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Abstract As shown in a previous paper by the same authors, the theory of Galois
functors provides a categorical framework for the characterisation of bimonads on
any category as Hopf monads and also for the characterisation of opmonoidal monads
on monoidal categories as right Hopf monads in the sense of Bruguières and Virelizier.
Hereby the central part is to describe conditions under which a comparison functor
between the base category and the category of Hopf modules becomes an equivalence
(Fundamental Theorem). For monoidal categories, Aguiar and Chase extended the
setting by replacing the base category by a comodule category for some comonoid and
considering a comparison functor to generalised Hopf modules. For duoidal categories,
Böhm, Chen and Zhang investigated a comparison functor to the Hopf modules over
a bimonoid induced by the two monoidal structures given in such categories. In both
approaches fundamental theorems are proved and the purpose of this paper is to show
that these can be derived from the theory of Galois functors.
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1 Introduction

Bialgebras A over a commutative ring R induce an endofunctor A ⊗R − on the
category MR of R-modules which has a monad and a comonad structure subject to
some compatibility conditions. To make the bialgebra A a Hopf algebra the comparison
functor from MR to the category of Hopf modules M

A
A induced by A ⊗R − has to be

an equivalence (e.g. [5, 7.9]).
Since all these constructions are based on the tensor product in MR , one may try

to extend the notions to monads T = (T, m, e) on (strictly) monoidal categories
(V,⊗, I ). To ensure that the Eilenberg–Moore category VT is again monoidal, T has
to be an opmonoidal monad (e.g. [11]). Such functors consist of two parts: the monad
T and a comonad −⊗ T (I ) on V induced by the coalgebra T (I ) which are related by
a mixed distributive law (entwining) (e.g. [16, Section 5]). Then a comparison functor
between V and the category of the entwined modules determined by this entwining
(called right Hopf T -modules in [9, Section 4.2]) may be considered. [17, Theorem
4.7] gives a necessary and sufficient condition for this comparison functor to be an
equivalence of categories.

In [16], an entwining of a monad T = (T, m, e) and a comonad G = (G, δ, ε) on
any category A is considered, that is, a natural transformation λ : TG → GT subject
to certain commutativity conditions (e.g. [21, 5.3]). Then the comonad G on A can be
lifted to a comonad ̂G and the λ-entwining modules are just the ̂G-comodules in AT
(see Sect. 2.5). For a comparison functor K : A → (AT )

̂G one requires commutativity
of the diagram

A
K ��

φT ����
��

��
��

� (AT )
̂G

U ̂G

��
AT ,

where φT denotes the free T -module functor and U ̂G the forgetful ̂G-comodule func-
tor. In [16,17] conditions are given which make K an equivalence.

This setting comprises the opmonoidal monads outlined above and it also applies
to the bimonads on arbitrary categories introduced in [21, 5.13], [15, Definition 4.1].
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Galois functors and generalised Hopf modules 201

To subsume the generalised Hopf modules studied by Aguiar and Chase in [1], one
has to add an adjunction L � R : A → B to the picture and observe that the resulting
adjunction φT L � RUT generates a comonad on AT . Now the results from [16] can
be applied to the diagram

B
K ��

φT L ����
��

��
��

� (AT )
̂G

U ̂G

��
AT .

This is outlined in Sect. 3 leading to the Fundamental Theorem of generalised Hopf
modules from [1].

Having made this extension, also the A-Hopf modules of a bimonoid A in a duoidal
category (D, ◦, I, ∗, J ) and the related comparison functor considered by Böhm, Chen
and Zhang in [6] can be handled in our setting: roughly speaking, for a bimonoid A,
−◦ A defines a monad while −∗ A is a comonad on D and the two functors are related
by an entwining. Now it is fairly obvious how our techniques apply and at the end of
Sect. 4 we obtain the Fundamental Theorem for A-Hopf modules from [6].

2 Galois functors

2.1 Monads and comonads

Let T = (T, m, e) be a monad on a category A. We write

• AT for the Eilenberg–Moore category of T -modules and

ηT , εT : φT � UT : AT → A

for the corresponding forgetful-free adjunction;
• ˜AT for the Kleisli category for T (as a full subcategory of AT , e.g. [5]) and φT �

uT : ˜AT → A for the corresponding Kleisli adjunction.

Dually, if G = (G, δ, ε) is a comonad on A, we write A
G for the Eilenberg–Moore

category of G-comodules and

ηG, εG : UG � φG : A → A
G

for the corresponding forgetful-cofree adjunction.

2.2 Comodule functors

Consider an adjunction η, σ : F � R : A → B and a comonad G = (G, δ, ε) on A.
The functor F : B → A is called a left G-comodule (e.g. [15, Section 3]) if there exists
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202 B. Mesablishvili, R. Wisbauer

a natural transformation κF : F → GF inducing commutativity of the diagrams

F

��
��

��
��

��
��

��
��
κF �� GF

εF
��

F,

F
κF ��

κF

��

GF

δF
��

GF
GκF

�� GG F.

There exist bijective correspondences between

(i) functors K : B → A
G with commutative diagram

B
K ��

F ���
��

��
��

� A
G

UG

��
A ;

(ii) left G-comodule structures κF : F → GF on F ;
(iii) comonad morphisms tK : FR → G from the comonad generated by the adjunc-

tion F � R to G.

These bijections are constructed as follows (e.g., [1, Proposition 2.5.1]): Given a
functor K making the diagram (Sect. 2.2(i)) commute, K (X) = (F(X), κX ) for some
morphism κX : F(X) → GF(X) and the collection {κx , x ∈ B} constitutes a natural
transformation κF : F → GF making F a G-comodule. Conversely, if (F, κF : F →
GF) is a G-module, then K : B → A

G is defined by K (X) = (F(X), (κF )X ). Next,
for any (left) G-comodule structure κF : F → GF, the composite

tK : FR
κF R �� GFR

Gσ �� G

is a comonad morphism from the comonad generated by F � R to the comonad G.
On the other hand, for any comonad morphism t : F R → G, the composite

κF : F
Fη−→ FRF

t F−→ GF

defines a G-comodule structure on F .
A left G-comodule functor F is said to be G-Galois provided tK is an isomorphism

(e.g. [16, Definition 1.3]).

Proposition 2.1 [13, Theorem 4.4] The functor K (in Sect. 2.2 ) is an equivalence of
categories if and only if

(i) the functor F is comonadic and
(ii) tK is an isomorphism (F is G-Galois).
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Galois functors and generalised Hopf modules 203

2.3 Module functors

For a monad T = (T, m, e) on A, a (left) T -module functor consists of a functor
R : B → A, equipped with a natural transformation αR : T R → R satisfying
αR · eR = 1 and αR · m R = αR · T αR .

If (R, αR) is a T -module, then the assignment

X �−→ (R(X), (αR)X )

extends uniquely to a functor K ′ : B → AT with UT K ′ = R. This gives a bijection,
natural in T , between left T -module structures on R : B → A and the functors
K ′ : B → AT with UT K = R.

For any T -module (R : B → A, αR) admitting a left adjoint functor F : A → B,
the composite

tK ′ : T
T η �� TRF

αR F �� RF ,

where η : 1 → RF is the unit of the adjunction F � R, is a monad morphism from
T to the monad on A generated by the adjunction F � R.

A left T -module R : B → A with a left adjoint F : A → B is said to be T -Galois
if the corresponding morphism tK ′ : T → RF of monads on A is an isomorphism.

Expressing the dual of [13, Theorem 4.4] in the present situation gives:

Proposition 2.2 The functor K ′ (in (2.3)) is an equivalence of categories if and only
if

(i) the functor R is monadic and
(ii) R is a T -Galois module functor.

2.4 Mixed distributive laws

Let T = (T, m, e) be a monad and G = (G, δ, ε) a comonad on a category A.
A mixed distributive law or entwining from T to G is a natural transformation

λ : TG → GT with certain commutative diagrams (e.g. [21, 5.3], [22]).
A lifting of G to AT is a comonad ̂G = (̂G,̂δ, ε̂) on AT for which GUT =

UT ̂G, UT ̂δ = δUT and UT ε̂ = εUT .
The following is a version of [22, Theorem 2.2]:

Theorem 2.3 Let T = (T, m, e) be a monad and G = (G, δ, ε) a comonad on a
category A. Then there is a one-to-one correspondence between

• mixed distributive laws λ : TG → GT from T to G and
• liftings of G to a comonad ̂G on AT .

To obtain a lifting ̂G from a distributive law λ, one defines for (X, h) ∈ AT , ̂G(X, h)

as the T -module

(G(X), TG(X)
λX−→ GT(X)

G(h)−−→ G(X)).
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204 B. Mesablishvili, R. Wisbauer

Conversely, if one has a lifting comonad ̂G, one defines λ : T G → GT by

TG

λ
���

�
�

�
�

T Ge �� TGT T GUT φT T UT ̂GφT UT φT UT ̂GφT

UT εT ̂GφT
��

GT GUT φT UT ̂GφT .

2.5 λ-bimodules

We write A
G
T (λ) (or just A

G
T when λ is understood) for the category whose objects

are triples (X, h, θ), where (X, h) ∈ AT and (X, θ) ∈ A
G , with commuting diagram

(e.g. [20], [21, 5.7])

T (X)
h ��

T (θ)

��

X
θ �� G(X)

TG(X)
λX

�� GT(X).

G(h)

��

The assignment (X, h, θ) → ((X, h), θ) yields an isomorphism of categories

A
G
T (λ) 
 (AT )

̂G .

2.6 Generalised Galois functors

With the data as given in Theorem 2.3, let λ : TG → GT be a mixed distributive law.
Given an adjunction ν, ς : L � R : B → A, assume K : B → (AT )

̂G to be a functor
with U

̂G K = φT L , i.e. with commutative diagram

B
K ��

L

��

(AT )
̂G

U ̂G

��
A

φT �� AT .

(2.1)

Write G′ for the comonad on the category AT generated by the adjunction

φT L � RUT : AT → B

and write tK : G′ → ̂G for the corresponding comonad morphism (see Sect. 2.2).
Applying Proposition 2.1 to the present situation gives:

Theorem 2.4 In the setting of Sect. 2.6, the functor K : B → (AT )
̂G is an equivalence

of categories if and only if
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Galois functors and generalised Hopf modules 205

(i) the functor φT L : B → AT is comonadic and
(ii) φT L is a ̂G-Galois comodule functor.

The following proposition gives a necessary and sufficient condition for the functor
φT L to be ̂G-Galois (generalising [17, Proposition 2.10]).

Proposition 2.5 In the setting of Sect. 2.6, φT L is ̂G-Galois if and only if the natural
transformation tK φT is an isomorphism.

Proof One direction is clear, so suppose that tK φT is an isomorphism.
Let κ : φT L → ̂GφT L be the left ̂G-comodule structure on φT L corresponding

to the diagram (2.1). Then, by Sect. 2.2, tK : G′ → ̂G is the composite

φT L RUT
κ RUT−−−→ ̂GφT LRUT

̂GφT ςUT−−−−−−→ ̂GφT UT
̂GεT−−→ ̂G.

Consider the natural transformation UT tK

UT φT L RUT
UT κ RUT−−−−−−→ UT ̂GφT LRUT

UT ̂GφT ςUT−−−−−−−−→ UT ̂GφT UT
UT ̂GεT−−−−→ UT ̂G,

and, using UT ̂G = GUT , rewrite it as

UT φT L RUT
UT κ RUT−−−−−−→ GUT φT LRUT

GUT φT ςUT−−−−−−−−→ GUT φT UT
GUT εT−−−−→ GUT .

By [10, Lemma 2.19], if UT tK φT is an isomorphism, then UT tK is so. But since UT
is conservative, tK is an isomorphism, too. This completes the proof. ��

In view of Theorem 2.4, it is desirable to find sufficient conditions for the composite
φT L to be comonadic. The next proposition gives two such conditions.

Proposition 2.6 In the setting of Sect. 2.6, suppose that A is Cauchy complete and L
is comonadic. Then the composite φT L is comonadic under any of the conditions

(i) the unit e : 1 → T is a split monomorphism, i.e. there is a natural transformation
e′ : T → I with e′e = 1;

(ii) the monad T is of effective descent type (φT : A → AT is comonadic) and A

has and L R and L RL R preserve equalisers of coreflexive T -split pairs.

Proof (i) Since
• A is Cauchy complete,
• e : 1 → T is a split monomorphism, and
• e can be seen as the unit of the adjunction φT � UT ,
it follows from [14, Proposition 3.14] that any φT -split pair is part of a split
equaliser in A, and thus the functor φT creates equalisers of φT -split pairs as
split equalisers in A, from which it follows that φT L is comonadic whenever L
is so.

(ii) Since the functor L is assumed to be comonadic, to say that A has and L R and
L RL R preserve equalisers of coreflexive T -split pairs is to say that the functor L
creates equalisers of those pairs whose image under L is part of a T -split equaliser
(see, for example, [8, Proposition 4.3.2]). Since A has and T preserves equalisers
of coreflexive T -split pairs if and only if A has and φT preserves equalisers
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206 B. Mesablishvili, R. Wisbauer

of coreflexive φT -split pairs [14, Proposition 3.11], and since T is of effective
descent type by hypothesis, it follows that B has and the composite φT L preserves
equalisers of coreflexive φT L-split pairs. Using now the fact that φT L , being a
composite of two conservative functors, is conservative, the result follows from
the dual of Beck’s monadicity theorem (see [12]). ��

For later use (in Proposition 4.5) we prove the following technical observation.

Proposition 2.7 Let A be Cauchy complete and L � R : A → B an adjunction whose
unit is a split monomorphism. Then, in any commutative (up to isomorphism) diagram

A
F ��

R ���
��

��
��

E

K
��

B,

(i) the functor F : A → E is conservative;
(ii) any coreflexive F-split pair of morphisms has a split equaliser in A;

(iii) the functor F is comonadic if and only if it has a right adjoint.

Proof (i) Since A is Cauchy complete and since the unit of the adjunction is a split
monomorphism, the functor R is comonadic (e.g., [14, Proposition 3.16]) and,
in particular, conservative. This implies—since K F is isomorphic to R—that F
is conservative, too.

(ii) Suppose that X
f ��
g

�� Y is an F-split pair of morphisms in A. Then the mor-

phisms F( f ) and F(g) have a split equaliser in E, so that the pair (F( f ), F(g))

is contractible (see [12]). Since contractible pairs, being equationally defined,
are preserved by any functors, the pair (R( f ), R(g)), being isomorphic to the
pair (K F( f ), K F(g)), is also contractible. But since A is Cauchy complete and
since the unit of the adjunction is a split monomorphism (which just means that
the functor R is 1A-separable), it follows from [14, Proposition 3.8] that the pair
( f, g) is contractible, too. Then, A being Cauchy complete, f and g have a split
equaliser (e.g. [3]) and this equaliser is clearly preserved by F .

(iii) follows from the fact that split equalisers are preserved by any functor.

3 Generalised Hopf modules

In [1], Aguiar and Chase studied generalised Hopf modules in monoidal categories
and proved a Fundamental Theorem for them. In this section we show how this result
can be obtained as a special case of our approach. We first recall elementary facts
about modules and comodules in a monoidal category (e.g. [13,19]).

3.1 Monoids and comonoids in monoidal categories

Let (V,⊗, I, a, l, r) be a monoidal category, where a, l, r are the associativity, left
identity, and right identity isomorphisms for the monoidal structure on V.
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Galois functors and generalised Hopf modules 207

A monoid in V (or V-monoid) consists of an object A of V endowed with a mul-
tiplication m : A ⊗ A → A and a unit morphism e : I → A such that the usual
identity and associative conditions are satisfied. A monoid morphism f : A → A′
is a morphism in V preserving m and e. The category of monoids in V is denoted
by Mon(V). The tensor unit I endowed with the obvious structure morphisms is a
V-monoid. This V-monoid is called the trivial V-monoid, denoted by I.

Given a monoid (A, eA, m A) in V, a left A-module is a pair (V, ρV ), where V is
an object of V and ρV : A ⊗ V → V is a morphism in V, called the A-action on V ,
such that ρV (m A ⊗ V )a−1

A,A,V = ρV (A ⊗ ρV ) and ρV (eA ⊗ V ) = lV .
For any monoid A in V, the left A-modules are the objects of a category AV. A

morphism f : (V, ρV ) → (W, ρW ) is a morphism f : V → W in V such that
ρW (A ⊗ f ) = fρV . Analogously, one has the category VA of right A-modules.

Let A and B be two monoids in V. An object V in V is called an (A, B)-bimodule
if there are morphisms ρV : A ⊗ V → V and �V : V ⊗ B → V in V such that
(V, ρV ) ∈ AV, (V, �V ) ∈ VB and �V (ρV ⊗ B) = ρV (A ⊗ �V )aA,V,B . A morphism
of (A, B)-bimodules is a morphism in V which is a morphism of both the left A-
modules and right B-modules. Write AVB for the corresponding category.

Comonoids and (left, right, bi-) comodules in V can be defined as monoids and left
(right, bi-) modules in the opposite monoidal category (Vop,⊗, I, a−1, l−1, r−1). The
resulting categories are denoted by Comon(V), C

V, V
C and C

V
C ′

, C and C ′ being
comonoids in V.

3.2 Tensor product of modules

If A is a monoid in V, (V, �V ) ∈ VA a right A-module, and (W, ρW ) ∈ AV a left
A-module, then their tensor product (over A) is defined as the object part of the
coequaliser (if this exists)

(V ⊗ A) ⊗ W

�V ⊗W

��
aV,A,W �� V ⊗ (A ⊗ W )

V ⊗ρW �� V ⊗ W
can �� V ⊗A W. (3.1)

Given another left A-module (W ′, ρW ′) for which V ⊗A W ′ exists, and a morphism
f : W → W ′ of left A-modules, we form the diagram

(V ⊗ A) ⊗ W

(V ⊗A)⊗ f
��

�V ⊗W

		
aV,A,W

�� V ⊗ (A ⊗ W )

V ⊗(A⊗ f )

��

V ⊗ρW

�� V ⊗ W

V ⊗ f

��

can �� V ⊗A W

V ⊗A f
��

(V ⊗ A) ⊗ W ′

�V ⊗W ′

��
aV,A,W ′

�� V ⊗ (A ⊗ W ′)
V ⊗ρW ′ �� V ⊗ W ′

can
�� V ⊗A W ′,
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208 B. Mesablishvili, R. Wisbauer

in which

• (V ⊗ f )(�V ⊗ W ) = (�V ⊗ W ′)((V ⊗ A) ⊗ f ) by functoriality of ⊗,
• the left square commutes by naturality of a, and
• the middle square commutes because f is a morphism of left A-modules;

from this one sees that there ia a unique morphism V ⊗A f : V ⊗A W → V ⊗A W ′
making the right square commute. It is easy to see that if for W ′′ ∈ AV, the tensor
product V ⊗A W ′′ exists, then for any morphism g : W ′ → W ′′ in AV,

V ⊗A (g f ) = (V ⊗A g)(V ⊗A f ).

If B is another monoid in V such that the functors B ⊗ −, B ⊗ (B ⊗ −) : V → V

both preserve the equaliser (3.1) and if V ∈ BVA, then the tensor product V ⊗A W
has the structure of a left B-module such that can : V ⊗ W → V ⊗A W becomes a
morphism of left B-modules. Moreover, if these functors also preserve the equaliser
defining V ⊗A W ′, then V ⊗A f also becomes a left B-module morphism.

Recall (for example, from [19]) that the forgetful functor

AU : AV → V, (V, ρV ) �→ V,

is right adjoint, with the left adjoint Aφ : V → AV sending each V ∈ V to the “free”
left A-module

(A ⊗ V, A ⊗ (A ⊗ V )
aA,A,V−−−−→ (A ⊗ A) ⊗ V

m⊗V−−−→ V ⊗ V ).

Write AT for the monad on V generated by the adjunction Aφ � AU : AV → V. It
is well known that the corresponding Eilenberg–Moore category V

AT of AT -modules
is exactly the category AV of left A-modules.

Lemma 3.1 Let A be a monoid in V and M = A ⊗ V the free left A-module generated
by V ∈ V. Then

(1) for any N ∈ VA, the tensor product N ⊗A M exists and is isomorphic to N ⊗ V ;
(2) for N ∈ BVA, B any monoid in V, N ⊗A M is a left B-module;
(3) for any morphism f : A ⊗ V → A ⊗ V ′ in V, N ⊗A f is a morphism of left

B-modules;
(4) for any morphism : V → V ′ in V, the induced morphism N ⊗A (A ⊗ g) of left

B-modules is isomorphic to N ⊗ g.

Proof Everything follows from Sect. 3.2 and the fact that the equaliser defining the
tensor product N ⊗A M is split and thus is preserved by any functor. ��

Remark 3.2 The full subcategory of AV generated by the left A-modules of the form
A ⊗ V , V ∈ V, is just the Kleisli category ˜VAT of the monad AT (e.g. [5, 2.4]). Hence
Lemma 3.1 may be alternatively stated as follows:
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Galois functors and generalised Hopf modules 209

Let N ∈ BVA. Then, for any X ∈ ˜VAT , the tensor product N ⊗A X exists and has
the structure of a left B-module. So the assignment X �→ N ⊗A X yields a functor
N ⊗A − : ˜VAT → BV leading to the commutative diagram

V

N⊗− 

�
��

��
��

�
φ

AT �� ˜VAT

N⊗A−
��

BV .

3.3 Opmonoidal functors

Recall that—following [11]—an opmonoidal functor from a monoidal category
(V,⊗, I ) to a monoidal category (V′,⊗′, I ′) is a triple (S, ω, ξ), where S : V → V

′
is a functor, ωV,W : S(V ⊗ W ) → S(V ) ⊗ S(W ) is a natural transformation between
functors V × V → V, and ξ : S(I ) → I ′ is a morphism compatible with the tensor
structures. Note that opmonoidal functors S take V-comonoids (i.e. comonoids in V)
into V

′-comonoids in the sense that if C = (C, δ, ε) is a V-comonoid, then it produces
a V

′-comonoid

S(C) = (S(C), ωC,C · S(δ), ξ · S(ε)).

In [11], an opmonoidal monad on a monoidal category (V,⊗, I ) is defined as a
monad T = (T, m, e) on V such that the functor T and the natural transformations m
and e are opmonoidal. Such monads are also called Hopf monads in [18, Definition
1.1] or bimonads (e.g. in [1, Definition 3.2.1]) but they are different from what are
called bimonads in [15, Definition 4.1] (compare [16, Section 5]).

The basic property of opmonoidal monads T is that they lead to a monoidal structure
on the Eilenberg–Moore category VT of T -modules in such a way that the forgetful
functor UT : VT → V is strictly monoidal. Explicitly (e.g. [11,18]), for T -modules
(V, h) and (W, g), the tensor product (V, h) ⊗ (W, g) is given by

(V ⊗ W, T (V ⊗ W )
ωV,W−−−→ T (V ) ⊗ T (W )

h⊗g−−→ V ⊗ W )

and the unit object of VT is the T -module (I, ξ : T (I ) → I ). The unitary and
associativity isomorphisms for VT are inherited from V.

3.4 T -module-comonoids

Given an opmonoidal monad T on V, a comonoid in the monoidal category VT is
called a T -module-comonoid. Explicitly, a T -module-comonoid Z = ((Z , σ ), δ, ε)

consists of an object (Z , σ ) ∈ VT and V-morphisms δ : Z → Z ⊗ Z and ε : Z → I
such that UT (Z) = (Z , δ, ε) is a V-comonoid and that δ and ε are morphism of
T -modules.

For any V-comonoid (C, δ, ε), T (C) allows for a module-comonoid structure with
the morphisms (e.g. [1])
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• T T (C)
mC−−→ T (C),

• T (C)
T (δ)−−→ T (C ⊗ C)

ωC,C−−−→ T (C) ⊗ T (C),

• T (C)
T (ε)−−→ T (I )

ξ−→ I.

We write T (C) for this module-comonoid.

3.5 V-categories

A left V-category is a category A equipped with a bifunctor

− 
 − : V × A → A,

called the action of V on A, and invertible natural transformations

αV,W,X : (V ⊗ W ) 
 X → V 
 (W 
 X) and λX : I 
 X → X,

called the associativity and unit isomorphisms, respectively, satisfying two coherence
axioms (see Bénabou [4]). Note that V has a canonical (left) action on itself, given by
taking V 
 W = V ⊗ W, α = a, and λ = l.

Given a left V-category A and a monoid (A, eA, m A) in V, one has a monad T l
A on

A defined on any X ∈ A by

• T l
A(X) = A 
 X ,

• (eT l
A
)X : X

λ−1
X−−→ I 
 X

eA
X−−−→ A 
 X = T l
A(X),

• (mT l
A
)X : T l

A(T l
A(X)) = A 
 (A 
 X)

α−1
A,A,X−−−−→ (A ⊗ A)
 X

m A
X−−−→ A 
 X = T l
A(X),

and we write AA for the Eilenberg–Moore category AT l
A

of T l
A-modules. For the

canonical left action of V on itself, AA is just the category AV of (left) A-modules.
Dually, for any V-coalgebra (C, εC , δC ), the endofunctor C 
 − : A → A is the

functor-part of a comonad Gl
C on A and one has the corresponding Eilenberg–Moore

category C
A = A

Gl
C ; for A = V this is just the category C

V of (left) C-comodules.
We sometimes write Aφ and Cφ for the functors φT l

A
and φGl

C
, respectively.

Symmetrically, one has the monad T r
A = − 
 A (resp. comonad Gr

C = − 
 C) on
A, the corresponding Eilenberg–Moore category AA (resp. A

C ) of T r
A -modules (resp.

Gr
C -comodules), and the functor φA : A → AA (resp. φC : A → A

C ).

3.6 Comodules over opmonoidal functors

Let −
− : V×A → A be a left action of a monoidal category V on a category A and
let F : V → V be an opmonoidal functor on V. A comodule over F is a pair (H, χ),
where H : A → A is a functor and χV,X : H(V 
 X) → F(V ) 
 H(X) is a natural
transformation satisfying two axioms (e.g. [1, Definition 3.3.1]).

Suppose that T = (T, mT , eT ) is an opmonoidal monad on V (with structure
ωV,W : T (V ⊗ W ) → T (V ) ⊗ T (W ) and ξ : T (I ) → I ) and that S = (S, mS , eS)
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is a monad on A such that the functor S is a comodule over the opmonoidal functor
(T, ω, ξ) via χV,X : S(V 
 X) → T (V ) 
 S(X). One says that (S, χ) is a comodule-
monad over the bimonad T if χ is compatible with the monad structures [1, Definition
3.5.1]. Considering T as a monad on the left V-category V, it follows from the def-
inition of an opmonoidal monad that the pair (T , ω) is a comodule-monad over the
opmonoidal monad T .

There is a left action of the monoidal category VT (with the monoidal structure
from Sect. 3.3) on the category AS : given a T -module (V, f ) and an S-module (X, h),
(V, f ) 
 (X, h) is the pair (e.g. [1, Proposition 3.5.3])

(V 
 X, S(V 
 X)
χV,X−−→ T (V ) 
 S(X)

f 
 h−−−→ V 
 X).

Assumption 3.3 We henceforth suppose that

• T = ((T, mT , eT ), ω, ξ) is an opmonoidal monad on a monoidal category
(V,⊗, I, a, l, r);

• (A,
, α, λ) is a left V-category;
• S = (S, mS , eS) is a T -comodule-monad on A via

χV,− : S(V 
 −) → T (V ) 
 S(−);

• Z = ((Z , σ ), δ, ε) is a T -module-comonoid.

Since Z is a comonoid in the monoidal category VT and since VT acts from the left
on AS , one has the AS -comonad Gl

Z . Moreover, since Z0 = UT (Z) is a comonoid
in the monoidal category V, one has the A-comonad Gl

Z0
, and it is not hard to check

that Gl
Z is a lifting of Gl

Z0
to AS . It follows from Theorem 2.3 that there is a mixed

distributive law λ from the A-monad S to the A-comonad Gl
Z0

.
The following result without proof appears in [1, Remark 3.6.5]:

Proposition 3.4 With the data considered in Sect. 3.6, λ is the composite

S(Z 
 −)
χZ ,−−−→ T (Z) 
 S(−)

σ
S(−)−−−−→ Z 
 S(−).

Proof By Sect. 3.6, for any (X, h) ∈ AT ,

Gl
Z (X, h) = (Z 
 X, S(Z 
 X)

χZ ,X−−→ T (Z) 
 S(X)
σ
h−−→ Z 
 X),

and it follows that (εS)Gl
Z (X,h) = (σ 
 h) · χZ ,X , thus

(εS)Gl
ZφS (X) = (σ 
 (mS)X ) · χZ ,S(X),

since φS(X) = (S(X), (mS)X ). By Theorem 2.3, for X ∈ A, λX is the composite

S(Z 
 X)
S(Z
(eS )X )−−−−−−−→ S(Z 
 S(X))

χZ ,S(X)−−−−→ T (Z) 
 SS(X)
σ
(mS )X−−−−−→ Z 
 S(X).
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In the diagram

S(Z 
 X)

χZ ,X

��

S(Z
(eS )X ) �� S(Z 
 S(X))

χZ ,S(X)

��
T (Z) 
 S(X)

σ
S(X) ������������������
T (Z)
(eS )X �� T (Z) 
 SS(X)

σ
(mS )X

��
Z 
 S(X) ,

the rectangle commutes by naturality of χ , while mS · eS = 1 implies commutativity
of the triangle; it follows that λX = (σ 
 S(X)) · χZ ,X . ��

3.7 Generalised Hopf modules

Z(AS) = A
Gl

Z0
S (λ) is the category of λ-bimodules (see Sect. 2.5); the objects are triples

(X, h, ϑ), where X ∈ A, (X, h : S(X) → X) ∈ AS , (X, ϑ : X → Z 
 X) ∈ Z0A

with commuting diagram

S(X)

S(ϑ)

��

h �� X
ϑ �� Z 
 X

S(Z 
 X)
λX

�� Z 
 S(X).

Z
h

��

In [1, Definition 3.6.1], these are called generalised Hopf modules and the category
Z(AS) is denoted by Hopf(T ,S, Z).

Assumption 3.5 We henceforth suppose that (C, δ, ε) is a comonoid in V and that
Z = T (C) is the corresponding T -module-comonoid (see Sect. 3.4).

Lemma 3.6 In the situation considered above, the assignment

(X, θ) � (S(X), (mS)X , ϑ),

where ϑ : S(X) → Z 
 S(X) is the composite

S(X)
S(θ)−−→ S(C 
 X)

χC,X−−→ T (C) 
 S(X) = Z 
 S(X),

yields a functor

K : C
A → Z(AS)
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yielding commutativity of the diagram

C
A

K ��

CU
��

Z(AS)

ZU
��

A
φS

�� AS .

(3.2)

Proof To show that (X, ϑ) ∈ Z0A is to show commutativity of the diagrams

S(X)

(I)

ϑ �� Z 
 S(X)

ε
S(X)

��
S(X) I 
 S(X) ,

λS(X)

��

S(X)

ϑ

��
(II)

ϑ �� Z 
 S(X)

δ
S(X)

��
Z 
 S(X)

Z
ϑ
�� Z 
 Z 
 S(X) ,

where ε = ξ · T (ε) and δ = ωC,C · T (δ) are the counit and the comultiplication for
the VT -module-comonoid Z = T (C) (see Sect. 3.4). In the diagram

S(X)

S(λ−1
X ) 

�������������

S(θ) �� S(C 
 X)

S(ε
X)

��

χC,X �� T (C) 
 S(X)

T (ε)
S(X)

��
S(I 
 X)

S(λX )

��

χI,X
�� T (I ) 
 S(X)

ξ
S(X)

��
S(X)

λ−1
S(X)

�� I 
 S(X),

• the triangle commutes since (X, θ) ∈ C
A,

• the top rectangle commutes by naturality of χ ,
• the bottom rectangle commutes since S is a T -comodule-monad (see diagram (3.6)

in [1]);

it follows that diagram (I) is commutative. To show that (II) is also commutative,
consider the diagram

S(X)

(1)S(θ)

��

S(θ) �� S(C 
 X)

(2)S(δ
X)

��

χC,X �� T (C) 
 S(X)

T (δ)
S(X)

��
S(C 
 X)

(3)χC,X

��

S(C
θ)
�� S(C 
 C 
 X)

(4)χC,C
X

��

χC
C,X
�� T (C 
 C) 
 S(X)

ωC,C 
S(X)

��
T (C) 
 S(X)

T (C)
S(θ)
�� T (C) 
 S(C 
 X)

T (C)
χC,X

�� T (C) 
 T (C) 
 S(X),
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in which

• rectangle (1) commutes since (X, θ) ∈ C
A,

• rectangle (2) and (3) commute by naturality of χ ,
• rectangle (4) commutes since S is a T -comodule-monad (see diagram (3.5) in [1]);

therefore the outer square (and hence (II)) is commutative. Thus, (X, ϑ) ∈ Z0A, and
since (S(X), (mS)X ) ∈ AS , in order to show that (S(X), (mS)X , ϑ) ∈ Z(AS), we
need commutativity of the diagram

SS(X)

SS(θ)

��

(mS )X �� S(X)

S(θ)

��
SS(C 
 X)

S(χC,X )

��

(mS )C
X �� S(C 
 X)

χC,X

��																	

S(T (C) 
 S(X))
χT (C),T (X)

�� T (T (C)) 
 SS(X)
(mT )C 
(mS )C

�� T (C) 
 S(X);

since the rectangle commutes by naturality of mS , while the trapezoid commutes since
S is a T -comodule-monad (see diagram (3.10) in [1]) the outer paths commute, too.

��
As an immediate consequence we obtain from Sect. 2.2:

Corollary 3.7 For (X, θ) ∈ C
A, the (X, θ)-component κ(X,θ) : S(X) → Z 
 S(X)

of the Gl
Z -comodule structure on the composite φS CU : C

A → AS induced by the
commutative diagram (3.2) is the composite

S(X)
S(θ)−−→ S(C 
 X)

χC,X−−→ T (C) 
 S(X) = Z 
 S(X).

Write G for the comonad on the category AS generated by the adjunction

φS
CU � Cφ US : AS → C

A.

Proposition 3.8 For any (X, h) ∈ AS , the (X, h)-component of the comonad mor-
phism tK : G → Gl

Z induced by the commutative diagram (3.2) is the composite

G(X, h) = S(C 
 X)
χC,X−−→ Z 
 S(X)

Z
h−−→ Z 
 X = Gl
Z (X, h).

Proof Let (X, h) ∈ AS . The (X, h)-component of the counit of the adjunction
φS CU � Cφ US : AS → C

A is the composite

S(C 
 X)
S(ε
X)−−−−→ S(I 
 X)

S(λX )−−−→ S(X)
h−→ X;

123



Galois functors and generalised Hopf modules 215

it follows from Sect. 2.2 that the morphism

(tK )(X,h) : S(C 
 X) = G(X, h) → Gl
Z (X, h) = Z 
 X

is the composite

S(C 
 X)
κCφ(X)−−−→ Z 
 S(C 
 X)

Z
S(ε
X)−−−−−−→ Z 
 S(I 
 X)
Z
S(λX )−−−−−→ Z 
 S(X)

Z
h−−→ Z 
 X.

From

Cφ(X) = (C 
 X, C 
 X
δ
X−−→ (C ⊗ C) 
 X

αC,C,X−−−−→ C 
 (C 
 X)),

we obtain by Corollary 3.7 that κCφ(X)
is the composite

S(C 
 X)
S(δ
X)−−−−→ S((C ⊗ C) 
 X)

S(αC,C,X )−−−−−→ S(C 
 (C 
 X))
χC,C
X−−−−→ Z 
 S(C 
 X).

In the diagram

S(C 
 X)

S(r−1
C 
X) ��













S(δ
X) �� S((C ⊗ C) 
 X)

S((C⊗ε)
X)

��

S(αC,C,X )�� S(C 
 (C 
 X))

S(C
(ε
X))

��

χC,C
X �� Z 
 S(C 
 X)

Z
S(ε
X)

��
S((C ⊗ I ) 
 X)

S(rC 
X) 

������������� S(αC,I,X )
�� S(C 
 (I 
 X))

S(C
λX )

��

χC,I
X
�� Z 
 S(I 
 X)

Z
S(λX )

��
S(C 
 X)

χC,X
�� Z 
 S(X),

• the three rectangles are commutative by naturality of α and χ ,
• the top triangle commutes since ε is the counit for the coalgebra C ,
• the bottom triangle commutes because 
 is a left action of V on A.

Hence the outer paths commute and we have

(tK )(X,h) = (Z 
 h)(Z 
 S(λX ))(Z 
 S(ε 
 X))κCφ(X)

= (Z 
 h)(Z 
 S(λX ))(Z 
 S(ε 
 X))χC,C
X S(αC,C,X )(S(δ 
 X))

= (Z 
 h)χC,X S(rC 
 X)S(r−1
C 
 X) = (Z 
 h)χC,X .

��
Note that the above result is contained in the proof of [1, Lemma 5.2.1].
Since for any X ∈ A, φS(X) = (S(X), (mS)X ), the following is immediate:

Corollary 3.9 For any X ∈ A, the φS(X)-component (tK )φS (X) of the comonad
morphism tK : G → Gl

Z is the composite

S(C 
 S(X))
χC,S(X)−−−−→ Z 
 SS(X)

Z
 (mS )X−−−−−−→ Z 
 S(X).
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Combining this with Theorem 2.4 and with Proposition 2.5 and using (tK )φS (X) =
(tK φS)X yields:

Theorem 3.10 Under the Assumptions 3.3, 3.5, the functor K : C
A → Z(AS) in a

commutative diagram (3.2) is an equivalence of categories if and only if

(i) the functor φSCU : C
A → AS is comonadic and

(ii) the composite

S(C 
 S(X))
χC,S(X)−−−−→ Z 
 SS(X)

Z
 (mS )X−−−−−−→ Z 
 S(X)

is an isomorphism for all X ∈ A, or, equivalently, φS
C
U : C

A → AS is a
Gl

Z -Galois comodule functor.

In view of Proposition 2.6(i), the preceding theorem implies:

Theorem 3.11 Assume that A is Cauchy complete and that eS : I → S is a split
monomorphism. Under the Assumptions 3.3, 3.5, the functor K : C

A → Z(AS) with
commutative diagram (3.2) is an equivalence of categories if and only if the functor
φSCU : C

A → AS is Gl
Z -Galois.

We now obtain the Fundamental Theorem of generalised Hopf modules (see [1,
Theorem 5.3.1]) as a particular case of Theorem 3.10.

Theorem 3.12 Under the Assumptions 3.3, 3.5, suppose that

(i) A is Cauchy complete and admits equalisers of coreflexive φS -split pairs,
(ii) the functors S, C 
 −, C 
 (C 
 −) : A → A preserve these equalisers, and

(iii) the functor S is conservative.

Then the functor K : C
A → Z(AS) in a commutative diagram (3.2) is an equivalence

of categories if and only if the functor φSCU : C
A → AS is Gl

Z -Galois.

Proof Since the functor S is conservative and the category A admits—and the functor S
preserves—equalisers of coreflexive φS -split pairs, it follows from the dual of Beck’s
monadicity theorem (see [12]) that the functor φS : A → AS is comonadic, or
equivalently, the monad S is of effective descent type. Since any φS -split pair is
automatically S-split, we may apply Proposition 2.6(ii) to deduce that the functor
φSCU : C

A → AS is comonadic. The result now follows from Theorem 3.10. ��

Remark 3.13 It is pointed out in [1, Remark 3.6.2.] that, when A = V,S = T and
Z = T (I) is the T -module-comonoid corresponding to the trivial V-monoid I (see
Sect. 3.4), then the category Z(AS) is nothing but the category of Hopf modules in
the sense of [10]. Moreover, in this case, to say that Condition (ii) of Theorem 3.10 is
satisfied is to say that T is a left pre-Hopf monad in the sense of [10]. It is not hard to
see now that [10, Theorem 6.11] is a particular instance of Theorem 3.10.
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4 Bimonoids in duoidal categories

In [2], Aguiar and Mahajan generalised bialgebras over fields to bimonoids in duoidal
categories, that is, categories with two monoidal structures ∗ and ◦. Any object A in
such a category induces endofunctors − ∗ A and − ◦ A and for A being a bimonoid
these functors have to be a comonad and a monad, respectively, related by a mixed dis-
tributive law ([2, Definition 6.25], compare [15, Proposition 6.3]). In [6], Böhm, Chen
and Zhang studied which structures are required to define Hopf monoids in such cat-
egories. In this section we outline how their Fundamental Theorem for Hopf modules
(see [6, Section 3.4]) can be seen as special case of the results in the Sects. 2 and 3.

Recall from [2] that duoidal categories D are equipped with two monoidal structures
(D, ◦, I ) and (D, ∗, J ), along with a natural transformation

ζW,X,Y,Z : (W ∗ X) ◦ (Y ∗ Z) → (W ◦ Y ) ∗ (X ◦ Z),

called the interchange law, and three morphisms

� : I → I ∗ I, μ : J ◦ J → J, τ : I → J,

such that the conditions for associativity, unitality and compatibility of the units are
satisfied. For example, the compatibility of the units means that the monoidal units I
and J satisfy

• (J, μ, τ) is a monoid in the monoidal category (D, ◦, I ) and
• (I,�, τ) is a comonoid in the monoidal category (D, ∗, J ).

It is pointed out in [2] that if (D, ◦, I, ∗, J ) is a duoidal category with interchange
law ζ , then (Dop, ∗, J, ◦, I ) is also a duoidal category, called the opposite duoidal
category of D. The interchange law ζ W,X,Y,Z : (W ◦ X)∗(Y ◦ Z) → (W ∗Y )◦(X ∗ Z)

for this is given by the D-morphism ζW,Y,X,Z : (W ∗Y )◦(X ∗ Z) → (W ◦ X)∗(Y ◦ Z).

4.1 Bimonoids

A bimonoid in a duoidal category D is an object A with a monoid structure (A, m, e)
in (D, ◦, I ) and a comonoid structure (A, δ, ε) in (D, ∗, J ) inducing commutativity
of the diagrams

A ◦ A

(I)

m ��

δ◦δ

��

A
δ �� A ◦ A

(A ∗ A) ◦ (A ∗ A)
ζ

�� (A ◦ A) ∗ (A ◦ A),

m∗m

��

A ◦ A

(II)

ε◦ε ��

m

��

J ◦ J

μ

��
A ε

�� J,

I

(III)

e ��

�

��

A

δ

��
I ∗ I e∗e

�� A ∗ A,

I
e ��

τ
���

��
��

��
� A

(IV)
ε

��
J.
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A morphism of bimonoids is a morphism of the underlying monoids and comonoids.
Recall [2, Proposition 6.27] that the tensor units I and J carry a unique bimonoid

structure and that the morphism τ : I → J is a morphism of bimonoids.
Fix a duoidal category (D, ◦, I, ∗, J ) and a bimonoid (A, m, e, δ, ε) in D. Since

(A, A ◦ A
m−→ A, e : I

e−→ A) is a monoid in the monoidal category (D, ◦, I ), while

(A, A
δ−→ A ∗ A, A

ε−→ J ) is a comonoid in the monoidal category (D, ∗, J ), one has
by Sect. 3.5 the monad T r

A and the comonad Gr
A on D. Recall that the functor part of the

monad T r
A (resp. comonad Gr

A) is the functor − ◦ A : D → D (resp. − ∗ A : D → D).
It is shown in [7] that T r

A is an opmonoidal monad on the monoidal category
(D, ∗, J ), with the structure morphisms

ωX,Y : (X ∗ Y ) ◦ A
(X∗Y )◦δ−−−−−→ (X ∗ Y ) ◦ (A ∗ A)

ζ−→ (X ◦ A) ∗ (Y ◦ A),

ξ : J ◦ A
J◦ε−−→ J ◦ I


−→ J.

It follows that the category DA = DT r
A

is monoidal. Note that ((A, m), δ, ε) is an
object of Comon(DA): Clearly (A, m) ∈ DA and the comultiplication δ and the
counit ε of A are morphisms of right A-comodules by the diagrams (I) and (II) in
Sect. 4.1, respectively. Hence ((A, m), δ, ε) is a T r

A -module-comonoid.
Thus, we have

• the opmonoidal monad T r
A on the monoidal category (D, ∗, J ),

• the left (D, ∗, J )-category structure on D given by X 
 Y = X ∗ Y ,
• the T r

A -comodule-monad (T r
A , ω) on A, and

• the T r
A -module-comonoid ((A, m), δ, ε).

Hence, we may apply the results of Sect. 3 to the present situation. In particular,
Proposition 3.4 gives (see also [6, Section 2]):

Proposition 4.1 The natural transformation

λ : (− ∗ A) ◦ A
(−∗A)◦δ−−−−−→ (− ∗ A) ◦ (A ∗ A)

ζ−→ (− ◦ A) ∗ (A ◦ A)
(−◦A)∗m−−−−−→ (− ◦ A) ∗ A

is a mixed distributive law from the monad T r
A to the comonad Gr

A.

We write D
A
A for the category (DT r

A
)
̂Gr

A = (DA)
̂Gr

A , where ̂Gr
A is the lifting of Gr

A to
DT r

A
= DA corresponding to the mixed distributive law λ. This is called the category

of A-Hopf modules in [6, Section 3]. Thus, an A-Hopf module is a triple (X, h, ϑ)

such that (X, h : X ◦ A → A) is a right A-module in the monoidal category (D, ◦, I ),
(X, ϑ : X → X ∗ A) is a right A-comodule in the monoidal category (D, ∗, J ) with
commutative diagram

X ◦ A

ϑ◦A
��

h �� X
ϑ �� X ∗ A

(X ∗ A) ◦ A
λX

�� (X ◦ A) ∗ A.

h∗A

��
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Since (I,�, τ) is a comonoid in the monoidal category (D, ∗, J ), one has the category
D

I of I -comodules on this monoidal category. Recall that D
I is the Eilenberg–Moore

category of Gr
I -comodules. Now Lemma 3.6 implies:

4.2 Comparison functor − ◦ A : D
I → D

A
A

The assignment

(X, θ) � (X ◦ A, m, ϑ),

where m : (X ◦ A) ◦ A → X ◦ A is the composite

(X ◦ A) ◦ A
aX,A,A−−−→ X ◦ (A ◦ A)

X◦ m−−−→ X ◦ A,

while ϑ : X ◦ A → (X ◦ A) ∗ A is the composite

X ◦ A
ϑ◦A−−→ (X ∗ I ) ◦ A

(X∗I )◦δ−−−−→ (X ∗ I ) ◦ (A ∗ A)
ζ−→ (X ◦ A) ∗ (I ◦ A) 
 (X ◦ A) ∗ A,

yields a comparison functor K = − ◦ A : D
I → D

A
A with commutative diagram

D
I K ��

U I

��

D
A
A

U
̂Gr

A

��
D

φA �� DA.

Write G for the comonad on the category DA generated by the adjunction

φAU I � φ I UA : DA → D
I .

Proposition 4.2 For any (X, h) ∈ DA, the (X, h)-component of the comonad mor-
phism tK : G → ̂Gr

A induced by the diagram in Sect. 4.2, is the composite

(X ∗ I ) ◦ A
(X∗I )◦δ−−−−→ (X ∗ I ) ◦ (A ∗ A)

ζ−→ (X ◦ A) ∗ (I ◦ A) 
 (X ◦ A) ∗ A
h∗A−−→ X ∗ A.

For any X ∈ D, φA(X) = (X ◦ A, (X ◦ m) · aX,A,A : (X ◦ A) ◦ A → X ◦ A), and
the φA(X)-component (tK )φA(X) of tK is the composite

((X ◦ A) ∗ I ) ◦ A

(tK )φA(X)

��

((X◦A)∗I )◦δ �� ((X ◦ A) ∗ I ) ◦ (A ∗ A)
ζ �� ((X ◦ A) ◦ A) ∗ (I ◦ A)



��

(X ◦ A) ∗ A (X ◦ (A ◦ A)) ∗ A
(X◦ m)∗A

�� ((X ◦ A) ◦ A) ∗ A .
��

123



220 B. Mesablishvili, R. Wisbauer

Applying now Theorem 3.10 yields:

Theorem 4.3 Let (D, ◦, I, ∗, J ) be a duoidal category and (A, m, e, δ, ε) a bimonoid
in D. Then the comparison functor K : D

I → D
A
A is an equivalence of categories if

and only if

(i) the functor φAU I : D
I → DA is comonadic and

(ii) the morphism (tK )φA(X) (in Proposition 4.2) is an isomorphism for any X ∈ D,
or, equivalently, φAU I : D

I → DA is a Gr
A-Galois comodule functor.

Theorem 4.4 Let (D, ◦, I, ∗, J ) be a duoidal category with Cauchy complete D. If the
morphism τ : I → J is a split monomorphism, then for any bimonoid (A, m, e, δ, ε)
in D, the functor K : D

I → D
A
A (in Sect. 4.2) is an equivalence of categories if and

only if φAU I : D
I → DA is Gr

A-Galois.

Proof Since ε · e = τ (see Diagram (IV) in Sect. 4.1) and since τ is a split monomor-
phism by hypothesis, so also is the morphism e : I → A. It then follows that the unit
of the monad T r

A = − ◦ A is a split monomorphism and Theorem 3.11 completes the
proof. ��

The following elementary observation is of use for our investigations.

Proposition 4.5 Let (D, ◦, I, ∗, J ) be a duoidal category with Cauchy complete D. If
the unit of the adjunction

D
I

U I

��⊥ D ⊥
φJ 		

φ I

�� DJ

UJ

��

is a split monomorphism, then for any bimonoid (A, m, e, δ, ε) in D, the functor

D
I U I−→ D

φA−→ DA is comonadic.

Proof Note first that the commutativity of the diagrams (II) and (IV) in Sect. 4.1
allow to consider ε : A → J as a morphism from the monoid (A, m, e) to the monoid

(J, μ, τ) in the monoidal category (D, ◦, I ). Then the composites A◦ J
ε◦J−−→ J ◦ J

μ−→
J and J ◦ A

J◦ ε−−→ J ◦ J
μ−→ J give the structure of an (A, A)-bimodule on J , and so,

by Remark 3.2, the triangle in the diagram

D
I U I

��
D

φJ =J⊗−
���

�

���
��

φA �� ˜DT l
A

J⊗A−
��

D
I

U I
��
D

φJ

�� DJ

is commutative, implying that the outer diagram is also commutative. Since D is
assumed to be Cauchy complete, so also is D

I . Now apply Proposition 2.7 to conclude
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that the composite φAU I is conservative, and that any coreflexive (φAU I )-split pair
of morphisms has a split equaliser in D

I .
Next, since ι φA = φA, where ι : ˜DT l

A
→ DA is the canonical embedding, the

composite φAU I is conservative if and only if ι φAU I = φAU I is conservative, and
a pair of morphisms in DI is φAU I -split if and only if it is φAU I -split. Thus, φAU I

is conservative and any φAU I -split pair of morphisms has a split equaliser in D
I . It

follows – since the composite φAU I admits as a right adjoint the composite φ I UA –
that φAU I is comonadic. ��

Combining Propositions 4.3 and 4.5 we obtain:

Theorem 4.6 In the situation of Proposition 4.5, the functor K : D
I → D

A
A (in

Sect. 4.2) is an equivalence of categories if and only if φAU I : D
I → DA is Gr

A-
Galois.

Since a left adjoint functor is full and faithful if and only if the unit of the adjunction
is an isomorphism (hence a split monomorphism), it follows immediately:

Corollary 4.7 Let (D, ◦, I, ∗, J ) be a duoidal category with Cauchy complete D. If the
composite φJ U I : D

I → DJ is full and faithful, then, for any bimonoid (A, m, e, δ, ε)
in D, the functor K : D

I → D
A
A (in Sect. 4.2) is an equivalence of categories if and

only if φAU I : D
I → DA is Gr

A-Galois.

Considering any bimonoid (A, m, e, δ, ε) in D as a bimonoid in D
op (see [2, Remark

6.26]) and applying the duality explained in [2], the Theorems 4.3, 4.6 and Corol-
lary 4.7 yield the following:

Theorem 4.8 Let (D, ◦, I, ∗, J ) be a duoidal category and (A, m, e, δ, ε) a bimonoid
in D. Then the comparison functor

K ′ = − ∗ A : DJ → D
A
A

is an equivalence of categories if and only if

(i) the functor φAUJ : DJ → D
A is monadic and

(ii) φAUJ : DJ → D
A is a T r

A -Galois module functor, or, equivalently, the following
composite is an isomorphism for all X ∈ D:

(X ∗ A) ◦ A

(tK ′ )φ A (X)

��

(X∗δ)◦A �� (X ∗ (A ∗ A)) ◦ A

 �� ((X ∗ A) ∗ A) ◦ A



��

((X ∗ A) ◦ J ) ∗ A ((X ∗ A) ◦ J ) ∗ (A ◦ A)
((X∗A)◦J )∗m�� ((X ∗ A) ∗ A) ◦ (J ∗ A).

ζ��

Cauchy completeness of D allows for the following characterisations.

Theorem 4.9 Let (D, ◦, I, ∗, J ) be a duoidal category with Cauchy complete D.
Assume either of the conditions
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(1) the morphism τ : I → J is a split epimorphism, or

(2) the unit of the adjunction DJ

UJ

��⊥ D ⊥
φ I

��

φJ��
D

I

U I

��
is a split epimorphism, or

(3) the composite φ I UJ : DJ → D
I is full and faithful.

Then, for any bimonoid (A, m, e, δ, ε) in D, the functor K ′ = − ∗ A : DJ → D
A
A is

an equivalence of categories if and only if φAUJ : DJ → D
A is T r

A -Galois.

Note that Corollary 4.7 subsumes [6, Theorem 3.11], while [6, Theorem 3.13] is a
consequence of Theorem 4.9 (iii).
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