

Proof. Let a(x, y) ≡ (x− y)α(x)−α(y). Then

| log a(x, y)| = |α(x)− α(y)| log
1

x− y
≤ c log

1
x− y

· log−1 1
x− y

= c.

Consequently, 0 < c2 ≤ a(x, y) ≤ c1 < ∞. Finally,

(x− y)α(x)−1 = (x− y)α(x)−α(y)+α(y)−1 ≤ c (x− y)α(y)−1

and the lemma is proved

The following result is a special case of one proved recently by Diening (see [1]).

Theorem A. Let p : (0, 1) → (1,∞) be uniformly continuous and let p ∈ W -
Lip (0, 1). Then the maximal operator M defined by

(Mf)(x) = sup
h>0

1
2h

∫

[x−h,x+h]∩[0,1]

|f(y)| dy (1.1)

is bounded in Lp(x)(0, 1).

2. Boundedness

In this section we establish some weight inequalities for the Riemann–Liouville oper-
ator Rα defined by

(Rαf)(x) =
∫ x

0

(x− y)α(x)−1f(y) dy (0 < α(x) ≤ 1, x > 0)

in the spaces Lp(x)(0, 1) and Lp(x)(R+). The appropriate problems for the Weyl
operators Wα and Wα defined by

(Wαf)(x) =
∫ ∞

x

(y − x)α(x)−1f(y) dy
(
0 < α(x) ≤ 1, x > 0

)

(Wαf)(x) =
∫ 1

x

(y − x)α(x)−1f(y) dy
(
0 < α(x) ≤ 1, x ∈ (0, 1)

)

respectively are studied.
To prove the promised inequalities we shall need some auxiliary results.
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Lemma 2.1. Let α : (0, 1) → (0, 1] be measurable. Then there exists a constant
c > 0 such that for all x ∈ (0, 1) and 0 ≤ f ∈ L(a, b) (0 < a < b < 1) the inequality

ϕ(x)x−α(x)Rαf(x) ≤ cM−f(x)

holds, where

M−f(x) = sup
0<h≤x

1
h

∫ x

x−h

|f(y)| dy

and
ϕ(x) ≡ 2α(x) − 1. (2.1)

Proof. We have

(Rαf)(x) =
∫ x

0

f(y)
(x− y)1−α(x)

dy

=
+∞∑

k=0

∫ x− x

2k+1

x− x

2k

f(y)(x− y)α(x)−1dy

≤
+∞∑

k=0

( x

2k+1

)α(x)−1
∫ x− x

2k+1

x− x

2k

f(y) dy

≤
+∞∑

k=0

( x

2k+1

)α(x)−1
∫ x

x− x

2k

f(y) dy

≤ c xα(x)M−f(x)
+∞∑

k=1

2−α(x)k

= c xα(x)M−f(x)(ϕ(x))−1

and the lemma is proved

Now we can derive a Hardy-type theorem in the spaces Lp(·)(0, 1) (for the classical
Lebesgue case see, e.g., [4: Section 329]).

Theorem 2.1. Let p be a uniformly continuous function on (0, 1) which belongs
to W -Lip (0, 1). Then there exists a constant c > 0 such that for all f ∈ Lp(x)(0, 1)
the inequality

∥∥x−α(x)ϕ(x)(Rαf)(x)
∥∥

Lp(x)(0,1)
≤ c ‖f(x)‖Lp(x)(0,1)

holds, where ϕ is defined by (2.1).

Proof. The proof follows from Lemma 2.1, Theorem A and inequality M−f(x) ≤
Mf(x)

Corollary 2.1. Let p satisfy the conditions of Theorem 2.1. Then the operator
Rα is bounded in Lp(x)(0, 1).

Now we are able to investigate the boundedness of the Riesz potential Iα defined
by

(Iαf)(x) =
∫ 1

0

|x− y|α(x)−1f(y) dy (0 < α(x) < 1)

in Lp(x)(0, 1) spaces.



Potential-Type Operators in Lp(x) Spaces 685

Theorem 2.2. Let p satisfy the conditions of Theorem 2.1 and assume that
α ∈ W -Lip (0, 1). Then the operator Iα is bounded in Lp(x)(0, 1).

Proof. Taking into account the simple equality

Iαf = Rαf +Wαf, where (Wαf)(x) =
∫ 1

x

(y − x)α(x)−1f(y) dy

it is sufficient to establish the boundedness of Wα in Lp(x)(0, 1). For this we observe
that Wα acts boundedly in Lp(x)(0, 1) if and only if Rα is bounded in Lp′(x)(0, 1),
where p′(x) = p(x)

p(x)−1 . Indeed, let ‖g‖p′(·) ≤ 1 and ‖f‖p(·) ≤ 1. Using the equivalence
of the norms ‖ · ‖∗p(·) and ‖ · ‖p(·), Tonelli’s theorem and Lemma 1.2, we find that

‖Wα(·)f‖p(·) ≤ c sup
‖g‖p′(x)≤1

∣∣∣∣
∫ 1

0

g(x)(Wαf)(x) dx

∣∣∣∣

≤ c sup
‖g‖p′(x)≤1

( ∫ 1

0

|g(x)|(Wα|f |)(x) dx

)

≤ c sup
‖g‖p′(x)≤1

∫ 1

0

|f(y)|
( ∫ y

0

(y − x)α(y)−1|g(x)| dx

)
dy

≤ c sup
‖g‖p′(x)≤1

‖f‖p(·)‖(Rα|g|)‖p′(·)

≤ c.

Analogously, it follows that if Wα is bounded in Lp(·)(0, 1), then ‖(Rαf)(·)‖p′(·) ≤ c
for all ‖f(·)‖p′(·) ≤ 1

Theorem 2.3. Let α : R+ → (0, 1] be a non-decreasing function and let p :
R+ → (1,∞) be a measurable function. Assume also that p(x) ≡ p( x

1−x ) belongs to
W -Lip(0, 1), where x ∈ (0, 1). Then there exists a constant c > 0 such that for all
f ∈ Lp(·)(R+) the inequality

∥∥v(x)(Rα(f · w))(x)
∥∥

p(x)
≤ c ‖f(x)‖p(x)

holds, where

w(x) = (1 + x)
2

p(x)−α(x)−1,

v(x) = (1 + x)
2

p′(x)
+1

x−α(x)ϕ( x
x+1 )

and ϕ is defined by (2.1).

Proof. Let ‖g‖p′(·) ≤ 1 and ‖f‖p(·) ≤ 1. Then using the change of variable
x = t

1−t (t ∈ (0, 1)) and the notation ψ(t) ≡ ψ( t
t−1 ) for measurable ψ : (0, 1) → R,
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we obtain

∫

R+

v(x)
∣∣∣∣
∫ x

0

(x− y)α(x)−1f(y)w(y) dy

∣∣∣∣g(x) dx

=
∫ 1

0

v(t)
∣∣∣∣
∫ t

1−t

0

( t

1− t
− y

)α(t)−1

f(y)w(y) dy

∣∣∣∣g(t)
dt

(1− t)2

=
∫ 1

0

v(t)
( ∫ t

0

(t− τ)α(t)−1

[(1− t)(1− τ)]α(t)−1
|f(τ)|w(τ)

dτ

(1− τ)2

)
g(t)

dt

(1− t)2

≤
∫ 1

0

v(t)
( ∫ t

0

(t− τ)α(t)−1(1− τ)−α(t)−1|f(τ)|w(τ) dτ

)
(1− t)−α(t)−1g(t) dt

≤
∫ 1

0

v(t)
( ∫ t

0

(t− τ)α(t)−1(1− τ)−α(τ)−1|f(τ)|w(τ) dτ

)
(1− t)−α(t)−1g(t) dt

≤
∥∥g(t)(1− t)−

2
p′(t)

∥∥
p′(t)

∥∥ϕ(t)t−α(t)(Rαf̃)(t)
∥∥

p(t)
,

where f̃(x) = |f(x)|(1 − x)−
2

p′(x) . Further, by Theorem 2.1 and Proposition 1.1 we
have ∥∥ϕ(t)t−α(t)(Rαf̃)(t)

∥∥
p(t)

≤ c
∥∥f̃(t)

∥∥
p(t)

≤ c

( ∫ 1

0

|f(t)|p(t)(1− t)−2dt

) 1
P

= c

( ∫

R+

|f(t)|p(t) dt

) 1
P

≤ c
∥∥f(t)

∥∥ p0
P

p(t)

≤ c.

Analogously, using the change of variable t = τ
1−τ , we find

∥∥g(t)(1−t)−
2

p′(t)
∥∥

p′(t) ≤ 1.
Taking into account the inequalities derived above, we conclude that

∥∥v(t)(Rα(fw))(t)
∥∥

p(t)
≤ c, ‖f(·)‖p(·) ≤ 1

and the statement is proved

Taking into account duality arguments and the equivalence of the norms ‖ · ‖p(·)
and ‖ · ‖∗p(·), we easily obtain the following

Theorem 2.4. Let p : R+ → (1,∞) be such that p(x) ≡ p( x
1−x ) belongs to W -

Lip(0, 1) (x ∈ (0, 1)). Assume also that α is a non-decreasing function defined on
[0, 1] and that α ∈ W -Lip(0, 1). Then there exists a constant c > 0 such that for all
f ∈ Lp(x)(R+) the inequality

∥∥v(x)(Wα(f · w))(x)
∥∥

p(x)
≤ c

∥∥f(x)
∥∥

p(x)
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holds, where
v(x) = (1 + x)

2
p′(x)

−α(x)−1
,

w(x) = (1 + x)
2

p(x)+1x−α(x)ϕ
(

x
x+1

)

and ϕ is defined by (2.1).

3. Compactness

In this section we study the compactness properties of the operators Rα,Wα and
Iα in the spaces Lp(x)(0, 1).

Lemma 3.1. Let 1 < p0 ≤ p(x) ≤ P < ∞. Then

supp Lp(x)(Ω) :=
{ ∪ supp f : f ∈ Lp(·)(Ω)

}
= Ω,

where supp f := {x ∈ Ω : f(x) 6= 0}.
Proof. Let us represent Ω =

∑
n Ωn, where Ωn are subsets of Ω with finite

measure. By Proposition 1.1 we conclude that the functions fn = χΩn belong to
Lp(·)(Ω) for every n

The next lemma is taken from [6].

Lemma 3.2. Let 1 < p0 ≤ p(x) ≤ P < ∞. Then the norm ‖·‖p(·) is monotonic,
i.e. if |f(x)| ≤ |g(x)| a.e. and f, g ∈ Lp(·), then ‖f(·)‖p(·) ≤ ‖g(·)‖p(·).

Lemma 3.3 (see, e.g., [6]). Let the function p satisfy the conditions of Lemma
3.2. Then Lp(·) is a Banach space.

Lemma 3.4. Let the function p satisfy the conditions of Lemma 3.2. Then the
space Lp(·)(Ω) has the property that if (gn) is a sequence of functions such that gn ↓ 0
a.e., then ‖gn(·)‖p(·) ↓ 0.

Proof. If gn ↓ 0 a.e., then gn(x)p(x) ↓ 0 a.e. Hence using the Lebesgue mono-
tone convergence theorem, we conclude that Ip(gn) ↓ 0 as n → ∞. Consequently,
‖gn(·)‖p(·) ↓0

From this lemma we easily obtain

Lemma 3.5. Let p satisfy the conditions of Lemma 3.2. Then from the fact
0 ≤ gn(x) ↑ g(x) a.e., where g ∈ Lp(·), it follows that ‖gn(·)‖p(·) → ‖g(·)‖p(·).

In the sequel we shall denote by Lp(·)(Ω)[Lq(·)(Ω)] the space of all measurable
functions k(s, t) on Ω× Ω satisfying the following conditions:

(i) The function s → k(s, t) belongs to Lq(s)(Ω) for a.a. t ∈ Ω.

(ii) The function ‖k(·, t)‖q(·) belongs to Lp(t)(Ω).

From Lemmas 3.1 - 3.5 we can obtain the following lemma (see [5: Chapter XI/
Section 4, Lemma 2]).
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Lemma 3.6. Let p and q be given measurable functions on Ω such that

1 < p0 ≤ p(x) ≤ P < ∞
1 < q0 ≤ q(x) ≤ Q < ∞ (x ∈ Ω)

where p0 = ess infx∈Ω p(x), P = ess supx∈Ω p(x), q0 = ess infx∈Ω q(x), Q = ess supx∈Ω

q(x). Then the space L(p·)(Ω)[Lq(·)(Ω)] contains an everywhere dense subset H1 con-
sisting of all functions of the form

∑i0
i=1 χBi

(s)xi(t) (s, t ∈ Ω) where the sets Bi are
point-wise disjoint, χBi ∈ Lq(·)(Ω) and xi ∈ Lp(·)(Ω) ∩ L∞(Ω).

Now we are ready to prove

Theorem 3.1. Let p and q satisfy the condition of Lemma 3.6. Then from the
condition M ≡

∥∥ ‖k(x, y)‖p′(y)

∥∥
q(x)

< ∞ the compactness of the operator K defined
by

(Kf)(x) =
∫

Ω

k(x, y)f(y) dy (x ∈ Ω)

from Lp(·)(Ω) to Lq(·)(Ω) follows.

Proof. By Lemma 3.6 we know that the set of all functions

km(s, t) =
m∑

i=1

ηi(s)λi(t) (s, t ∈ Ω)

is dense in Lq(·)[Lp′(·)], where ηi = χBi (Bi are point-wise disjoint sets) belongs to
Lq(·)(Ω) and λi ∈ Lp(·)(Ω) ∩ L∞(Ω). First we show the boundedness of K. By
Hölder’s inequality we have

|(Kf)(x)| ≤ k‖f(y)‖p(y)‖k(x, y)‖p′(y).

Hence
‖(Kf)(·)‖q(·) ≤ k‖f(·)‖p(·)

∥∥ ‖k(x, y)‖p′(y)

∥∥
q(x)

≤ kM‖f(·)‖p(·).

Moreover, ‖K‖ ≤ kM .
Now we prove the compactness of K. Let

(Knϕ)(x) =
∫

Ω

kn(x, y)ϕ(y) dy.

Note that

(Knϕ)(x) =
n∑

i=1

ηi(x)
∫

Ω

λi(y)ϕ(y) dy ≡
n∑

i=1

ηi(x)bi,

where bi =
∫
Ω

λi(y)ϕ(y) dy. This means that Kn is a finite rank operator, and so it
is compact. We have

‖K −Kn‖ = sup
‖f‖p(·)≤1

‖(K −Kn)f‖q(·)

≤ c sup
‖f(·)‖p(·)≤1

sup
‖g(·)‖q′(·)≤1

∣∣∣∣
∫

Ω

[
(K −Kn)f(x)

]
g(x) dx

∣∣∣∣.
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Further, we find that
∣∣∣∣
∫

Ω

[
(K −Kn)f(x)

]
g(x) dx

∣∣∣∣
≤ k‖g(·)‖q′(·)‖(K −Kn)f(·)‖q(·)
≤ k2‖g(·)‖q′(·)

∥∥‖k(x, y)− kn(x, y)‖p′(y)

∥∥
q(x)

‖f(·)‖p(·).

Let ε > 0. Then we can choose n ∈ N such that ‖K −Kn‖ < ε. Thus the operator
K is compact as it is the limit of finite rank operators

Theorem 3.2. Let 1 < p0 ≤ p(x) ≤ P < ∞ and 1 < q ≤ q(x) ≤ Q < ∞.
Assume that 0 < α(x) ≤ 1 for x ∈ (0, 1) and that p ∈ W -Lip (0, 1). Assume also that
α(x)p(x) ≥ 1 for all x ∈ (0, 1) and S ≡ ∥∥[

(α(x) − 1)p′(x) + 1
]−1∥∥

q(x)
< ∞. Then

the operator Rα is compact from Lp(·)(0, 1) to Lq(·)(0, 1).

Proof. By Theorem 3.1 it is sufficient to show that

M ≡
∥∥‖(x− y)α(x)−1χ(0,x)(y)‖p′(y)

∥∥
q(x)

< ∞.

By Lemma 1.1 we have that p′ ∈ W -Lip (0, 1). Hence
∫ x

0

(x− y)(α(x)−1)p′(y)dy ≤ c

∫ x

0

(x− y)(α(x)−1)p′(x)dy

= c
x(α(x)−1)p′(x)+1

(α(x)− 1)p′(x) + 1

≤ c

(α(x)− 1)p′(x) + 1

for every x ∈ (0, 1). Consequently, by the condition S < ∞ and Proposition 1.1 we
finally see that M < ∞

From this statement we obtain

Theorem 3.3. Let 1 < p0 ≤ p(x) ≤ P < ∞ and 1 < q0 ≤ q(x) ≤ Q < ∞.
Assume that p ∈ W -Lip (0, 1) and inf(α(x)p(x)) > 1. Then the operator Rα is
compact from Lp(·)(0, 1) to Lq(·)(0, 1).

Proof. By Theorem 3.2 it suffices to show that that there exist a constant σ > 0
such that for all x ∈ (0, 1) the inequality

[
(α(x)− 1)p′(x) + 1

]−1 ≤ σ holds. Indeed,
let λ = inf(α(x)p(x)) and let us choose σ such that α(x)p(x) > σ(P − 1) + 1. Hence
(α(x)p(x)− 1)p′(x) + 1 > σ for all x ∈ (0, 1)

Theorem 3.4. Let p, q and α satisfy the conditions of Theorem 3.2. Then the
operator Iα is compact from Lp(·)(0, 1) to Lq(·)(0, 1).

Proof. It is obvious that Iαf = Rαf +Wαf . By Theorem 3.2 Rα is compact.
To show that Wα is also compact we observe that, by the condition p′ ∈ W -Lip (0, 1),

∫ 1

x

(y − x)(α(x)−1)p′(y)dy ≤ c

∫ 1

x

(y − x)(α(x)−1)p′(x)dy

≤ c
(1− x)(α(x)−1)p′(x)+1

(α(x)− 1)p′(x) + 1
.
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Hence ∥∥ ‖(y − x)α(x)−1χ(x,1)(y)‖p′(y)

∥∥
q(x)

< ∞
and the statement is proved

Now from this statement we have

Theorem 3.5. Let α, p and q satisfy the conditions of Theorem 3.3. Then the
operator Iα is compact from Lp(·)(0, 1) to Lq(·)(0, 1).
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