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One reason for the universal interest in Frobenius algebras is that
their characterisation can be formulated in arbitrary categories:
a functor K : A → B between categories is Frobenius if there exists
a functor G : B → A which is at the same time a right and left
adjoint of K ; a monad F on A is a Frobenius monad provided the
forgetful functor AF →A is a Frobenius functor, where AF denotes
the category of F -modules. With these notions, an algebra A over
a field k is a Frobenius algebra if and only if A ⊗k − is a Frobenius
monad on the category of k-vector spaces.
The purpose of this paper is to find characterisations of quasi-
Frobenius algebras by just referring to constructions available in
any categories. To achieve this we define QF functors between two
categories by requiring conditions on pairings of functors which
weaken the axioms for adjoint pairs of functors. QF monads on
a category A are those monads F for which the forgetful functor
U F : AF → A is a QF functor. Applied to module categories (or
Grothendieck categories), our notions coincide with definitions
first given K. Morita (and others). Further applications show the
relations of QF functors and QF monads with Frobenius (exact)
categories.
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Introduction

Investigating the Frobenius and quasi-Frobenius ring extensions studied by F. Kasch, T. Nakayama,
T. Tsuzuku, B. Pareigis, B. Müller and others, K. Morita defines (in [22]) two objects X , Y of any module
category to be similar provided there are natural numbers n, k such that X is a direct summand of
(the (co)product) Y n and Y is a direct summand of Xk . Given rings A and B , he calls two functors
S, S ′ : AM → BM between the categories of A-modules and B-modules similar provided S(M) and
S ′(M) are similar for any object M ∈ AM. Notice that similarity defines an equivalence relation on
the class of objects and the class of functors, respectively. K. Morita uses these notions to characterise
quasi-Frobenius ring extensions B → A for which both B A and AB have to be finitely generated and
projective.

Let F :A→ B and G : B →A be a pair of (covariant) functors between additive categories. In [13],
G. Guo calls G left quasi-adjoint to F , provided there are a natural number n and natural transfor-
mations η : IB → (F G)n and ζ : (G F )n → IA such that ζG ◦ Gη = IG . He defines (G, F ) to be a left
quasi-Frobenius pair in case (F , G) is an adjoint pair and (G, F ) is a quasi-adjoint pair of functors. He
shows that a ring extension ι : B → A is left quasi-Frobenius in the sense of Müller [23,24], provided
(F1, G1) is a left quasi-Frobenius pair where F1 : AM → BM is the restriction of scalars functor and
G1 = A ⊗B − : BM → AM is the induction functor.

The notions mentioned above are formulated for Grothendieck categories by Castaño Iglesias,
Nǎstǎsescu and Vercruysse in [7]. They call a functor F : A → B with left and right adjoints
L, R : B → A a quasi-Frobenius triple provided L and R are similar functors. This similarity enforces
an a priori symmetry for the definitions.

Here we will modify the ideas sketched above to define quasi-Frobenius functors on any categories
without requiring finiteness conditions. In particular, we will consider QF monads and show that in
their module categories the relative injectives coincide with the relative projective objects. A special
case of all these functors are Frobenius functors between any categories.

In Section 1 we collect elementary properties of pairings of functors weakening the conditions for
adjoint pairs of functors. The notion of right QF functors handled in Section 2 generalises the notions of
Frobenius functors. The latter are functors F with a right adjoint R which is also a left adjoint. Here
we require F to have a right adjoint R for which a retract of some product RΛ is left adjoint to F . In
these investigations, adjoint triples (L, F , R) of functors (that is L � F � R) are of special interest. The
main properties of QF triples of functors are listed in Proposition 2.6 and their interplay with functor
categories is sketched at the end of this section. Hereby also the relation with separable functors of the
second kind as defined by Caenepeel and Militaru in [6] is described.

Section 3 begins with recalling some categorical constructions which are of use in studying QF
monads and comonads, that is, monads and comonads for which the forgetful functors from the
(co)module category to the base category are QF functors. Hereby features known for QF rings and QF
corings are shown in a more general context.

In Section 4 the results are considered for module and comodule categories. It turns out that the
restriction of our notions coincide with the notions defined for these special cases elsewhere. Finally
we outline the relevance of QF functors for Frobenius categories, which are defined as exact categories
with enough projectives and enough injectives such that projectives and injectives coincide. Recall
that rings whose module categories have these properties are precisely the (noetherian) QF rings (e.g.
[28, 48.15]).

1. Preliminaries

One of our main tools will be a generalised form of adjoint pairs of functors and in this section
we present the basic facts of this setting.
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Throughout A and B will denote arbitrary categories. By I A , A or just by I , we denote the identity
morphism of an object A ∈ A, I F or F stand for the identity on the functor F , and IA or I mean the
identity functor on a category A.

1.1. Pairing of functors. Let L : A → B and R : B → A be covariant functors. Assume there are maps,
natural in A ∈ A and B ∈ B,

αA,B : MorB
(
L(A), B

) → MorA
(

A, R(B)
)
,

βA,B : MorA
(

A, R(B)
) → MorB

(
L(A), B

)
.

These maps correspond to natural transformations α and β between obvious functors A
op ×B → Set.

The quadruple (L, R,α,β) is called a (full) pairing of functors.

1.2. Quasi-unit and quasi-counit. Given a pairing (L, R,α,β), the morphisms, for A ∈ A, B ∈ B,

ηA := αA,L(A)(I) : A → RL(A) and εB := βR(B),B(I) : LR(B) → B

yield natural transformations

η : IA → RL, ε : LR → IB,

called quasi-unit and quasi-counit of (L, R,α,β), respectively. They, in turn, determine the transforma-
tions α and β by

αA,B : L(A)
f−→ B 	→ A

ηA−→ RL(A)
R( f )−−−→ R(B),

βA,B : A
g−→ R(B) 	→ L(A)

L(g)−−→ LR(B)
εB−→ B.

1.3. Definition. A pairing (L, R,α,β) with quasi-unit η and quasi-counit ε (see 1.2) is called

left semi-adjoint if β · α = I, that is, L
Lη−→ LRL εL−→ L = L I−→ L,

right semi-adjoint if α · β = I, that is, R
ηR−→ RLR Rε−→ R = R I−→ R,

an adjunction if it is left and right semi-adjoint.

The following observations are essentially made in [18, Section IV.1, Exercise 4].

1.4. Lemma. Let (L, R,α,β) be a pairing.

(1) If (L, R,α,β) is left semi-adjoint, then
(i) the natural transformation Rε · ηR : R → R is an idempotent;

(ii) L has a right adjoint if and only if this idempotent splits.
(2) If (L, R,α,β) is right semi-adjoint, then

(i) the natural transformation εL · Lη : L → L is an idempotent;
(ii) R has a left adjoint if and only if this idempotent splits.

Proof. (1) If the idempotent Rε ·ηR is split by R
p−→ R ′ i−→ R , then R ′ is a right adjoint of L with unit

pL · η and counit ε · Li.
(2) is shown by a similar argument. �
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Recall that a category A is said to be Cauchy complete provided all idempotent morphisms split
in A.

1.5. Corollary. Let (L, R,α,β) be a pairing.

(1) If the category A is Cauchy complete, then (L, R,α,β) is left semi-adjoint if and only if the functor R has
a retract R ′ (i.e. there are natural transformations τ : R ′ → R and τ ′ : R → R ′ with τ ′ · τ = I R ) which is
right adjoint to L.

(2) If the category B is Cauchy complete, then (L, R,α,β) is right semi-adjoint if and only if the functor L has
a retract L′ which is left adjoint to R.

1.6. Proposition. Let η,ε : L � R : B → A be an adjunction.

(i) Assume there are a functor R : B → A and natural transformations τ : R → R and τ : R → R with
τ · τ = I R . Then (L, R) is left semi-adjoint with

quasi-unit η = τ L · η and quasi-counit ε = ε · Lτ .

(ii) Assume there are a functor L : A → B and natural transformations κ : L → L and κ : L → L with
κ · κ = I L . Then (L, R) is right semi-adjoint with

quasi-unit η = Rκ · η and quasi-counit ε = ε · κ R.

Proof. All these assertions are easy to verify. �
The following result can be obtained by adapting the proof of [19, Lemma 3.13]:

1.7. Lemma. Let H, H ′ : A → B be functors such that H is a retract of H ′ . Then any (co)limit that is preserved
by the functor H ′ is also preserved by the functor H.

Proof. Since H is a retract of H ′ , there are natural transformations τ : H → H ′ and τ ′ : H ′ → H with
τ ′ · τ = I H . Now, let F : C → A be an arbitrary functor with C a small category such that the functor
H ′ preserves its limits. Since τ ′ · τ = I H , the diagram

H
τ

H ′ τ ·τ ′

I
H ′

is a split equaliser diagram, and thus it is preserved by any functor. Then, in the commutative diagram

H(lim←− F )

k1

τ( lim←− F )

H ′(lim←− F )

k2

(τ ·τ ′)( lim←− F )

I
H ′(lim←− F )

k3

lim←−(H F )
lim←−(τ F )

lim←−(H ′ F )

lim←−((τ ·τ ′)F )

I
lim←−(H ′ F ),

where the vertical morphisms are the comparison ones, the rows are (split) equaliser diagrams. Since
the functor H ′ preserves the limit of F , the morphisms k2 and k3 are both isomorphisms, implying
that k1 is also an isomorphism.
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The dual statement can be shown in the same way by using the split coequaliser diagram

H ′ τ ·τ ′

I
H ′ τ ′

H . �

Note that to say that (L, R,α,β) is left semi-adjoint is to say that, for any B ∈ B, the func-
tor MorB(L(−), B) is a retract of the functor MorA(−, R(B)), natural in B . It then follows from
Lemma 1.7:

1.8. Proposition. Let (L, R,α,β) be a pairing.

(i) If (L, R,α,β) is left semi-adjoint, then L preserves any colimits existing in A.
(ii) If (L, R,α,β) is right semi-adjoint, then R preserves any limits existing in B.

1.9. Relative injectives and projectives. Let E be a class of morphisms in a category A. An object
A ∈ A is said to be E-projective if for any diagram

A

g
h

X
f

Y

with f ∈ E, there is a morphism h : A → X such that f h = g . Dually, the notion of E-injective objects
is defined. Note that the class of E-projectives is closed under small coproducts, while the class of
E-injectives is closed under small products.

Given a functor F :A→ B, classes E of morphisms may be defined by collecting those morphisms
f : A → A′ in A, for which F ( f ) : F (A) → F (A′) is a split monomorphism or a split epimorphism
in B. This leads to the notions of F -injective or F -projective objects, respectively.

1.10. Proposition. Let (L, R,α,β) be a pairing and E and E
′ classes of morphisms in A and B, respectively.

(i) If (L, R,α,β) is left semi-adjoint and R(E′) ⊆ E, then L takes E-projectives into E
′-projectives.

(ii) If (L, R,α,β) is right semi-adjoint and L(E) ⊆ E
′ , then R takes E′-injectives into E-injectives.

Proof. (i) Let A ∈ A be an E-projective object and

L(A)

g

X
f

Y

a diagram in B with f ∈ E
′ . Consider the transform

A
ηA

RL(A)

R(g)

R(X)
R( f )

R(Y )
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of this diagram under the adjunction. Since R(E′) ⊆ E and f ∈ E
′ , R( f ) ∈ E by assumption and

E-projectivity of A implies that there is a morphism h : A → R(X) making the diagram commute.
This leads to the commutative diagram

L(A)
LηA

L(h)

LRL(A)

LR(g)

LR(X)
LR( f )

εX

LR(Y )

εY

X
f

Y

and we get

f · εX · L(h) = εY · LR(g) · LηA = g · εL(A) · LηA = g,

where the last equality follows from left semi-adjointness of the pairing. This shows that L(A) is
E

′-projective. (ii) is shown dually. �
The following setting will encounter us repeatedly in what follows.

1.11. Definition. A triple (L, F , R) of functors F : A → B, L, R : B → A is called an adjoint triple pro-
vided (L, F ) and (F , R) are adjoint pairs of functors.

In any category, consider the classes

E1 of all epimorphisms, M1 of all monomorphisms,

E2 of all strong epimorphisms, M2 of all strong monomorphisms,

E3 of all regular epimorphisms, M3 of all regular monomorphisms.

1.12. Proposition. Let (L, F , R) be an adjoint triple of functors.

(1) The functors F , L preserve all colimits while F , R preserve all limits existing in A or B, respectively. More-
over, L preserves small objects.

(2) L preserves Ei -projectives, while R preserves Mi -injectives (i = 1,2,3).

Proof. (1) The first properties are well known for adjoint functors. Let B be a small object in B. We
have to show that MorA(L(B),−) preserves coproducts. For any family {Xi}I of objects in A with
coproduct

∐
I Xi ,

MorA

(
L(B),

∐
I

Xi

)
� MorB

(
B, F

(∐
I

Xi

))

� MorB

(
B,

∐
I

F (Xi)

)

�
∐

MorB
(

B, F (Xi)
) �

∐
MorA

(
L(B), Xi

)
.

I I
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(2) Right adjoint functors preserve epimorphisms, strong epimorphisms and regular epimorphisms,
while left adjoint functors preserve monomorphisms, strong monomorphisms and regular epimor-
phisms. Now apply Proposition 1.10. �
2. QF functors

The following definitions generalise the corresponding notions in [22,13,7] to arbitrary categories.
Again A and B denote any categories. As customary in ring theory we will write QF for quasi-
Frobenius.

2.1. Definitions. A functor F :A→ B is called

right QF if it allows for a right adjoint functor R : B →A such that
the pair (RΛ, F ) is right semi-adjoint for some index set Λ;

left QF if it allows for a left adjoint functor L : B →A such that
the pair (F , L(Λ)) is left semi-adjoint for some index set Λ;

QF if it is left and right QF;
Frobenius if it has a right adjoint functor which is also left adjoint (see [22]).

Clearly a Frobenius functor is QF with |Λ| = 1 = |Λ′|. However, a QF functor with this property
need not be Frobenius. The condition only means that R is a retract of L and L is a retract of R . In
general this need not imply that R � L (but see Proposition 2.3).

2.2. Proposition. Let (L, F , R) be an adjoint triple of functors (see Definition 1.11).

(1) The following are equivalent:
(a) F is left QF;
(b) R is a retract of L(Λ) for some index set Λ.
If this holds, R preserves colimits, F preserves small objects in B, and every F -injective object in A is
F -projective.

(2) The following are equivalent:
(a) F is right QF;
(b) L is a retract of RΛ for some index set Λ.
In this case L preserves all limits which exist in B and every F -projective object in A is F -injective.

Proof. (1) By Proposition 1.12, the functor L preserves colimits and since colimits are preserved by
coproducts, it follows from Lemma 1.7 that R also preserves all colimits existing in B. Then the proof
of Proposition 1.12 shows that F preserves small objects.

Since R is right adjoint to F , an object a ∈A is F -injective if and only if a is a retract of R(b), with
b ∈ B (e.g., [25], [21, Proposition 1.5]). Since F is left QF, R is a retract of L(Λ) , Λ some index set. Then
R(b) is a retract of L(Λ)(b) = L(b)(Λ) . But, by the dual of [21, Proposition 1.5], L(b) is F -projective, and
since small coproducts of F -projectives are F -projective, it follows that a is a retract of an F -projective
object L(Λ)(b). Thus a is also F -projective.

(2) By Proposition 1.12, the functor R preserves all limits and since limits are preserved by prod-
ucts, it follows from Lemma 1.7 that L also preserves all limits existing in B. Dual to (1) one proves
that any F -projective object is F -injective. �
2.3. Proposition. Let (A,⊗, I, [−,−]) be a symmetric monoidal closed category with small complete and
cocomplete A. For any A-object A, the following are equivalent:

(a) the endofunctor A ⊗ − : A→ A is Frobenius;
(b) the endofunctor A ⊗ − : A→ A is a QF functor;
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(c) the object A ∈ A is nuclear, i.e., the canonical morphism [A, I] ⊗ A → [A, A] is an isomorphism (e.g.
[14]).

Proof. Clearly (a) ⇒ (b).
(b) ⇒ (c) Suppose the endofunctor A ⊗ − to be QF. Then its right adjoint [A,−] preserves all

colimits by Proposition 2.2. Applying [11, Corollary (5.8)] gives that there is a natural isomorphism
[A,−] � [A, I] ⊗ −, implying in particular that the canonical morphism [A, I] ⊗ A → [A, A] is an
isomorphism. Thus, A is nuclear.

(c) ⇒ (a) If A is nuclear, then by [14, Theorem 2.5], there is a natural isomorphism [A,−] �
[A, I] ⊗ −. It then follows that the functor [A,−] is left adjoint to A ⊗ −. Indeed, to say that the
functor [A,−] � [A, I]⊗− is right adjoint to the functor A ⊗− is to say that the object [A, I] is right
adjoint to the object A in the monoidal category A. Hence, by symmetry of A, there is an adjunction
[A, I] � A in A, inducing an adjunction [A,−] � A ⊗ − of functors. This proves that the endofunctor
A ⊗ − :A →A is Frobenius. �
2.4. Proposition (Composition of QF functors). Let (L, F , R) be as in Definition 1.11 and let (L1, G, R1) be an
adjoint triple with functors G : B →C and L1, R1 : C→ B.

If F and G are left (right) QF functors, then G F :A →C is again a left (right) QF functor.

Proof. Assume F and G to be left QF functors. Then there are index sets Λ, Λ1 such that R is a
retract of L(Λ) and R1 is a retract of L(Λ1)

1 . That is, there are natural transformations

k : R → L(Λ), l : L(Λ) → R, k1 : R1 → L(Λ1)
1 , l1 : L(Λ1)

1 → R1,

such that l · k = I R and l1 · k1 = I R1 . By Proposition 2.2(1), the functor R preserves small colimits in B

and thus there is an isomorphism

ω : RL(Λ1)
1 � (RL1)

(Λ1).

It is now easy to see that the composites

R R1
Rk1−−→ RL(Λ1)

1
ω−→ (RL1)

(Λ1) (kL1)(Λ1)−−−−−→ (
L(Λ)L1

)(Λ1) = (
(LL1)

(Λ)
)(Λ1) � (LL1)

(Λ×Λ1),

R R1
Rl1←−− RL(Λ1)

1
ω−1←−− (RL1)

(Λ1) (lL1)(Λ1)←−−−−− (
L(Λ)L1

)(Λ1) = (
(LL1)

(Λ)
)(Λ1) � (LL1)

(Λ×Λ1)

make R R1 a retract of (LL1)
(Λ×Λ1) . This shows that the functor G F with left and right adjoints LL1

and R R1 is left QF.
A similar proof shows the claim for right QF functors. �

2.5. Definition. An adjoint triple (L, F , R) (as in Definition 1.11) is said to be a (left, right) QF triple
provided F is a (left, right) QF functor as in Definitions 2.1.

Summarising the above observations yields generalisations of [7, Lemma 2.4(a)]:

2.6. Proposition. Let (L, F , R) be a QF triple. Then:

(i) The functors L, F and R preserve all limits and colimits in A or B, respectively.
(ii) The functors L and F preserve small objects.

(iii) L and R preserve both Ei -projectives and Mi -injectives (i = 1,2,3).
(iv) F preserves E1-projectives, E3-projectives, M1-injectives and M3-injectives.
(v) Every F -injective object in A is F -projective and vice versa.
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(vi) If B is small complete, well-powered, and with a small cogenerating set, then the functor L admits a left
adjoint.

(vii) If B is small cocomplete, well-copowered, and with a small generating set, then the functor R admits a
right adjoint.

Proof. (i), (ii) and (v) follow by Proposition 2.2.
(iii) It follows from Proposition 1.12(ii) that L preserves Ei-projectives and R preserves Mi -

injectives (i = 1,2,3). By Proposition 2.2(1), R (resp. L) is a retract of L(Λ) (resp. RΛ). But since
Ei -projectives (resp. Mi -injectives) are closed under coproducts (resp. products) and retracts, it fol-
lows that R (resp. L) also preserves Ei -projectives (resp. Mi -injectives) (i = 1,2,3).

(iv) Since R preserves all small colimits, it in particular preserves epimorphisms (by the dual of [3,
Proposition 2.9.2]) and regular epimorphisms. It now follows from Proposition 1.10 that F preserves
E1-projectives and E3-projectives.

Dually, F preserves M1-injectives and M3-injectives.
(vi) and (vii) follow from (i) and the Special Adjoint Theorem (e.g. [18]) and its dual, respec-

tively. �
2.7. The functors Π and Σ . Given a category A with small products and coproducts and an index
set Λ, we write ΠA

Λ (resp. ΣA

Λ ) for the functor A → A that takes an object A from A to AΛ

(resp. A(Λ)). For any functor H : X → A, we write HΛ (resp. H(Λ)) for the composite ΠA

Λ H (resp.
ΣA

Λ H). Note that, if a functor H : X → A preserves products (coproducts), then HΛ = ΠA

Λ H � HΠX

Λ

(H(Λ) = ΣA

Λ H � HΣX

Λ ). When no confusion can occur, we shall write ΠΛ (ΣΛ) instead of ΠA

Λ

(ΣA

Λ ).

Given two categories X and Y, we write [X,Y] for the functor category.

2.8. Functor categories and adjoint triples. Let (L, F , R) be an adjoint triple (as in Definition 1.11). For
unit and counit of the adjunction F � R (L � F ) write ηR : IA → R F and εR : F R → IB (ηL : IB → F L
and εL : L F → IA). Then, for any category X, one has adjunctions

ηX, εX : [X, F ] � [X, R] : [X,B] → [X,A],
ηX, εX : [X, L] � [X, F ] : [X,A] → [X,B],

where

ηX = [
X, ηR]

, εX = [
X, εR]

, ηX = [
X, ηL], εX = [

X, εL].
Now assume (L, F , R) to be a QF triple. Then there are index sets Λ and Λ′ such that R is a retract

of L(Λ) and L is a retract of RΛ′
(see Proposition 2.2). Since

[B, L](ΣB

Λ

) = LΣB

Λ � ΣA

Λ L = L(Λ), [B, R](ΠB

Λ′
) = RΠB

Λ′ � ΠA

Λ′ R = RΛ′
,

it follows that R is a retract of [B, L](ΣB

Λ), while L is a retract of [B, R](ΠB

Λ′). Using now that L, R ∈
[B,A] and that [B, L] (resp. [B, R]) is a left (resp. right) adjoint to [B, F ], it follows (e.g. from [21,
Proposition 1.5] and its dual) that the R-component (εX)R = εL R of εX is a split epimorphism, while
the L-component (ηX)L = ηR L of ηX is a split monomorphism.

Similarly, considering the adjunctions

[R,A] � [F ,A] � [L,A],
one gets that RηL is a split monomorphism, while LεR is a split epimorphism.
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Summarising we have proved:

2.9. Theorem. Let (L, F , R) be a QF triple (as in Definition 2.5). Then – with the notation from 2.8 – ηR L and
RηL are split monomorphisms, while εL R and LεR are split epimorphisms.

2.10. Separability and adjoint triples. In [6], Caenepeel and Militaru introduced the notion of separable
functors of the second kind. Applied to an adjoint triple (L, F , R), they prove in [6, Theorem 2.7]:

(i) the functor L is R-separable if and only if RηL is a split monomorphism;
(ii) the functor R is L-separable if and only if LεR is a split epimorphism.

As shown in Theorem 2.9, for a QF triple (L, F , R), the conditions in (i) and (ii) are satisfied and
hence [6, Proposition 2.4] applies and yields:

2.11. Proposition. Let (L, F , R) be a QF triple and consider a morphism f : B → B ′ in B. Then R( f ) has a left
(right) inverse in A if and only if L( f ) has a left (right) inverse in A.

3. QF monads and comonads

Before coming to the main topics of this section we recall some constructions from category the-
ory. For a monad F = (F ,μ,η) on a category A, we write

• AF for the Eilenberg–Moore category of F-modules and φF � U F : AF → A for the corresponding
forgetful-free adjunction;

• ÃF for the Kleisli category of the monad F (as a full subcategory of AF , e.g. [4]) and φF �
uF : ÃF → A for the corresponding Kleisli adjunction.

Dually, if G = (G, δ, ε) is a comonad on A, we write

• A
G for the Eilenberg–Moore category of G-comodules and U G � φG : A→A

G for the correspond-
ing forgetful-cofree adjunction;

• Ã
G for the Kleisli category of the comonad G and uG � φG : A→ Ã

G for the corresponding Kleisli
adjunction.

3.1. Monads on functor categories. Let F = (F ,μ,η) be a monad on a category A. Then the precom-
position with F induces a monad FX on [X,A],

FX : [X,A] → [X,A], f 	→ F f ,

f → f ′ 	→ F f → F f ′.

It is easy to see that the corresponding Eilenberg–Moore category [X,A]FX of FX-modules are just left
F-modules (see [20]), that is, functors f : X → A together with a natural transformation α : F f → f
inducing commutativity of the diagrams

f
η f

F f

α

f ,

F F f
μ f

Fα

F f

α

F f
α

f .
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Dually, F induces the monad FX on the category [A,X],

FX : [A,X] → [A,X], f 	→ f F ,

f → f ′ 	→ f F → f ′ F .

The corresponding Eilenberg–Moore category [A,X]FX of FX-modules are just right F-modules.

3.2. Theorem. (See [26, Theorem 8].) Let F = (F ,μ,η) be a monad on A.

(1) The assignments

f :X →AF 	→ U F f : X →A,

f → f ′ :X →AF 	→ U F f → U F f ′ : X →A,

yield an isomorphism of categories

[X,AF ] � [X,A]FX .

(2) The assignments

f : ÃF →X 	→ f φF : A →X,

f → f ′ : ÃF →X 	→ f φF → f ′φF : A→X,

yield an isomorphism of categories

[ÃF ,X] � [A,X]FX .

3.3. Density presentation. For a monad F = (F ,μ,η) on A, consider the family

P = {(
F F (A),μF (A)

) μA

F h

(
F (A),μA

)}
(A,h)

∈AF

of parallel morphisms. We know from [8] that P is a density presentation (in the sense of Kelly [16])
of the fully-faithful and dense canonical embedding i : ÃF → AF . For any category B with coequalis-
ers, we write [AF ,B]P for the full subcategory of [AF ,B] given by those functors H : AF → B that
preserve the coequaliser of each member of P , that is, for all (A,h) ∈AF , H preserves the coequaliser
diagram

(
F F (A),μF (A)

) μA

F h

(
F (A),μA

) h
(A,h).

Then, according to [16, Theorem 5.31], the functor

[i,B] : [AF ,B]P → [ÃF ,B]

is an equivalence of categories. Now, by Theorem 3.2(2), the composite
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[AF ,B]P [i,B]−−→ [ÃF ,B] �−→ [A,B]FB , AF
H−→ B 	→A

φF−→ ÃF
i−→AF

H−→ B,

is an equivalence of categories. But since i · φF = φF , this equivalence is just the functor [φF ,B]. Thus,
we have proved:

3.4. Theorem. For any monad (F ,μ,η) on A and any category B with coequalisers, the functor

[φF ,B] : [AF ,B]P → [A,B]FB

is an equivalence of categories.

We now come back to QF functors.

3.5. Right adjoints of monads. Let F = (F ,μ,η) be monad on A. For an adjunction η̄, ε : F � G, the
monad structure on F induces canonically a comonad G = (G, δ, ε), called a right adjoint of the monad F
(e.g. [10]). The categories AF and A

G are isomorphic by

T :AF → A
G , F (A)

�−→ A 	→ A
η̄A−→ G F (A)

G(�)−−−→ G(A),

T −1 : AG →AF , A ω−→ G(A) 	→ F (A)
F (ω)−−−→ F G(A)

εA−→ A.

The forgetful functor U F : AF → A is right adjoint to the free functor φF : A → AF and the forgetful
functor U G :AG →A is left adjoint to the free functor φG :A→ A

G .
With these notions we have the diagram with commutative triangle

A
φF

AF
U F

T

A

A
φG

A
G .

U G

This shows that U F can be written as composition of functors with right adjoints and hence also
allows for a right adjoint. More precisely,

(
φF , U F , T −1φG)

is an adjoint triple of functors.

Similar arguments show, given a comonad (G, δ, ε) with left adjoint F ,

(
T φF , U G , φG)

is an adjoint triple of functors.

3.6. Definitions. A monad (F ,μ,η) is called a (left, right) QF monad if F has a right adjoint G such
that (φF , U F , T −1φG) is a (left, right) QF triple.

A comonad (G, δ, ε) is called a (left, right) QF comonad if G has a left adjoint F such that
(T φF , U G , φG) is a (left, right) QF triple.

3.7. Proposition (Properties of QF monads). Let F = (F ,μ,η) be a monad on A with right adjoint comonad
G = (G, δ, ε).

(1) F is a QF monad if and only if G is a QF comonad.
(2) If this is the case, then

(i) φF and φG preserve all limits and colimits;
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(ii) φF preserves small objects;
(iii) the U F -injective objects in AF are the same as the U F -projectives;
(iv) the U G -injective objects in A

G are the same as the U G -projectives;
(v) F and G preserve all limits and colimits;

(vi) if A is small complete, well-powered, and with a small cogenerating set, then the functor F admits a
left adjoint;

(vii) if A is small cocomplete, well-copowered, and with a small generating set, then the functor G admits
a right adjoint.

Proof. (1) The comonad G being right adjoint to the monad F, the diagram

AF
T

U F

A
G

U G

A

commutes. Since T is an isomorphism of categories, it follows that (φF , U F , T −1φG) is a QF triple if
and only if (T φF , U G , φG) is so.

(2) (i), (ii), (iii), (iv), (vi) and (vii) follow from Proposition 2.6.
(v) Since the forgetful functor U F : AF → A admits both left and right adjoints, it preserves all

limits and colimits. Then the functor F = U F φF also preserves all limits and colimits by (i). Similarly,
G preserves all limits and colimits. �
3.8. Module structures on right adjoints of monads. Let (F ,μ,η) be a monad on A with right adjoint
comonad (G, δ, ε). Then one has the commutative diagram

A

G

φG

A
G T −1

U G

AF

U F

A.

Hence there is a left F-module structure αG : F G → G on the functor G (e.g. [20]), thus (G,αG) ∈
[A,A]FA . Hereby αG corresponds to δ : G → GG under the bijection

MorA
(

F (−),?
) � MorA

(−, G(?)
)
,

and hence αG = εG · F δ, where ε : F G → IA is the counit of F � G .

Now let (F ,μ,η) be a QF monad with a right adjoint comonad (G, δ, ε). Since the forgetful functor
U F : AF → A creates limits, for any index set Λ, we have commutativity of the diagram

A

G

T −1φG

AF
ΠΛ

U F

AF

U F

A
ΠΛ

A.
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It follows that the functor GΛ = ΠΛG is an object of the category [A,A]FA . Write αGΛ : F GΛ → GΛ

for the corresponding left action of the monad F on GΛ. It is easy to see that (G,αG)Λ in [A,A]FA is
just the pair (GΛ,αGΛ).

Similarly, consider the diagram

A

F

φF
AF

ΣΛ

U F

AF

U F

A
ΣΛ

A,

in which the square commutes since F preserves colimits by Proposition 3.7, and thus the forgetful
functor U F creates them. Then commutativity of the outer diagram implies − since the functor F (Λ)

equals ΣΛφF − that F (Λ) is also an object of the category [A,A]FA . Write αF (Λ) : F F (Λ) → F (Λ) for
the corresponding left action of the monad F on F (Λ). Then (F ,μ)(Λ) in [A,A]FA is just the pair
(F (Λ),αF (Λ) ).

3.9. Proposition. Let F = (F ,μ,η) be a monad on A and G a right adjoint to F .

(1) F is a left QF monad if and only if, for some index set Λ, there is a natural coretraction G → F (Λ) of left
F-modules.

(2) F is a right QF monad if and only if, for some index set Λ′ , there is a natural coretraction F → GΛ′
of left

F-modules.

Proof. (1) Since U F T −1φG = U GφG = G and U F (φF )(Λ) = (U F φF )(Λ) = F (Λ) , it follows from Theo-
rem 3.2 that T −1φG ∈ [A,AF ] is a coretraction of (φF )(Λ) ∈ [A,AF ] if and only if (G, δ) is a coretrac-
tion of (F (Λ),αF (Λ) ) in [A,A]FA .

(2) can be proved in a similar manner. �
3.10. Definition. A monad (F ,μ,η) on A is said to be a Frobenius monad provided the forgetful functor
U F :AF →A is Frobenius.

A comonad (G, δ, ε) is said to be a Frobenius comonad provided the forgetful functor U G : AG → A

is Frobenius (Definitions 2.1).

By an argument similar to the proof of Proposition 3.9 we get:

3.11. Proposition. A monad F on A with a right adjoint comonad G is Frobenius if and only if the functors F
and G are isomorphic as left F-modules.

As pointed out in 3.5, for any monad (F ,μ,η), any right adjoint functor G of F has the structure
of a comonad; in particular, for a Frobenius monad F the functors φF and φG have to be isomorphic
and hence the functor F allows for a comonad structure. This leads to the following characterisation
of Frobenius monads given in [27].

3.12. Proposition. A monad (F ,μ,η) on A is Frobenius provided there exist natural transformations
ε : F → IA and � : IA → F F satisfying the equations

Fμ · �F = μF · F� and Fε · � = η = εF · �.

Putting δ = Fμ · �F = μF · F�, we have

(i) Fμ · δF = δ · μ = μF · F δ;
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(ii) Fε · δ = I F = εF · δ;
(iii) � = δ · η;
(iv) (F , F ) is an adjoint pair with counit σ = ε · μ : F F → IA and unit � : IA → F F ;
(v) (F , δ, ε) is a comonad on A.

It was observed by L. Abrams in [1, Theorem 3.3] that over a Frobenius algebra A, the category of
right modules over A is isomorphic to the category of right comodules over A. The following theorem
shows that this holds more generally for Frobenius functors and such an isomorphism is characteristic
for these functors.

3.13. Theorem. Let F = (F ,μ,η) be a monad on A. The following are equivalent:

(a) F is a Frobenius monad;
(b) F allows for a comonad structure F = (F , δ, ε) and an isomorphism κ : AF → A

F that is compatible with
the forgetful functors (i.e. U F κ = U F ) and restricts to an isomorphism of the Kleisli (sub-)categories ÃF

and Ã
F .

Proof. (a) ⇒ (b) If (F ,μ,η) is a Frobenius monad it has a right adjoint (comonad) G which is iso-
morphic to F . This defines a comonad F = (F , δ, ε) and, in view of 3.5, we get an isomorphism

κ : AF
T−→A

G �−→A
F

which satisfies the compatibility condition required in (b). Moreover, κφF = φ F : For any A ∈ A,
κ takes φF (A) = (F (A),μA) to

(
F (A), F (A)

ηF (A)−−−→ F F F (A)
FμA−−→ F F (A)

)
,

where η : IA → F F is the unit of the adjunction F � F . By Proposition 3.12 this means FμA · ηF (A) =
δA and κ(φF (A)) = φ F (A), that is, κ restricts to an isomorphism between the corresponding Kleisli
categories.

(b) ⇒ (a) We claim that, under the conditions given in (b), the comonad F = (F , δ, ε) is right
adjoint to the monad F. Indeed, if κ : AF → A

F is an isomorphism compatible with the forgetful
functors, then the composite κ−1φ F is right adjoint to the functor U F . It then follows that the com-
posite F = U F φF admits as a right adjoint the composite U F κ

−1φ F , which – since U F κ
−1 = U F – is

just U F φ F = F . Thus F is right adjoint to itself implying that it is a Frobenius functor. Then F allows
for another comonad structure F′ = (F , δ′, ε′) and an isomorphism κ ′ : AF → A

F ′
that is compatible

with the forgetful functors. It follows that the composite isomorphism κ(κ ′)−1 : AF ′ → A
F is also

compatible with the forgetful functors. Hence the comonads F and F′ are isomorphic, and thus the
comonad F is also right adjoint to the monad F. Now, since to say that κ restricts to an isomorphism
ÃF � ÃF is to say that κφF � φ F , it follows that φF � κ−1φ F is right adjoint to U F . Thus, F is a
Frobenius monad. �

To answer the question when the free-module and free-comodule functors are QF we need the
following observations.

3.14. Lemma. Let (F ,μ,η) be a monad and (G, δ, ε) a comonad on A.

(1) The functor F : A→ A has a left adjoint L if and only if the free-module functor φF :A →AF does so.
In this case L has a right F-module structure which we denote by α : L F → L.
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(2) The functor G : A→ A has right adjoint R if and only if the free-comodule functor φG : A→ A
G does so.

In this case R has a left G-comodule structure denoted by β : R → G R.

Proof. (1) Indeed, if φF has a left adjoint, then the functor F , being the composite U F φF , also has
a left adjoint. Conversely, suppose that F has a left adjoint. Then since the functor U F is clearly
monadic, one can apply Dubuc’s Adjoint Triangle Theorem [9] to the diagram

A
φF

F

AF

U F

A

to deduce that the functor φF also admits a left adjoint. In case F has a left adjoint functor L :A→ A,
the above commutative triangle implies a right F-module structure on L.

(2) is proved in a similar way. �
3.15. Theorem. Let F = (F ,μ,η) be a monad and G = (G, δ, ε) a comonad on A.

(1) If F admits a left adjoint L :A →A, the following are equivalent:
(a) the functor φF : A→AF is QF;
(b) there are index sets Λ, Λ′ such that

(i) the right F-module (L,α) is a retract of the right F-module (F ,μ)Λ ,
(ii) the right F-module (F ,μ) is a retract of the right F-module (L,α)(Λ

′) .
(2) If G admits a right adjoint R :A →A, the following are equivalent:

(a) the functor φG :A →A
G is QF;

(b) there are index sets Λ, Λ′ such that
(i) the left G-comodule (R, β) is a retract of the left G-comodule (G, δ)(Λ) ,

(ii) the left G-comodule (G, δ) is a retract of the left G-comodule (L,α)Λ
′
.

Proof. (1) Since F admits a left adjoint L :A →A by our assumption on F, the functor φF also admits
a left adjoint L : AF → A. Since left adjoints are unique up to natural isomorphism, L may be chosen
in such a way that the composite LφF is just L. Since L is a left adjoint, it preserves all colimits. Since
the functor

∑
Λ′ also preserves colimits, it follows that the functor L(Λ′) = ∑

Λ′ L preserves colimits,
too. Thus, in particular, L(Λ′) ∈ [AF ,A]P . Next, since the functor U F takes – for any F -module (A,h)

– each coequaliser

(
F F (A),μF (A)

) μA

F h

(
F (A),μA

) h
(A,h)

to a (split) coequaliser

F F (A)
μA

F h
F (A)

h

ηF (A)

A

ηA

and since any product of split coequalisers is split, it follows that the functor UΛ
F = ΠΛU F also lies in

[AF ,A]P . Now, since
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L(Λ′)φF = (LφF )(Λ
′) = L(Λ′), UΛ

F φF = (U F φF )Λ = F Λ,

(L,α)(Λ
′) = (

L(Λ′),α(Λ′)), (F ,μ)Λ = (
F Λ,μΛ

)
,

the result follows from Theorem 3.4.
(2) is shown by a similar proof. �

3.16. Proposition. Let (F ,μ,η) be a monad and (G, δ, ε) a comonad on A.

(1) If F admits a left adjoint, then the functor φF : A→ AF is QF if and only if the functor φF :A→ ÃF is so.
(2) If G admits a right adjoint, then the functor φG : A → A

G is QF if and only if the functor φG : A → Ã
G is

so.

Proof. (1) Write L : A → A for the left adjoint to F and α : L F → L for the corresponding right
F -module structure on L (see Lemma 3.14). Since L is left adjoint to F , L allows for a canonical
comonad structure (L, δ, ε) (e.g. [10]). Moreover, there is an isomorphism between the Kleisli cate-
gories,
K : ÃF → Ã

L , given by the natural bijections (e.g. [17], [4, 2.6])

MorAF

(
φF (A),φF

(
A′)) � MorA

(
A, F (A)′

)
� MorA

(
L(A), A′) � MorAL

(
φL(A),φL(A′)),

leading to the diagram with commutative triangle

A
φF

φL

ÃF
uF

K

A

Ã
L

uL
A.

Now the functor φF – which has a right adjoint uF – is composed by functors which have left
adjoints and hence also allows for a left adjoint, that is,

(
uL K , φF , uF

)
is an adjoint triple of functors.

Then, since for any index set Λ,

• (uF )ΛφF = ΠΛuF φF = ΠΛ F = F Λ , and
• (uL K )(Λ)φF = ΣΛuL KφF = ΣΛuLφL = ΣΛL = L(Λ),

it follows from Theorem 3.2(2) that there are index sets Λ and Λ′ such that the functor uL K is a
retract of the functor uΛ

F and the functor uF is a retract of the functor (uL K )(Λ
′) if and only if the

right F -module (L,α) is a retract of the right F -module (F ,μ)Λ and the right F -module (F ,μ) is a
retract of the right F -module (L,α)(Λ

′) . Thus, the functor φF : A→ ÃF is QF if and only if the functor
φF : A→AF is QF.

(2) The proof is dual to that of (1). �
3.17. Proposition. For a monad (F ,μ,η) on A admitting a left adjoint comonad (G, δ, ε), the following are
equivalent:
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(a) the functor φF : A→ AF is QF;
(b) the functor φF : A→ ÃF is QF;
(c) the functor φG : A→A

G is QF;
(d) the functor φG : A→ Ã

G is QF.

Proof. (a) and (b) are equivalent by Proposition 3.16(1), while (c) and (d) are equivalent by Proposi-
tion 3.16(2). The equivalence of (b) and (d) follows from the commutativity of the diagram

A
φF

φG

ÃF

T

Ã
G

(see the proof of Proposition 3.7(1)). �
4. Applications

We illustrate the definitions from Section 1 in the case of module categories over associative unital
rings R and S . By RM we denote the category of left R-modules.

For commutative rings R , Proposition 2.3 reads as follows.

4.1. Proposition. For any module M over a commutative ring R, the following are equivalent:

(a) M ⊗R − : MR →MR is a QF functor;
(b) M ⊗R − : MR →MR is a Frobenius functor;
(c) the canonical morphism HomR(M, R) ⊗R M → EndR(M) is an isomorphism.

4.2. Functors between module categories. Any functor RM → SM which allows for a right adjoint is
given by an (R, S)-bimodule R P S and the adjoint functor pair

P ⊗S − : SM→ RM, HomR(P ,−) : RM → SM.

We define the full subcategories of RM and SM, respectively (see [29]),

Gen(R P ) = {N ∈ RM | N is P -generated},
σ [P ] = {N ∈ RM | N is a submodule of some P -generated module},

Stat(P ) = {
N ∈ RM

∣∣ P ⊗S HomR(P , N) � N
}
,

Adst(P ) = {
X ∈ SM

∣∣ X � HomR(P , P ⊗S X)
}
.

By restriction and corestriction we obtain the following pairs of adjoint functors (keeping the symbols
for the functors) where Q denotes a cogenerator in σ [R P ]:

L1 = P ⊗S − : SM→ RM, R1 = HomR(P ,−) : RM→ SM,

L2 = P ⊗S − : SM→ σ [P ], R2 = HomR(P ,−) : σ [P ] → SM,

L3 = P ⊗S − : Adst(P ) → Stat(P ), R3 = HomR(P ,−) : Stat(P ) → Adst(P ).

For all these adjunctions one may ask if they are left or right quasi-Frobenius.
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4.3. Proposition. Let P be an (R, S)-bimodule.

(1) L1 is a QF functor if and only if both R P and P S are finitely generated and projective and the functors
HomR(P , R) ⊗R − and HomS (P , S) ⊗R − are similar (compare [7, Definition 3.6]).

(2) If L2 is a QF functor, then P S is a Mittag-Leffler module and R P is finitely generated and self-projective.
(3) L3 is always a (quasi-)Frobenius functor.

Proof. (1) Let L1 be a QF functor. Then, by Proposition 2.6, L1 and R1 preserve all limits and colimits
and this implies that R P and P S have to be finitely generated and projective.

Putting N = HomS(P , S), we get that the functor N ⊗R − : RM → SM is left adjoint to P ⊗S − by
the isomorphisms

HomS(N ⊗R X, Y ) � HomR
(

X,HomS
(
HomS(P , S), Y

))
� HomR

(
X,HomS

(
HomS(P , S), S

) ⊗S Y
)

� HomR(X, P ⊗S Y ),

where the first isomorphism follows from the tensor-hom adjunction, while the others follow from
the fact that P is a finitely generated and projective right S-module.

By Proposition 2.2, HomR(P ,−) is a retract of (N ⊗R −)(Λ) and (N ⊗R −) is a retract of
HomR(P ,−)Λ

′
, for some index sets Λ, Λ′ . In particular there are retractions of (S, R)-modules

HomR(P , R) → HomS(P , S)(Λ), ϕ : HomS(P , S) → HomR(P , R)Λ
′
.

Since HomR(P , R) is finitely generated as right R-module, Λ can be chosen to be finite. This
implies that HomR(P , R) is also finitely generated and projective as left S-module.

As a consequence, HomS(HomS(P , S),HomR(P , R)) is finitely generated as a left S-module, say
by g1, . . . , gk . Then for any λ ∈ Λ′ , the canonical projection πλ : HomR(P , R)Λ

′ → HomR(P , R) can be
written as πλ ◦ ϕ = ∑k

i=1 sλ
i gi for some sλ

i ∈ S and

k⋂
i=1

Ke gi ⊆
⋂
Λ′

Keπλ ◦ ϕ = 0.

From this it follows that Λ′ can also be chosen to be finite.
This shows that R P S ⊗S − is a QF functor (in our sense) if and only if it is a quasi-Frobenius bi-

module in the sense of [7, Definition 3.6] which means that both R P and P S are finitely generated
and projective, and moreover, HomR(P , R) and HomS (P , S) are similar and so are the related func-
tors.

(2) Similar arguments as in (1) show that R P is finitely generated and projective in σ [R P ]. L2 pre-
serves products means that for a family {Xi}I of S-modules,

P ⊗S

∏
I

Xi � Trσ [P ] ∏
I

(P ⊗S Xi) ⊂
∏

I

(P ⊗S Xi),

where the middle term denotes the product of the P ⊗S Xi in σ [R P ]. This shows that the canonical
map P ⊗S

∏
I Xi → ∏

I (P ⊗S Xi) is injective, that is, P S is Mittag-Leffler (e.g. [29]).
Notice that if R P is faithful, P S is only finitely generated provided σ [R P ] = RM.
(3) Obviously (L3, R3) is an equivalence of categories (e.g. [29, 2.4]) and hence L3 is a (quasi-)

Frobenius functor. �
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4.4. QF ring extensions. A ring extension R → A provides a monad A ⊗R − on RM and adjoint functor
pairs

AM
U A=A⊗A− RM,

R Hom(A,−)

A⊗R−

where A ⊗R − is left adjoint to U A and U A is in turn left adjoint to R Hom(A,−). A ⊗R − is a
QF monad provided U A is a QF functor (see Definitions 3.6). Applying Proposition 4.3(1) to the above
diagram gives that the (A, R)-bimodules A and ∗A = R Hom(A, R) are similar and the notion coincides
with the usual QF extensions (e.g. [23], [22, §5], [7, Corollary 4.2]). In particular, R A and AR are finitely
generated and projective.

4.5. Theorem. For any ring extension R → A, the functor A ⊗R − : RM → AM is QF if and only if the monad
A ⊗R − : RM → RM is QF.

Proof. Applying Proposition 4.3(1) to the bimodule A AR gives that the functor

A ⊗R − : RM → AM

is QF if and only if R AR is finitely generated and projective on both sides and the (R, A)-bimodules
A and A∗ = HomR(A, R) are similar. By [23, Satz 2], this is equivalent to saying that the (A, R)-
bimodules A and ∗A = R Hom(A, R) are similar. 4.4 now completes the proof. �
4.6. QF corings. An A-coring (C, δ, ε) is called a QF coring if C ⊗A − : AM → AM is a QF comonad (as
defined in Definitions 3.6) and is called Frobenius coring if C ⊗A − is a Frobenius comonad.

For results about Frobenius corings we refer to [5, 27.8].
The following characterisations show that this notion coincides with the one given in [7, Defi-

nition 7.4] and generalise parts of [7, Theorem 7.5] (without a priori conditions on the A-module
structure of C).

4.7. Theorem. The following are equivalent for an A-coring C and C∗ = HomA(C, A).

(a) The functor CU : CM → AM is QF;
(b) The functor C ⊗A − : AM→ C

M is QF;
(c) CA is finitely generated and projective and the functor UC∗ : C∗M→ AM is QF;
(d) CA is finitely generated and projective and the functor C∗ ⊗A − : AM→ C∗M is QF;
(e) CA is finitely generated and projective and the ring extension A → C∗ is a QF extension (in the sense

of [23]).

Proof. (c) ⇔ (d) by Theorem 4.5, while (c) ⇔ (e) follows by 4.4.
To show the equivalence (a) ⇔ (c), note first that the functor C ⊗A − : AM → AM admits as a left

adjoint the functor C∗ ⊗A − : AM → AM if and only if CA is finitely generated and projective. Now, if
the functor CU : CM → AM is QF, then it admits a left adjoint and then the functor C ⊗A − : AM →
AM does so. Applying Proposition 3.7(1) gives that (a) and (c) are equivalent.

If the functor C ⊗A − : AM → C
M is QF, the functor CU : CM → AM preserves limits by Propo-

sition 2.2(2). Then the functor C ⊗A − : AM → AM also preserves limits and hence CA is finitely
generated and projective and C

M � C∗M (e.g. [5]). Thus the functor C⊗A − : AM → C∗M is QF. It then
follows from Proposition 4.3 that C∗C A (and hence also AC∗C∗ ) is a quasi-Frobenius bimodule. But to
say that the bimodule AC∗C∗ is quasi-Frobenius is to say that the (A,C∗)-bimodules A Hom(C∗, A)
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and C∗ � C∗ Hom(C∗,C∗) are similar. Since C is finitely generated and projective as a right A-module,
C∗ is finitely generated and projective as a left A-module. Thus A Hom(C∗, A) � C , and hence the
(A,C∗)-bimodules C and C∗ are similar, which by 4.4 just means that the ring extension A → C∗ is a
QF extension (in the sense of [23]). Thus (b) ⇒ (e).

If the ring extension A → C∗ is a QF extension, then (C∗, A)-bimodules C∗ and A Hom(C∗, A)

are similar. If, in addition, CA is finitely generated and projective, then C∗ is finitely generated
and projective as a left A-module, and thus the (A,C∗)-bimodule C∗ is quasi-Frobenius. Then the
(C∗, A)-bimodule A Hom(C∗, A) is also quasi-Frobenius. Since CA is finitely generated and projective,
A Hom(C∗, A) � C . Thus the (C∗, A)-bimodule C is quasi-Frobenius. Applying now Proposition 4.3,
we obtain that the functor C ⊗A − : AM → C∗M is QF. Since CA is finitely generated and projective,
C
M � C∗M, and thus the functor C ⊗A − : AM → C

M is also QF, showing that (e) implies (b). This
completes the proof of the theorem. �
4.8. Frobenius categories. We use [15] as a reference for exact categories. An exact category is an ad-
ditive category A endowed with a class E of exact pairs (i, p) of morphisms satisfying certain axioms
(i is called inflation, p is called deflation). An exact category (A,E) is said to be Frobenius provided it
has enough E-projectives and E-injectives and, moreover, the classes of E-projectives and E-injectives
coincide. Frobenius categories are of interest in homological algebra because they give rise to algebraic
triangulated categories by passing to the stable category A of A.

An additive category is said to be weakly idempotent complete if retracts have kernels (equivalently,
coretracts have cokernels).

4.9. Theorem. Let (A,EA) and (B,EB) be exact categories and (L, F , R) a QF triple of functors F : A → B

and L, R : B → A . Suppose A to be weakly idempotent complete and the unit ηR : IA → R F (resp. counit
εL : L F → IA) to be a componentwise inflation (resp. deflation). Define EF as the class of those EA-exact pairs
in A that become split short exact sequences upon applying F . Then the pair (A,EF ) is a Frobenius category.

Proof. Since the F -injectives and F -projectives in A coincide (see Proposition 2.6), by [12, Theo-
rem 3.3] it is enough to show that the subcategories of A generated by all summands of the images
of L and R coincide. But since A is assumed to be weakly idempotent complete, this follows from
Proposition 2.11. �

Suppose now that (F ,μ,ε) is a QF monad on an abelian category A. Since the functor F has a
right adjoint, it is additive. Using that it preserves all limits and colimits (see Proposition 3.7), it is
not hard to show that the category AF is also abelian.

4.10. Theorem. Let (F ,μ,ε) be a QF monad on an abelian category A. Write EF for the class of short exact
sequences that become split short exact upon applying F . Then (A,EF ) is a Frobenius exact category.

Proof. Since the forgetful functor U F : AF → A is faithful, the result can be derived by combining
Proposition 3.7 and Proposition 2.11 with Grime [12, Theorem 3.4]. �

For any exact functor H : (A,EA) → (B,EB), we write E◦
H for the class of those EA-exact pairs

whose image under H is a split exact sequence in B.

4.11. Theorem. Let (A,EA) and (B,EB) be exact categories and (L, F , R) a QF triple of exact functors
F : A→ B and L, R : B → A. Suppose that the following conditions are satisfied:

• A is weakly idempotent complete;
• every morphism in B, whose image under L is a coretraction, is an inflation of (A,EA);
• every morphism in B, whose image under R is a retraction, is a deflation of (A,EA).

Then E◦
L = E◦

R := E and the pair (B,E) is Frobenius.
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Proof. According to Beck [2, Proposition 0.2], we have only to show that E◦
L = E◦

R and this follows
easily from Proposition 2.11. �
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[4] G. Böhm, T. Brzeziński, R. Wisbauer, Monads and comonads on module categories, J. Algebra 322 (2009) 1719–1747.
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