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In this note necessary and sufficient conditions on a pair of weights guaranteeing
two-weight inequalities for the multiple Hardy-type transform

Rα,βf(x, y) =

x
∫

0

y
∫

0

f(t, τ)

(x − t)1−α(y − τ)1−β
dtdτ α, β ≥ 1,

are presented provided that the weight on the right–hand side satisfies some additional
conditions.

Let ρ be an almost everywhere positive function on a subset E of Rn. We denote by
Lp

ρ(E), 1 < p < ∞, the set of all measurable functions f : E → R1 for which the norm

‖f‖L
p
ρ(E) =

(
∫

E

|f(x)|pρ(x)dx

)1/p

is finite.

A solution of the two-weight problem for the two-dimensional Hardy operator

H2f(x, y) =

x
∫

0

y
∫

0

f(t, τ)dtdτ, x, y > 0.

has been found in 1985 by E. Sawyer [13]. Namely he proved

Theorem A. Let 1 < p ≤ q < ∞. Then for the boundedness of the operator H2 from
Lp

w(R2
+) to Lq

v(R2
+) it is necessary and sufficient that the following three independent

conditions are satisfied:

(i)

A =: sup
a,b>0

(H′

2v(a, b))1/q(H2σ(a, b))1/p′

< ∞, (∗)

where σ =: w1−p′

, p′ = p
p−1

;

(ii)
a

∫

0

b
∫

0

(H2σ)qv ≤ Aq[H2σ(a, b)]p/q

for all a, b > 0;
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(iii)
∞
∫

a

∞
∫

b

(H′

2v)p′

σ ≤ Ap′

[H′

2v(a, b)]p
′/q′

for all a, b > 0, where

H′

2f(x, y) =

∞
∫

x

∞
∫

y

f(t, τ)dtdτ, x, y > 0.

In her doctoral thesis A. Wedestig [17] derived a two-weight criterion for the operator
H2 when the weight on the right–hand side is a product of two functions of separate
variables. In particular, she proved

Theorem B. Let 1 < p ≤ q < ∞ and let s1, s2 ∈ (1, p). Suppose that the weight
function w on R2

+ has the form w(x, y) = w1(x)w2(y). Then for the boundedness of the

operator H2 from Lp
w(R2

+) to Lq
v(R2

+) it is necessary and sufficient that

A(s1, s2) =: sup
t1,t1>0

W1(t1)(s1−1)/pW2(t2)(s2−1)/p×

×

(

∞
∫

t1

∞
∫

t2

v(x1, x2)W1(x1)
q
p
(p−s2)

dx1dx2

)1/q

< ∞,

where W1(t1) =
∫ t1
0

w1−p′

1 (x1)dx1 and W2(t2) =
∫ t2
0

w1−p′

2 (x2)dx2.

Earlier some sufficient conditions for the validity of the two-weight inequality for H2

were established in [14] and [16].
Necessary and sufficient conditions on the weight function v on R2

+ governing the
trace inequality

(

∞
∫

0

∞
∫

0

|Rα,βf(x, y)|qv(x, y)dxdy

)1/q

≤ c

(

∞
∫

0

∞
∫

0

|f(x, y)|pdxdy

)1/p

,

1 < p ≤ q < ∞,

for the Riemann-Liouville operator with multiple kernels Rα,β α, β > 1/p, have been
obtained in [6]. Analogous problem has been solved in [7] for 0 < α < 1/p and β > 1/p

A solution of the two-weight problem for the one-dimensional Hardy transform

Hf(x) =

x
∫

0

f(t)dt

has been given by B. Muchenhoupt [11] for 1 < p = q < ∞; by V. Kokilashvili [4], J.
Bradley [1] and V. Maz’ya [9] (Ch.1) for 1 < p ≤ q < ∞:

Later on F. J. Martin–Reyes and E. Sawyer [8] and V. Stepanov [15] established
two-weight criteria for the Riemann-Liouville transform

Rαf(x) =

x
∫

0

f(y)

(x − y)1−α
dy

for α > 1.

Criteria for the boundedness of Rα from Lp(R+) to Lq
v(R+) when 1 < p ≤ q < ∞ and

α > 1/p have been found in [10] (see also [12]), while the similar result has been derived
in [5] for 1 < p ≤ q < ∞ and 0 < α < 1/p (see also [2], Ch. 2). When 1 < p < q < ∞ a
solution of the two-weight problem for potential operators has been given in [3].
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Definition. A nonnegative function ρ : R2
+ → R1 is said to be a weight function with

doubling condition uniformly with respect to x ∈ R+ if there exists a positive constant c
such that for arbitrary t > 0 and almost all x > 0 the inequality

2t
∫

0

ρ(x, y)dy ≤ c

t
∫

0

ρ(x, y)dy

holds. In this case we write ρ ∈ DC(y). Analogously we define the class DC(x).
The main results of the present note are the following statements:

Theorem 1. Let 1 < p ≤ q < ∞ and let α, β ≥ 1. Suppose that w1−p′

∈ DC(y).
Then the operator Rα,β is bounded from Lp

w(R2
+) to Lq

v(R2
+) if and only if

(i) A1 =: sup
a,b>0

(

a
∫

0

b
∫

0

w1−p′

(x, y)

(a − x)(1−α)q
dxdy

)1/p′
(

∞
∫

a

∞
∫

b

v(x, y)

y(1−β)q
dxdy

)1/q

< ∞;

(ii) A2 =: sup
a,b>0

(

a
∫

0

b
∫

0

w1−p′

(x, y)dxdy

)1/p′

×

×

(

∞
∫

a

∞
∫

b

v(x, y)

(x − a)(1−α)qy(1−β)q
dxdy

)1/q

< ∞.

Moreover, ‖Rα,β‖ ≈ max{A1, A2}.

Theorem 2. Let 1 < p ≤ q < ∞ and let α, β ≥ 1. Suppose that w1−p′

∈ DC(x).

Then the operator Rα,β is bounded from Lp
w(R2

+) to Lq
v(R+) if and only if

(i) B1 =: sup
a,b>0

(

a
∫

0

b
∫

0

w1−p′

(x, y)

(b − y)(1−β)q
dxdy

)1/p′
(

∞
∫

a

∞
∫

b

v(x, y)

x(1−α)q
dxdy

)1/q

< ∞;

(ii) B2 =: sup
a,b>0

(

a
∫

0

b
∫

0

w1−p′

(x, y)dxdy

)1/p′

×

×

(

∞
∫

a

∞
∫

b

v(x, y)

(y − b)(1−β)qx(1−α)q
dxdy

)1/q

< ∞.

Moreover, ‖Rα,β‖ ≈ max{B1, B2}.

Corollary. Let 1 < p ≤ q < ∞. Suppose that w1−p′

∈ DC(x) or w1−p′

∈ DC(y).
Then the operator H2 is bounded from Lp

w(R2
+) to Lq

v(R2
+) if and only if the condition

(∗) of Theorem A holds.

More general form of this corollary is the next statement:

Theorem 3. Let 1 < p ≤ q < ∞. Assume that the weight function w1−p′

satisfies
the condition

sup
x>0
k∈Z

( ∞
∑

j=k

(

2j
∫

0

w1−p′

(x, y)dy

)1−p)(

2k+1
∫

0

w1−p′

(x, y)dx

)p−1

< ∞.

Then the boundedness of H2 from Lp
w(R2

+) to Lq
v(R2

+) is equivalent to the condition (∗)
of Theorem A.
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The following theorem states that if the weight function w has the form w(x, y) =
w1(x)w2(y), then the boundedness of the operator H2 from Lp

w(R2
+) to Lq

v(R2
+) is equiv-

alent to the first condition in the Sawyer’s theorem.

Theorem 4. Let 1 < p ≤ q < ∞ and w(x, y) = w1(x)w2(y). Then the operator H2

is bounded from Lp
w(R2

+) to Lq
v(R2

+) if and only if

D =: sup
a,b>0

(

a
∫

0

w1−p′

1 (x)dx

)1/p′
(

b
∫

0

w1−p′

2 (y)dy

)1/p′

×

×

(

∞
∫

a

∞
∫

b

v(x, y) dxdy

)1/q

< ∞.
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