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Abstract. Necessary and sufficient conditions on a pair of weights guaran-

teeing two-weight estimates for the multiple Riemann-Liouville transforms are

established provided that the weight on the right–hand side satisfies some

additional conditions.

1. Introduction

In 1985 E. Sawyer [15] solved the two-weight problem for the two-
dimensional Hardy transform

H2f(x, y) =
∫ x

0

∫ y

0

f(t, τ)dtdτ, x, y > 0.

Namely he proved the following statement:

Theorem A. Let 1 < p ≤ q < ∞. Then for the boundedness of the
operator H2 from Lp

w(R2
+) to Lq

v(R
2
+) it is necessary and sufficient that

the following three independent conditions are satisfied:
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(i)

(1.1) A =: sup
a,b>0

(H ′
2v(a, b))1/q(H2σ(a, b))1/p′

< ∞,

where σ =: w1−p′
, p′ = p

p−1 ;

(ii) ∫ a

0

∫ b

0

(H2σ)qv ≤ Aq[H2σ(a, b)]p/q

for all a, b > 0 ;

(iii) ∫ ∞

a

∫ ∞

b

(H ′
2v)p′

σ ≤ Ap′
[H ′

2v(a, b)]p
′/q′

for all a, b > 0 , where

H ′
2f(x, y) =

∫ ∞

x

∫ ∞

y

f(t, τ)dtdτ, x, y > 0.

In her doctoral thesis A. Wedestig [20] derived a two-weight criterion for
the operator H2 when the weight on the right–hand side is a product of
two functions of separate variables. In particular, she proved

Theorem B. Let 1 < p ≤ q < ∞ and let s1, s2 ∈ (1, p) . Suppose that the
weight function w on R2

+ has the form w(x, y) = w1(x)w2(y) . Then for the
boundedness of the operator H2 from Lp

w(R2
+) to Lq

v(R
2
+) it is necessary

and sufficient that

A(s1, s2) =: sup
t1,t1>0

W1(t1)(s1−1)/pW2(t2)(s2−1)/p

×
(∫ ∞

t1

∫ ∞

t2

v(x1, x2)W1(x1)
q
p (p−s2)dx1dx2

)1/q

< ∞,

where W1(t1) =
∫ t1
0 w1−p′

1 (x1)dx1 and W2(t2) =
∫ t2
0 w1−p′

2 (x2)dx2.

Earlier some sufficient conditions for the validity of the two-weight
inequality for H2 were established in [16] and [19].

Necessary and sufficient conditions on the weight function v on R2
+

governing the trace inequality(∫ ∞

0

∫ ∞

0

|Rα,βf(x, y)|qv(x, y)dxdy

)1/q

≤ c

(∫ ∞

0

∫ ∞

0

|f(x, y)|pdxdy

)1/p

, 1 < p ≤ q < ∞,
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for the Riemann-Liouville operator with multiple kernels

Rα,βf(x, y) =
∫ x

0

∫ y

0

f(t, τ)
(x − t)1−α(y − τ)1−β

dtdτ,

where α, β > 1/p , have been obtained in [8]. Analogous problem has been
solved in [9] for 0 < α < 1/p and β > 1/p .

In this paper we establish boundedness criteria for the operator Rα,β ,
α, β > 1, from Lp

w(R2
+) to Lq

v(R2
+) when the weight w satisfies the one-

dimensional doubling condition uniformly with respect to another variable.
As a corollary we conclude that under this restriction the two-weight
inequality for the operator H2 holds if and only if the condition (1.1) is
satisfied. When the weight function w has the form w(x, y) = w1(x)w2(y)
we show that also in this case a two-weight criterion for H2 is (1.1) .

2. Preliminaries

Let ρ be an almost everywhere positive function on a subset E of Rn .
We denote by Lp

ρ(E), 1 < p < ∞ , the set of all measurable functions
f : E → R1 for which the norm

‖f‖Lp
ρ(E) =

(∫
E

|f(x)|pρ(x)dx

)1/p

is finite.

Let us recall some well-known results for one-dimensional Hardy-type
transforms.

A solution of the two-weight problem for the one-dimensional Hardy
transform

Hf(x) =
∫ x

0

f(t)dt

has been given by B. Muchenhoupt [13] for p = q ; by V. Kokilashvili [6],
J. Bradley [2] and V. Maz’ya [11, Chapter 1] for p ≤ q . Namely the following
statement holds.

Theorem C. Let 1 < p ≤ q < ∞ . Then the inequality

(2.1)
(∫ ∞

0

∣∣∣∣ ∫ x

0

f(y)dy

∣∣∣∣qdx

)1/q

≤ c

(∫ ∞

0

|f(x)|pdx

)1/p

with the positive constant c independent of f holds if and only if

A ≡ sup
t>0

(∫ ∞

t

v(x)dx

)1/q(∫ t

0

w1−p′
(x)dx

)1/p′

< ∞.
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Moreover, if c is the best constant in (2.1) , then there exists a positive
constant b depending only on p and q such that the inequality A ≤ c ≤ bA

holds.

Later on F. J. Martin–Reyes and E. Sawyer [10] and V. Stepanov [17]
proved the next statement, which gives two-weight criteria for the Riemann-
Liouville transform

Rαf(x) =
∫ x

0

f(y)
(x − y)1−α

dy,

where α > 1.

Theorem D. Let 1 < p ≤ q < ∞ , α > 1 . Then the operator Rα

acts boundedly from Lp
w(R+) to Lq

v(R+) if and only if the following two
conditions

A1 =: sup
t>0

(∫ ∞

t

v(x)
(x − t)(1−α)q

dx

)1/q(∫ t

0

w1−p′
(x)dx

)1/p′

< ∞;

A2 =: sup
t>0

(∫ ∞

t

v(x)dx

)1/q(∫ t

0

w1−p′
(x)

(t − x)(1−α)p′ dx

)1/p′

< ∞

hold. Moreover, there exist positive constants c1 and c2 depending only on
α , p and q such that c1 max{A1, A2} ≤ ‖Rα‖ ≤ c2 max{A1, A2} .

Criteria for the boundedness of Rα from Lp(R+) to Lq
v(R+) when

1 < p ≤ q < ∞ and α > 1/p have been obtained in [12] (see also [14]), while
the similar result has been derived in [7], [3, Chapter 2], for 1 < p ≤ q < ∞
and 0 < α < 1/p . When 1 < p < q < ∞ a solution of the two-weight
problem for potential operators has been given in [5].

The next statement concerning the discrete Hardy operator defined on
Z perhaps is already known, but we give the proof of the theorem for the
completeness (see also [1], [4] for two-weight criteria for the Hardy transform
on Z+ ):

Theorem E. Let 1 < p ≤ q < ∞ and let {an} , {bn} be positive
sequences. The inequality

(2.2)

( ∞∑
n=−∞

∣∣∣∣∣
n∑

k=−∞
gk

∣∣∣∣∣
q

aq
n

)1/q

≤ c

( ∞∑
n=−∞

|gn|pbp
n

)1/p
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with the positive constant c independent of {gk} (gk ∈ lp
bp

n
(Z)) , holds if and

only if

B =: sup
n∈Z

( ∞∑
k=n

aq
k

)1/q( n∑
k=−∞

b−p′
k

)1/p′

< ∞.

Moreover, if c is the best constant in (2.2) , then

B ≤ c ≤ Bq
1
q

(
q

q − 1

)(p−1)/p

.

Proof (Sufficiency). Let αn =

(
n∑

k=−∞
b−p′
k

) 1
qp′

. Due to Hölder’s inequality

we have( ∞∑
n=−∞

aq
n

∣∣∣∣∣
n∑

k=−∞
fk

∣∣∣∣∣
q)p/q

≤
( ∞∑

n=−∞
aq

n

(
n∑

k=−∞
|fkαkbk|p

)q/p( n∑
k=−∞

(αkbk)−p′
) q

p′)p/q

=:

( ∞∑
n=−∞

An

) p
q

.

By Minkowsky’s inequality
(

q
p ≥ 1

)
we obtain

( ∞∑
n=−∞

An

)p/q

=

( ∞∑
n=−∞

(
n∑

k=−∞
|fkαkbk|pap

n

(
n∑

k=−∞
(αkbk)−p′

)p

p′)q
p
)p

q

≤
∞∑

k=−∞
|fkαkbk|p

( ∞∑
n=k

aq
n

(
n∑

k=−∞
(αkbk)−p′

) q

p′) p
q

=:
∑

k

Dk.

For the intrinsic sum we have

∞∑
n=k

aq
n

(
n∑

k=−∞
(αkbk)−p′

) q

p′

=
∞∑

n=k

aq
n

( n∑
k=−∞

(
k∑

i=−∞
b−p′
k

)− 1
q

b−p′
k

) q
p′

.
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Moreover, the next easily verifiable inequality

n∑
k=−∞

b−p′
k

(
k∑

i=−∞
b−p′
i

)− 1
q

≤ q′
(

n∑
k=−∞

b−p′
k

)1/q′

gives

∞∑
n=k

aq
n

(
n∑

i=−∞
(αibi)−p′

) q
p′

= (q′)
q

p′
∞∑

n=k

aq
n

(
n∑

i=−∞
b−p′
i

) q
q′p′

.

Further, the latter sum does not exceed

λ = B
q

q′ (q′)
q

p′
∞∑

n=k

aq
n

( ∞∑
i=n

aq
i

)− 1
q′

.

The inequality

∞∑
n=k

aq
n

( ∞∑
i=n

aq
i

)− 1
q′

≤ q

( ∞∑
i=k

aq
i

)1/q

,

can also be easily verified. Therefore we obtain

λ ≤ qB
q

q′ (q′)
q

p′

( ∞∑
i=k

aq
i

)1/q

≤ qB · B q

q′ (q′)
q

p′

(
k∑

i=0

b−p′
i

)− 1
p′

= qBq(q′)
q
p′ α−q

k .

Finally we have

∑
k∈Z

Dk ≤ q
p
q Bp(q′)

p

p′
∞∑

k=−∞
|fkαkbk|pα−p

k = q
p
q Bp(q′)

p

p′
∞∑

k=−∞
|fk|pβp

k.

In order to prove necessity we take the sequence

gk =

{
β−p′

k , k ≤ n,

0, k > n.
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Then we have( ∞∑
i∈Z

(
i∑

k=−∞
gk

)q

aq
i

)1/q

≥
( ∞∑

i=n

aq
i

)1/q( n∑
k=−∞

β−p′
k

)
.

On the other hand,( ∞∑
k=−∞

|gk|pβp
k

)1/p

=

(
n∑

k=−∞
β−p′

k

)1/p

and finally
B < ∞. �

Analogously it follows

Theorem F. Let 1 < p ≤ q < ∞ and let m be an integer. Suppose
that {an}m

n=−∞ , {bn}m
n=−∞ are positive sequences. Then the two-weight

inequality

(2.3)

(
m∑

n=−∞

∣∣∣∣∣
n∑

k=−∞
gk

∣∣∣∣∣
q

aq
n

)1/q

≤ c

(
m∑

n=−∞
|gn|pbp

n

)1/p

holds if and only if

Bm =: sup
−∞<n≤m

(
m∑

k=n

aq
k

)1/q( n∑
k=−∞

b−p′
k

)1/p′

< ∞.

Moreover, if c is the best constant in (2.3) , then

Bm ≤ c ≤ Bmq
1
q

(
q

q − 1

)(p−1)/p

.

3. The Main Results

In order to formulate the main results of this paper we need the following
definition:

Definition. A nonnegative function ρ : R2
+ → R1 is said to be a weight

function with doubling condition uniformly with respect to x ∈ R+ if there
exists a positive constant c such that for arbitrary t > 0 and almost all
x > 0 the inequality
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∫ 2t

0

ρ(x, y)dy ≤ c

∫ t

0

ρ(x, y)dy

holds. In this case we write ρ ∈ DC(y) . Analogously we define the class
DC(x) .

Note that if the weight ρ is integrable on [0, a]2 , a > 0, then ρ ∈ DC(y)
is equivalent to the condition: there exists a constant c > 0 such that for
all intervals of finite length I ⊂ R+ and all t > 0 the inequality∫

I

∫ 2t

0

ρ(x, y)dxdy ≤ c

∫
I

∫ t

0

ρ(x, y)dxdy

holds.

Theorem 3.1. Let 1 < p ≤ q < ∞ and let α, β ≥ 1 . Suppose that
w1−p′ ∈ DC(y) . Then the operator Rα,β is bounded from Lp

w(R2
+) to

Lq
v(R

2
+) if and only if

(i)

A1 =: sup
a,b>0

(∫ a

0

∫ b

0

w1−p′
(x, y)

(a − x)(1−α)q
dxdy

)1/p′

×
(∫ ∞

a

∫ ∞

b

v(x, y)
y(1−β)q

dxdy

)1/q

< ∞;

(ii)

A2 =: sup
a,b>0

(∫ a

0

∫ b

0

w1−p′
(x, y)dxdy

)1/p′

×
(∫ ∞

a

∫ ∞

b

v(x, y)
(x − a)(1−α)qy(1−β)q

dxdy

)1/q

< ∞.

Moreover, ‖Rα,β‖ ≈ max{A1, A2} .

Theorem 3.2. Let 1 < p ≤ q < ∞ and let α, β ≥ 1 . Suppose that
w1−p′ ∈ DC(x) . Then the operator Rα,β is bounded from Lp

w(R2
+) to

Lq
v(R+) if and only if
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(i)

B1 =: sup
a,b>0

(∫ a

0

∫ b

0

w1−p′
(x, y)

(b − y)(1−β)q
dxdy

)1/p′

×
(∫ ∞

a

∫ ∞

b

v(x, y)
x(1−α)q

dxdy

)1/q

< ∞;

(ii)

B2 =: sup
a,b>0

(∫ a

0

∫ b

0

w1−p′
(x, y)dxdy

)1/p′

×
(∫ ∞

a

∫ ∞

b

v(x, y)
(y − b)(1−β)qx(1−α)q

dxdy

)1/q

< ∞.

Moreover, ‖Rα,β‖ ≈ max{B1, B2} .

Corollary 3.1. Let 1 < p ≤ q < ∞ . Suppose that w1−p′ ∈ DC(x)
or w1−p′ ∈ DC(y) . Then the operator H2 is bounded from Lp

w(R2
+) to

Lq
v(R

2
+) if and only if (1.1) holds.

More general form of this corollary is the next statement:

Theorem 3.3. Let 1 < p ≤ q < ∞ . Assume that the weight function
w1−p′

satisfies the condition

sup
x>0
k∈Z

( ∞∑
j=k

(∫ 2j

0

w1−p′
(x, y)dy

)1−p)(∫ 2k+1

0

w1−p′
(x, y)dx

)p−1

< ∞.

Then the boundedness of H2 from Lp
w(R2

+) to Lq
v(R

2
+) is equivalent to

(1.1) .

The following theorem states that if the weight function w has the form
w(x, y) = w1(x)w2(y), then the boundedness of the operator H2 from
Lp

w(R2
+) to Lq

v(R
2
+) is equivalent to the first condition in the E. Sawyer’s

theorem.

Theorem 3.4. Let 1 < p ≤ q < ∞ and w(x, y) = w1(x)w2(y) . Then
the operator H2 is bounded from Lp

w(R2
+) to Lq

v(R2
+) if and only if

D =: sup
a,b>0

(∫ a

0

w1−p′
1 (x)dx

)1/p′(∫ b

0

w1−p′
2 (y)dy

)1/p′

×
(∫ ∞

a

∫ ∞

b

v(x, y)dxdy

)1/q

< ∞.
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4. Proof of the Main Results

In this section we present the proofs of the results formulated in the
previous section.

Proof of Theorem 3.1 . Sufficiency. First of all note that (see e.g., [18])
the condition w1−p′ ∈ DC(y) implies the reverse doubling condition for
w1−p′

uniformly with respect to x , i.e., there exists the constants η1, η2 > 1
such that for all t > 0 and a.e. x ∈ R+ the inequality

(4.1)
∫ η1t

0

w1−p′
(x, y)dy ≥ η2

∫ t

0

w1−p′
(x, y)dy

holds.
In the sequel we shall use the notation:

v1(x, y) =:
v(x, y)
y(1−β)q

; ṽ1,j(x) =:
∫ ηj+1

1

ηj
1

v1(x, y)dy;

Fj(t) =:
∫ ηj+1

1

0

f(t, τ)dτ ; A =: max{A1, A2}.

Let f ≥ 0. Then taking into account the fact α ≥ 1 and using Theorem D
we find that

I =:
∫ ∞

0

∫ ∞

0

v(x, y)(Rα,βf)q(x, y)dxdy

≤
∫ ∞

0

∫ ∞

0

v1(x, y)
(∫ x

0

(x − t)α−1

(∫ y

0

f(t, τ)dτ

)
dt

)q

dxdy

≤
∑
j∈Z

∫ ∞

0

ṽ1,j(x)
(∫ x

0

(x − t)α−1Fj(t)dt

)q

dx

≤ cAq
∑
j∈Z

[ ∫ ∞

0

(∫ ηj
1

0

w1−p′
(x, y)dy

)1−p

F p
j (x)dx

]q/p

≤ cAq

[∫ ∞

0

∑
j∈Z

(∫ ηj
1

0

w1−p′
(x, y)dy

)1−p

F p
j (x)dx

]q/p

.

On the other hand, we have

(4.2) sup
x>0
k∈Z

J(x, j) =: sup
x>0
k∈Z

∞∑
j=k

(∫ ηj
1

0

w1−p′
(x, y)dy

)1−p
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×
( k∑

j=−∞

∫ ηj+1
1

ηj
1

w1−p′
(x, y)dy

)p−1

< ∞.

Indeed, (4.1) and the condition w1−p′ ∈ DC(y) lead to the inequality:

J(x, j) =
∞∑

j=k

(∫ ηj
1

0

w1−p′
(x, y)dy

)1−p(∫ ηk+1
1

0

w1−p′
(x, y)dy

)p−1

≤
( ∞∑

j=k

η
(j−k)(1−p)
2

)(∫ ηk
1

0

w1−p′
(x, y)dy

)1−p

×
(∫ ηk+1

1

0

w1−p′
(x, y)dy

)p−1

≤ c .

Consequently, by virtue of Theorem E and Hölder’s inequality we find
that[ ∫ ∞

0

∑
j∈Z

(∫ ηj
1

0

w1−p′
(x, y)dy

)1−p

F p
j (x)dx

]q/p

≤ c

[∫ ∞

0

∑
j∈Z

(∫ ηj
1

0

w1−p′
(x, y)dy

)1−p( j∑
k=−∞

∫ ηk+1
1

ηk
1

f(x, t)dt

)p

dx

]q/p

≤ c

[∫ ∞

0

∑
k∈Z

(∫ ηk+1
1

ηk
1

w1−p′
(x, τ)dτ

)1−p(∫ ηk+1
1

ηk
1

f(x, t)dt

)p

dx

]q/p

≤ c

[∫ ∞

0

∑
j∈Z

(∫ ηj+1
1

ηj
1

w1−p′
(x, y)dy

)1−p

×
(∫ ηj+1

1

ηj
1

w(x, t)fp(x, t)dt

)(∫ ηj+1
1

ηj
1

w1−p′
(x, t)dt

)p−1

dx

]q/p

≤ c‖f‖q
Lp(R2

+)
.

Necessity. Let f ≥ 0 and let a, b > 0. It is easy to see that

I ≥
∫ ∞

0

∫ ∞

0

v(x, y)
(∫ x

0

∫ y/2

0

f(t, τ)
(x − t)1−α(y − τ)1−β

dtdτ

)q

dxdy

≥ c

(∫ ∞

a

∫ ∞

b

v1(x, y)dxdy

)(∫ a

0

∫ b/2

0

f(t, τ)
(a − t)1−α

dtdτ

)q

.

Using the latter inequality and the boundedness of Rα,β on the class
of functions fa,b(x, y) = χ(0,a)(x)χ(0,b/2)(y)w1−p′

(x, y)(a − t)(α−1)(q−1) ,
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a, b > 0, we find that(∫ a

0

∫ b/2

0

w1−p′
(x, y)

(a − x)(1−α)q
dxdy

)q ∫ ∞

a

∫ ∞

b

v1(x, y)dxdy

≤ I ≤ c

(∫ a

0

∫ b/2

0

w1−p′
(x, y)

(a − x)(1−α)q
dxdy

)q/p

< ∞.

Hence this inequality and the condition w ∈ CD(y) give us the condition
A1 < ∞ .

Taking into account the arguments used above and the fact that the
operator Rα,β is bounded from Lp

w(R2
+) to Lq

v(R
2
+) if and only if its dual

operator

Wα,βf(x, y) =
∫ ∞

x

∫ ∞

y

(t − x)α−1(τ − y)β−1f(t, τ)dtdτ

is bounded from Lq′

v1−q′ (R
2
+) to Lp′

w1−p′ (R2
+), we obtain that A2 < ∞ .

Proof of Theorem 3.2 . The proof is similar to that of Theorem 3.1. �
Proof of Theorem 3.3. Necessity is obvious. In order to prove sufficiency,

it is enough to take the sequence 2k instead of ηk
1 in the proof of

Theorem 3.1. �
Proof of Theorem 3.4 . First suppose that S :=

∫∞
0

w1−p′
2 (y)dy = ∞ . Let

{xk}+∞
k=−∞ be a sequence of positive numbers for which the equality

(4.3) 2k =
∫ xk

0

w1−p′
2 (y)dy

holds for all k ∈ Z . It is clear that {xk} is increasing and R+ =
∪k∈Z [xk, xk+1). Besides, it is easy to verify that

2k =
∫ xk+1

xk

w1−p′
2 (y)dy.

Let f ≥ 0. We have

I =:
∫ ∞

0

∫ ∞

0

v(x, y)(H2(x, y))2dxdy

=
∑
k∈Z

∫ ∞

0

∫ xk+1

xk

v(x, y)
(∫ x

0

∫ y

0

f(t, τ)dtdτ

)q

dxdy

≤
∑
k∈Z

∫ ∞

0

(∫ xk+1

xk

v(x, y)dy

)(∫ x

0

(∫ xk+1

0

f(t, τ)dτ

)
dt

)q

dx
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=
∑
k∈Z

∫ ∞

0

Vk(x)
(∫ x

0

Fk(t)dt

)q

dx,

where

Vk(x) =:
∫ xk+1

xk

v(x, y)dy; Fk(t) =:
∫ xk+1

0

f(t, τ)dτ.

Further, it is obvious that

Dq ≥ sup
a>0
j∈Z

(∫ ∞

a

∫ xj+1

xj

v(x, y)dxdy

)(∫ a

0

∫ xj

0

w1−p′
(x, y)dxdy

)q/p′

.

Therefore by Theorem C we obtain

I ≤ cDq
∑
j∈Z

[∫ ∞

0

w1(x)
(∫ xj

0

w1−p′
2 (y)dy

)1−p

(Fk(x))pdx

]q/p

≤ cDq

[ ∫ ∞

0

w1(x)
∑
j∈Z

(∫ xj

0

w1−p′
2 (y)dy

)1−p

×
( j∑

k=−∞

∫ xk+1

xk

f(x, τ)dτ

)p

dx

]q/p

.

On the other hand, (4.3) yields

+∞∑
k=n

(∫ xk

0

w1−p′
2 (y)dy

)1−p( n∑
k=−∞

∫ xk+1

xk

w1−p′
2 (y)dy

)p−1

=
+∞∑
k=n

(∫ xk

0

w1−p′
2 (y)dy

)1−p(∫ xn+1

0

w1−p′
2 (y)dy

)p−1

=
( +∞∑

k=n

2k(1−p)

)
2(n+1)(p−1) ≤ c

for all n ∈ Z . Hence by Theorem E and Hölder’s inequality we have

I ≤ cDq

[∫ ∞

0

w1(x)
∑
j∈Z

(∫ xj+1

xj

w1−p′
2 (y)dy

)1−p

×
(∫ xk+1

xk

f(x, τ)dτ

)p

dx

]q/p

≤ cDq

[∫ ∞

0

w1(x)
∑
j∈Z

(∫ xk+1

xk

w2(τ)fp(x, τ)dτ

)
dx

]q/p

= cDq‖f‖q
Lp(R2

+)
.
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If S < ∞ , then without loss of generality we can assume that S = 1.
In this case we choose the sequence {xk}0

k=−∞ for which (4.3) holds for
all k ≤ 0. Arguing as in the case S = ∞ and using Theorem F instead of
Theorem E, we finally obtain the desired result. �
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