
Proc. A. Razmadze Math. Inst. 144(2007), 121–125

U. Ashraf, M. Asif and A. Meskhi

ON A CLASS OF BOUNDED AND COMPACT HIGHER
DIMENSIONAL KERNEL OPERATORS

(Reported on 20.06.2007)

In this note boundedness/compactness criteria from Lp(E) to Lq
v(E) are presented

for the operator with positive kernel

Kf(x) =

∫

Er(x)

k(x, y)f(y)dy, x ∈ E, (1)

where 1 < p, q < ∞ or 0 < q ≤ 1 < p < ∞, Er(x) and E are certain cones in homogeneous
groups and k satisfies the conditions which in one-dimensional case are similar to those
of [12].

A full characterization of pairs of weights (v, w) governing the boundedness of integral
operators with positive kernels from Lp

w to Lq
v, 1 < p < q < ∞, have been established in

[6] (see also [7]). Criteria guaranteeing the boundedness/compactness of the operator

Rαf(x) =

x
∫

0

(x − t)α−1f(t)dt, x > 0,

from Lp(R+) to Lq
v(R+), 1 < p, q < ∞, 1/p < α < 1 have been obtained in [11] and

[17]. This result was generalized in [12] (see also [3], Ch. 2) for integral operators with
positive kernels involving fractional integrals.

The two-weight problem for higher-dimensional Hardy-type operators defined on cones
in Rn involving Oinarov [16] kernels was studied in [19], [8] (see also [18], for Hardy-type
transforms on star-shaped regions).

In the present note we present also two-sided estimates of Schatten-von Neumann
norms for the weighted integral operator with positive kernel

Kuf(x) = u(x)

∫

Er(x)

k(x, y)f(y)dy, x ∈ E, (2)

where u is a measurable function on E.
A homogeneous group G is a simply connected nilpotent Lie group G on whose Lie

algebra g is given one-parameter group of transformations δt = exp(A log t), t > 0,
where A is a diagonalized linear operator on G with positive eigenvalues. For G the
mappings exp o δt o exp−1 , t > 0, are automorphisms on G, which will be denoted
by δt. The number Q = tr A is called homogeneous dimension of G. The symbol e will
stand for the neutral element in G.

It is possible to equip G with a homogeneous norm r : G → [0,∞) which is continuous
function on G and smooth on G\{e} satisfying the following conditions:

(i) r(x) = r(x−1) for every x ∈ G;
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(ii) r(δtx) = t · r(x) for every x ∈ G and t > 0;
(iii) r(x) = 0 if and only if x = e ;
(iv) there exists co ≥ 1 such that

r(xy) ≤ co(r(x) + r(y)), x, y ∈ G.

A ball in G, centered at x and with radius ρ , is defined as

B(x, ρ) = {y ∈ G; r(xy−1) < ρ}.

It can be observed that δρB(e, 1) = B(e, ρ).

Let us fix a Haar measure | · | in G so that |B(0, 1)| = 1. Then |δtE| = tQ|E|, in
particular, |B(x, r)| = rQ for x ∈ G, r > 0.

Examples of homogeneous groups are: Euclidean n-dimensional spaces, Heisenberg
group, upper triangular groups etc (see [5] for the definition and basic properties of
homogeneous groups).

Let S be the unit sphere in G i.e. S = {x ∈ G : r(x) = 1}, and let A be a measurable
subset of S with positive measure. We denote by E a measurable cone in G defined by

E := {x ∈ G : x = δsx, 0 < s < ∞, x ∈ A}.

We denote

Et := {y ∈ E : r(y) < t}.

For the cones E and Er(·) we define the kernel operator by (1), where k(x, y) is non-

negative function on {(x, y) ∈ E × E : r(y) < r(x)}.
Let Ω be a measurable subset of G. A locally integrable almost everywhere posi-

tive function w on Ω we call a weight. Denote by Lp
w(Ω) (0 < p < ∞) the weighted

Lebesgue space, which is the space of all measurable functions f : Ω → C with finite
norm (quasinorm if 0 < p < 1)

‖f‖L
p
w(Ω) =

(
∫

Ω

|f(x)|pw(x)dx

) 1
p

.

Let H be a separable Hilbert space and let σ∞(H) be the class of all compact linear
operators T : H → H, which form an ideal in the normed algebra B of all bounded
linear operators on H. To construct a Schatten-von Neumann ideal σp(H) (0 < p ≤
∞) in σ∞(H), the sequence of singular numbers sj(T ) ≡ λj(|T |) is used, where the

eigenvalues λj(|T |) (|T | ≡ (T ∗T )1/2) are non-negative and are repeated according to
their multiplicity and arranged in decreasing order. A Schatten-von Neumann quasinorm
(norm if 1 ≤ p ≤ ∞) is defined as follows:

‖T‖σp(H) ≡
(

∑

j

sp
j (T )

)1/p
, 0 < p < ∞,

with the usual modification if p = ∞. Thus we have ‖T‖σ∞(H) = ‖T‖ and ‖T‖σ2(H) is
the Hilbert-Schmidt norm given by the formula

‖T‖σ2(H) =

(
∫ ∫

|a(x, y)|2dxdy

)1/2

for the integral operator

Tf(x) =

∫

a(x, y)f(y)dy.

We refer, for example, to [1], [9] for more information concerning Schatten-von Neumann
ideals.
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For estimates of Schatten- von Neumann ideal norms for the Hardy-type transforms
we refer to [15], [2], [4], [14]. The same problem for the operator with positive kernel
involving one-sided potentials was studied in [13] (see also [3]).

Definition 1. Let k be a positive function on {(x, y) ∈ E × E : r(y) < r(x)} and let
1 < λ < ∞. We say that the kernel k ∈ Vλ, if there exist positive constants c1, c2 and
c3 such that

(i) k(x, y) ≤ c1k(x, δ1/(2co)x) for all x, y with x, y ∈ E, r(y) < r(x)/(2co); k(x, y) ≥

c2k(x, δ1/(2co)x) for all x, y with x, y ∈ E, r(x)/(2co) < r(y) < r(x);

(ii)
∫

Er(x)\Er(x)/(2c0)

kλ′

(x, y)dy ≤ c3rQ(x)kλ′

(x, δ1/(2co)x), λ′ = λ/(λ − 1), for all

x ∈ E.

Example 1. Let G = Rn, r(xy−1) = |x − y|, δtx = tx, x, y ∈ Rn. Suppose that k is
the potential kernel k(x, y) = |x − y|α−n. Then k ∈ Vλ if n/λ < α ≤ n.

Example 2. It is easy to see that if
(i) k(δtx̄, δτ ȳ) ≤ c1k(δtx̄, δsz̄) for all t, τ , s, x̄, ȳ, z̄ with 0 < τ < s < t; x̄, ȳ, z̄ ∈ A;

(ii)
∫ t

t/(2co) kλ′

(δtx̄, δτ ȳ)τQ−1dτ ≤ c2tQ · kλ′

(δtx̄, δt/(2co)x̄), t > 0, x̄ ∈ A, then

k ∈ Vλ.

Example 3. Let k(x, y) = k(r(x), r(y)) be a radial kernel and let there exist positive
constants c1 and c2 such that

(i) k̄(s, l) ≤ c1k̄(s, t), 0 < l < t < s,

(ii)
∫ t
t/(2c0)

k̄λ′

(t, s)sQ−1ds ≤ c2tQk̄λ′

(t, t/(2c0)), 1 < λ < ∞. Then k ∈ Vλ.

Theorem 1. Let 1 < p ≤ q < ∞ and let v be a weight on E. Suppose that k ∈ Vp.

Then K is bounded from Lp(E) to Lq
v(E) if and only if

B ≡ sup
j∈Z

B(j) ≡ sup
j∈Z

(

∫

F
2j+1\E

2j

kq(x, δ1/(2co)x)v(x)dx
)1/q

(

2j
)Q/p′

< ∞.

Theorem 2. Let 1 < p ≤ q < ∞. Suppose that k ∈ Vp. Then K is compact from

Lp(E) to Lq
v(E) if and only if

(a) B < ∞;

(b) lim
j→−∞

B(j) = lim
j→+∞

B(j) = 0.

For q < p we have

Theorem 3. Let 0 < q < p < ∞ and let p > 1. Suppose that k ∈ Vp. Then the

following conditions are equivalent:

(i) K is bounded from Lp(E) to Lq
v(E);

(ii) K is compact from Lp(E) to Lq
v(E);

(iii)

(

∫

E

(

∫

E\Er(x)

kq(y, δ1/(2co)y)v(y)dy

)p/(p−q)

r(x)Qp(q−1)/(p−q)dx

)(p−q)/pq

<∞.

Let k0(x) := rQ(x)k2(x, δ1/(2co)x) and let lp
(

L2
k0

(E)
)

be the set of all measurable

functions g : E → R for which

‖g‖lp(L2
k0

(E)) =
(

∑

n∈Z

(

∫

E
2n+1\E2n

|g(x)|2k0(x)dx
)p/2)1/p

< ∞.

Now we give two-sided estimates of Schatten von-Neumann norms for the operator
(2).
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Theorem 4. Let 2 ≤ p < ∞ and let k in V2. Then Ku ∈ σp(L2(E)) if and only if

u ∈ lp(L2
k0

(E)). Moreover, there exist positive constants b1 and b2 such that

b1‖u‖lp(L2
k0

(E)) ≤ ‖Ku‖σp(L2(E)) ≤ b2‖u‖lp(L2
k0

(E)).
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