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Abstract: The definition of Azumaya algebras over commutative rings R requires the tensor
product of modules over R and the twist map for the tensor product of any two R-modules.
Similar constructions are available in braided monoidal categories, and Azumaya algebras
were defined in these settings. Here, we introduce Azumaya monads on any category A
by considering a monad (F,m, e) on A endowed with a distributive law λ : FF → FF

satisfying the Yang–Baxter equation (BD-law). This allows to introduce an opposite
monad (F λ,m · λ, e) and a monad structure on FF λ. The quadruple (F,m, e, λ) is called
an Azumaya monad, provided that the canonical comparison functor induces an equivalence
between the category A and the category of FF λ-modules. Properties and characterizations
of these monads are studied, in particular for the case when F allows for a right adjoint
functor. Dual to Azumaya monads, we define Azumaya comonads and investigate the
interplay between these notions. In braided categories (V ,⊗, I, τ), for any V-algebra A,
the braiding induces a BD-law τA,A : A⊗A→ A⊗A, and A is called left (right) Azumaya,
provided the monadA⊗− (resp. −⊗A) is Azumaya. If τ is a symmetry or if the category V
admits equalizers and coequalizers, the notions of left and right Azumaya algebras coincide.
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1. Introduction

Azumaya algebras A = (A,m, e) over a commutative ring R are characterized by the fact that
the functor A ⊗R − induces an equivalence between the category of R-modules and the category of
(A,A)-bimodules. In this situation, Azumaya algebras are separable algebras, that is the multiplication
A⊗R A→ A splits as a (A,A)-bimodule map.

Braided monoidal categories allow for similar constructions as module categories over commutative
rings, and so, with some care, Azumaya algebras (monoids) and Brauer groups can be defined for
such categories. For finitely bicomplete categories, this was worked out by Fisher-Palmquist in [1];
for symmetric monoidal categories it was investigated by Pareigis in [2]; and for braided monoidal
categories, the theory was outlined by van Oystaeyen and Zhang in [3] and Femić in [4]. It follows from
the observations in [2] that, even in symmetric monoidal categories, the category equivalence requested
for an Azumaya algebra A does not imply the separability of A (defined as for R-algebras).

In our approach to Azumaya (co)monads, we focus on the properties of monads and comonads on
any category A inducing equivalences between certain related categories. Our main tools are distributive
laws between monads (and comonads) as used in the investigations of Hopf monads in general categories
(see [5,6]).

In Section 2, basic facts about the related theory are recalled, including Galois functors.
In Section 3, we consider monads F = (F,m, e) on any category A endowed with a distributive law

λ : FF → FF satisfying the Yang–Baxter equation (monad BD-law). The latter enables the definition
of a monad Fλ = (F λ,mλ, eλ), where F λ = F , mλ = m · λ and eλ = e. Furthermore, λ can be
considered as distributive law λ : F λF → FF λ, and this allows one to define a monad structure on FF λ.
Then, for any object A ∈ A, F (A) allows for an FFλ-module structure, thus inducing a comparison
functor K : A → AFFλ . We call (F , λ) an Azumaya monad (in 3.3) if this functor is an equivalence
of categories. The properties and characterizations of such monads are given, in particular for the case
that they allow for a right adjoint functor (Theorem 3.10). Dualizing these notions leads to an intrinsic
definition of Azumaya comonads (Definition 3.14). Given a monad F = (F,m, e) with monad BD-law
λ : FF → FF , where the functor F has a right adjoint R, a comonad R = (R, δ, ε) with a comonad
BD-law κ : RR → RR can be constructed (Proposition 3.15). The relationship between the Azumaya
properties of the monad F and the comonad R is addressed in Proposition 3.16. It turns out that for
a Cauchy complete category A, F is an Azumaya monad and FFλ is a separable monad, if and only if
R is an Azumaya comonad andRκR is a separable comonad (Theorem 3.17).

In Section 4, our theory is applied to study Azumaya algebras in braided monoidal categories
(V ,⊗, I, τ). Then, for any V-algebra A, the braiding induces a distributive law τA,A : A⊗ A→ A⊗ A,
and A is called left (right) Azumaya if the monad A⊗− : V → V (resp. −⊗ A : V → V) is Azumaya.
In [3], V-algebras, which are both left and right Azumaya, are used to define the Brauer group of V .
We will get various characterizations for such algebras, but will not pursue their role for the Brauer
group. In braided monoidal categories with equalizers and coequalizers, the notions of left and right
Azumaya algebras coincide (Theorem 4.18).

The results about Azumaya comonads provide an extensive theory of Azumaya coalgebras in braided
categories V , and the basics for this are described in Section 5. Besides the formal transfer of results
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known for algebras, we introduce coalgebras C over cocommutative coalgebrasD, and for this, Section 3
provides conditions that make them Azumaya. This extends the corresponding notions studied for
coalgebras over cocommutative coalgebras in vector space categories by Torrecillas, van Oystaeyen and
Zhang in [7]. Over a commutative ring R, Azumaya coalgebras C turn out to be coseparable and are
characterized by the fact that the dual algebra C∗ = Hom(C,R) is an Azumaya R-algebra. Notice that
coalgebras with the latter property were first studied by Sugano in [8].

Let us mention that, given an endofunctor F : A → A with a monad and a comonad structure,
a natural transformation λ : FF → FF is called a local prebraiding in (6.7 in [5]), provided it is
a monad, as well as a comonad BD-law. For example, the Yang–Baxter operator in the definition of
a weak braided Hopf algebra in Alonso Álvarez et al. (Definition 2.1 in [9]) is (among other conditions)
required to be of this type. As pointed out by a referee, in Gordon et al. [10], it is suggested to generalize
Azumaya algebras by considering them as weak equivalences in an appropriate tricategory.

2. Preliminaries

Throughout this section, A will stand for any category.

2.1. Modules and comodules. For a monad T = (T,m, e) on A, we write AT for the Eilenberg–Moore
category of T -modules and denote the corresponding forgetful-free adjunction by:

ηT , εT : φT a UT : AT → A.

Dually, if G = (G, δ, ε) is a comonad on A, we write AG for the Eilenberg–Moore category of
G-comodules and denote the corresponding forgetful-cofree adjunction by:

ηG, εG : UG a φG : A→ AG.

For any monad T = (T,m, e) and an adjunction η, ε : T a R, there is a comonad R = (R, δ, ε),
where m a δ, ε a e (mates), and there is an isomorphism of categories (e.g., [5]):

Ψ : AT → AR, (A, h) 7→ (A, A
η−→ RT (A)

R(h)−−→ R(A)). (2.1)

Note that, for any (A, θ) ∈ AR, Ψ−1(A, θ) = (A, T (A)
F (θ)−−→ TR(A)

εA−→ A).

2.2. Monad distributive laws. Given two monads T = (T,m, e) and S = (S,m′, e′) on A, a natural
transformation λ : TS → ST is a (monad) distributive law of T over S if it induces the commutativity
of the diagrams:

S
eS

}}

Se

!!
TS

λ // ST

T
e′T

>>

Te′

``

,

TSS

Tm′

��

λS // STS Sλ // SST

m′T
��

TS
λ // ST

TTS

mS

OO

Tλ
// TST

λT
// STT.

Sm

OO

Given a distributive law λ : TS → ST , the triple ST = (ST,m′m · SλT, e′e) is a monad on A
(e.g., [11,12]). Notice that the monad structure on ST depends on λ, and if the choice of λ needs to be
specified, we write (ST )λ.
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Furthermore, a distributive law λ corresponds to a monad Ŝλ = (Ŝ, m̂, ê) on AT that is a lifting of S
to AT in the sense that:

UT Ŝ = SUT , UT m̂ = m′UT , UT ê = e′UT .

This defines the Eilenberg–Moore category (AT )Ŝλ of Ŝλ-modules, whose objects are triples
((A, t), s), with (A, t) ∈ AT , (A, s) ∈ AS and a commutative diagram:

TS(A)
λA //

T (s)

��

ST (A)

S(t)

��
T (A)

t
// A S(A).s
oo

(2.2)

There is an isomorphism of categories Pλ : A(ST )λ → (AT )Ŝλ by the assignment:

(A, ST (A)
%−→ A) 7→ ((A, T (A)

e′
T (A)−−−→ ST (A)

%−→ A), S(A)
S(eA)−−−→ ST (A)

%−→ A),

and for any ((A, t), s) ∈ (AT )Ŝλ ,

P−1
λ ((A, t), s) = (A, ST (A)

S(t)−−→ S(A)
s−→ A).

When no confusion can occur, we shall just write Ŝ instead of Ŝλ.

2.3 Proposition. In the setting of Section 2.2, let λ : TS → ST be an invertible monad distributive law.

(1) λ−1 : ST → TS is again a monad distributive law;

(2) λ : TS → ST can be seen as a monad isomorphism (T S)λ−1 → (ST )λ defining
a category isomorphism:

Aλ : A(ST )λ → A(T S)λ−1 , (A, ST (A)
%−→ A) 7→ (A, TS(A)

λ−→ ST (A)
%−→ A);

(3) λ−1 induces a lifting T̂λ−1 : AS → AS of T to AS and an isomorphism of categories:

Φ : (AT )Ŝλ → (AS)T̂λ−1
, ((A, t), s) 7→ ((A, s), t),

leading to the commutative diagram:

A(ST )λ

Pλ //

Aλ
��

(AT )Ŝλ

Φ

��
A(T S)λ−1 Pλ−1

// (AS)T̂λ−1
.

Proof. (1) and (2) followed by Lemma 4.2 in [13]; (3) is outlined in Remark 3.4 in [14]. tu
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2.4. Comonad distributive laws. Given comonads G = (G, δ, ε) and H = (H, δ′, ε′) on A, a natural
transformation κ : HG → GH is a (comonad) distributive law of G over H if it induces commutativity
of the diagrams:

H

HG κ //

Hε

==

ε′G !!

GH

εH

bb

Gε′}}
G ,

HGG
κG // GHG

Gκ // GGH

HG κ //

Hδ

OO

δ′G
��

GH

δH

OO

Gδ′

��
HHG

Hκ
// HGH

κH
// GHH.

Given this, the triple (HG)κ = (HG,HκG · δ′δ, ε′ε) is a comonad on A (e.g., [11,12]).
Also, the distributive law κ corresponds to a lifting of the comonad H to a comonad H̃κ : AG → AG ,

leading to the Eilenberg–Moore category (AG)H̃κ of H̃κ-comodules whose objects are triples ((A, g), h)

with (A, g) ∈ AG and (A, h) ∈ AH with commutative diagram:

H(A)

H(g)
��

Ahoo g // G(A)

G(h)
��

HG(A) κA
// GH(A).

There is an isomorphism of categories Qκ : A(HG)κ → (AG)H̃κ given by:

(A,A
ρ−→ HG(A)) 7→ (A,A

ρ−→ HG(A)
ε′
G(A)−−−→ G(A)), A

ρ−→ HG(A)
H(εA)−−−→ H(A)),

and for any ((A, g), h) ∈ (AG)H̃κ ,

Q−1
κ ((A, g), h) = (A,A

h−→ H(A)
H(g)−−→ HG(A)).

The following observations are dual to 2.3.

2.5 Proposition. In the setting of Section 2.4, let κ : HG → GH be an invertible comonad
distributive law.

(1) κ−1 : GH → HG is a comonad distributive law ofH over G;
(2) GH allows for a comonad structure (GH)κ−1 and κ : HG → GH is a comonad isomorphism

(HG)κ → (GH)κ−1 defining a category equivalence:

Aκ : A(HG)κ → A(GH)κ−1 , (A,A
ρ−→ HG(A)) 7→ (A,A

ρ−→ HG(A)
κ−→ GH(A);

(3) κ−1 induces a lifting G̃κ−1 : AH → AH of G to AH and an equivalence of categories:

Φ′ : (AG)H̃κ → (AH)G̃κ−1 , ((A, g), h) 7→ ((A, h), g),

leading to the commutative diagram:

A(HG)κ Qκ //

Aκ
��

(AG)H̃κ

Φ′
��

A(GH)κ−1

Q−1
κ

// (AH)G̃κ−1 .
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2.6. Mixed distributive laws. Given a monad T = (T,m, e) and a comonad G = (G, δ, ε) on A,
a mixed distributive law (or entwining) from T to G is a natural transformation ω : TG → GT with
commutative diagrams:

G
eG

}}

Ge

!!
TG

Tε !!

ω
// GT

εT}}
T

TTG

mG
��

Tω // TGT
ωT // GTT

Gm
��

TG

Tδ
��

ω
// GT

δT
��

TGG
ωG
// GTG

Gω
// GGT.

Given a mixed distributive law ω : TG → GT from the monad T to the comonad G, we write
Ĝω = (Ĝ, δ̂, ε̂) for a comonad on AT lifting G (e.g., Section 5 in [12]).

It is well-known that for any object (A, h) of AT ,

Ĝ(A, h) = (G(A), G(h) · ωA), (δ̂)(A,h) = δA, (ε̂)(A,h) = εA,

and the objects of (AT )Ĝ are triples (A, h, ϑ), where (A, h) ∈ AT and (A, ϑ) ∈ AG with
commuting diagram:

T (A) h //

T (ϑ)

��

A
ϑ // G(A)

TG(A) ωA
// GT (A).

G(h)

OO
(2.3)

2.7. Distributive laws and adjoint functors. Let λ : TS → ST be a distributive law of a monad
T = (T,m, e) over a monad S = (S,m′, e′) on A. If T admits a right adjoint comonad R (with
η, ε : T a R), then the composite:

λ� : SR
ηSR // RTSR

RλR // RSTR
RSε // RS

is a mixed distributive law from S toR (e.g., [5,15]) and the assignment:

(A, ν : ST (A)→ A) 7→ (A, hν : S(A)→ A, ϑν : A→ R(A)), with

hν : S(A)
S(eA)−−−→ ST (A)

ν−→ A, ϑν : A
ηA−−→ RT (A)

R(e′
T (A)

)

−−−−−→ RST (A)
R(ν)−−→ R(A),

yields an isomorphism of categories A(ST )λ ' (AS)R̂λ� .

2.8. Invertible distributive laws and adjoint functors. Let λ : TS → ST be an invertible distributive
law of a monad T = (T,m, e) over a monad S = (S,m′, e′) on A. Then, λ−1 : ST → TS is
a distributive law of the monad S over the monad T (2.3), and if S admits a right adjoint comonad
H (with η, ε : S a H), then the previous construction can be repeated with λ replaced by λ−1. Thus,
the composite:

(λ−1)� : TH
η TH−−−→ HSTH

Hλ−1H−−−−→ HTSH
HTε−−→ HT
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is a mixed distributive law from the monad T to the comonad H. Moreover, there is an adjunction
α, β : Ŝλ a Ĥ(λ−1)� : AT → AT , where Ŝλ is the lifting of S to AT considered in 2.2 (e.g., Theorem 4
in [16]), and the canonical isomorphism Ψ from (2.1) yields the commutative diagram:

(AT )Ŝλ
Ψ //

UŜλ
��

(AT )Ĥ(λ−1)�

U
Ĥ

(λ−1)�
��

AT =
// AT .

(2.4)

Note that UT (α) = η and UT (β) = ε.

2.9. Entwinings and adjoint functors. For a monad T = (T,m, e) and a comonad G = (G, δ, ε),
consider an entwining ω : TG→ GT . If T admits a right adjoint comonad R (with η, ε : T a R), then
the composite:

ω� : GR
ηGR // RTGR

RωR // RGTR
RGε // RG

is a comonad distributive law of G over R (e.g., [5,15]), inducing a lifting G̃ω of G to AR and,
thus, an Eilenberg–Moore category (AR)G̃ω of G̃ω-comodules whose objects are triples ((A, d), g) with
commutative diagram (see Section 2.4):

G(A)

G(d)

��

A
goo d // R(A)

R(g)

��
GR(A)

ω�A // RG(A).

(2.5)

The following notions will be of use for our investigations.

2.10. Monadic and comonadic functors. Let η, ε : F a R : B → A be an adjoint pair of functors.
Then, the composite RF allows for a monad structure RF on A and the composite FR for a comonad
structureFR on B. By definition,R is monadic and F is comonadic, provided the respective comparison
functors are equivalences,

KR : B→ ARF , B 7→ (R(B), R(εB)),

KF : A→ BFR, A 7→ (F (A), F (ηA)).

For an endofunctor we have, under some conditions on the category:

2.11 Lemma. Let F : A→ A be a functor that allows for a left and a right adjoint functor and assume
A to have equalizers and coequalizers. Then, the following are equivalent:

(a) F is conservative;
(b) F is monadic;
(c) F is comonadic.

If F = (F,m, e) is a monad, then the above are also equivalent to:

(d) the free functor φF : A→ AF is comonadic.
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Proof. Since F is a left, as well as a right adjoint functor, it preserves equalizers and coequalizers.
Moreover, since A is assumed to have both equalizers and coequalizers, it follows from Beck’s
monadicity theorem (see [17]) and its dual that F is monadic or comonadic if and only if it
is conservative.

(a)⇔(d) follows from Corollary 3.12 in [18]. tu

2.12. T -module functors. Given a monad T = (T,m, e) on A, a functorR : B→ A is said to be a (left)
T -module if there exists a natural transformation α : TR→ R with α · eR = 1 and α ·mR = α · Tα.

This structure of a left T -module on R is equivalent to the existence of a functor R : B → AT with
commutative diagram (see Proposition II.1.1 in [19])

B R //

R   

AT
UT
��
A.

If R is such a functor, then R(B) = (R(B), αB) for some morphism αB : TR(B) → R(B) and
the collection {αB, B ∈ B} forms a natural transformation α : TR → R making R a T -module.
Conversely, if (R,α : TR→ R) is a T -module, then R : B→ AT is defined by R(B) = (R(B), αB).

For any T -module (R : B → A, α) admitting an adjunction F a R : B → A with unit η : 1 → RF ,
the composite:

tR : T
Tη // TRF αF // RF

is a monad morphism from T to the monad RF on A generated by the adjunction F a R. This yields
a functor AtR

: ARF → AT .
If tR : T → RF is an isomorphism (i.e., AtR

is an isomorphism), then R is called a T -Galois module
functor. Since R = AtR

·KR (see 2.10), we have (dual to Theorem 4.4 in [20]):

2.13 Proposition. The functor R is an equivalence of categories if and only if the functor R is monadic
and a T -Galois module functor.

2.14. G-comodule functors. Given a comonad G = (G, δ, ε) on a category A, a functor L : B → A is
a left G-functor if there exists a natural transformation α : L→ GL with εL ·α = 1 and δL ·α = Gα ·α.
This structure on L is equivalent to the existence of a functor L : B → AG with commutative diagram
(dual to 2.12):

B L //

L   

AG

UG

��
A.

If a G-functor (L, α) admits a right adjoint S : A→ B, with counit σ : LS → 1, then (see Propositions
II.1.1 and II.1.4 in [19]) the composite:

tL : LS αS // GLS
Gσ // G

is a comonad morphism from the comonad generated by the adjunction L a S to G.
L : B→ A is said to be a G-Galois comodule functor provided tL : LS → G is an isomorphism.
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Dual to Proposition 2.13, we have (see also [6,21]):

2.15 Proposition. The functor L is an equivalence of categories if and only if the functor L is comonadic
and a G-Galois comodule functor.

2.16. Right adjoint for L. If the category B has equalizers of coreflexive pairs and L a S, the functor
L (in 2.14) has a right adjoint S, which can be described as follows (e.g., [19,20]), with the composite:

γ : S
ηS // SLS

StL // SG,

the value of S at (A, ϑ) ∈ AG is given by the equalizer:

S(A, ϑ)
i(A,ϑ) // S(A)

S(ϑ) //
γA

// SG(A).

If σ denotes the counit of the adjunction L a S, then for any (A, ϑ) ∈ AG ,

UG(σ(A,ϑ)) = σA · L(i(A,ϑ)) , (2.6)

where σ : LS → 1 is the counit of the adjunction L a S.

2.17. Separable functors. (e.g., [22]) A functor F : A → B between any categories is said to be
separable if the natural transformation:

F−,− : A(−,−)→ B(F (−), F (−))

is a split monomorphism.

If F : A→ B and G : B→ D are functors, then:

(i) if F and G are separable, then GF is also separable;
(ii) if GF is separable, then F is separable.

2.18. Separable (co)monads. (2.9 in [15]) Let A be any category.

(1) For a monad F = (F,m, e) on A, the following are equivalent:

(a) m has a natural section ω : F → FF , such that Fm · ωF = ω ·m = mF · Fω;
(b) the forgetful functor UF : AF → A is separable.

(2) For a comonad G = (G, δ, ε) on A, the following are equivalent:

(a) δ has a natural retraction % : GG→ G, such that %G ·Gδ = δ · % = G% · δG;
(b) the forgetful functor UG : AG → A is separable.

2.19. Separability of adjoints. (2.10 in [15]) Let G : A → A and F : A → A be an adjoint pair of
functors with unit η̄ : 1A → FG and counit ε̄ : GF → 1A.

(1) F is separable if and only if η̄ : 1A → FG is a split monomorphism;

(2) G is separable if and only if ε̄ : GF → 1A is a split epimorphism.
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Given a comonad structure G on G with corresponding monad structure F on F (see Section 2.1),
there are pairs of adjoint functors:

A φF // AF , AF
UF // A , AG UG // A , A φG // AG ;

(1) φG is separable if and only if φF is separable;

(2) UG is separable if and only if UF is separable, and then, any object of AG is injective relative to
UG and every object of AF is projective relative to UF .

The following generalizes criteria for separability given in Theorem 1.2 in [22].

2.20 Proposition. Let U : A→ B and F : B→ A be a pair of functors.

(i) If there exist natural transformations 1
κ−→ FU

κ′−→ 1, such that κ′ · κ = 1, then both FU and U
are separable.

(ii) If there exist natural transformations 1
η−→ UF

η′−→ 1, such that η′ · η = 1, then both UF and F
are separable.

Proof. (i) Inspection shows that:

A(−,−)
(FU)−,−−−−−−→ A(FU(−), FU(−))

A(κ,κ′)−−−−→ A(−,−)

is the identity, and hence, FU is separable. By 2.17, this implies that U is also separable.
(ii) is shown symmetrically. tu

3. Azumaya Monads and Comonads

An algebraA over a commutative ringR is Azumaya providedA induces an equivalence between MR

and the category AMA of (A,A)-bimodules. The construction uses properties of the monad A⊗R − on
MR, and the purpose of this section is to trace this notion back to the categorical essentials to allow
the formulation of the basic properties for monads on any category. Throughout, A will again denote
any category.

3.1 Definition. Given an endofunctor F : A→ A on A, a natural transformation λ : FF → FF is said
to satisfy the Yang–Baxter equation provided it induces the commutativity of the diagram:

FFF
Fλ //

λF
��

FFF
λF // FFF

Fλ
��

FFF
Fλ // FFF

λF // FFF.

For a monadF = (F,m, e) on A, a monad distributive law λ : FF → FF satisfying the Yang–Baxter
equation is called a (monad) BD-law (see Definition 2.2 in [13]).

Here, the interest in the YB-condition for distributive laws lies in the fact that it allows one to define
opposite monads and comonads.
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3.2 Proposition. Let F = (F,m, e) be a monad on A and λ : FF → FF a BD-law.

(1) Fλ = (F λ,mλ, eλ) is a monad on A, where F λ = F , mλ = m · λ, and eλ = e.

(2) λ defines a distributive law λ : F λF → FF λ making FFλ = (FF λ,m, e) a monad where:

m = mmλ · FλF : FFFF → FF, e := ee : 1→ FF.

(3) The composite FFF Fλ−→ FFF
Fm−−→ FF

m−→ F defines a left FFλ-module structure on the
functor F : A→ A.

(4) There is a comparison functor KF : A→ AFFλ given by:

A 7→ (F (A), FFF (A)
F (λA)−−−→ FFF (A)

F (mA)−−−−→ FF (A)
mA−−→ F (A)).

Proof. (1) is easily verified (e.g., Remark 3.4 in [14], Section 6.9 in [5]).
(2) can be seen by direct computation (e.g., [5,13,14]).
(3) can be proven by a straightforward diagram chase.
(4) follows from 2.12 using the left FFλ-module structure of F defined in (3). tu

When no confusion can occur, we shall just write K instead of KF .

3.3 Definition. A monad F = (F,m, e) on any category A with a BD-law λ : FF → FF is said to be
Azumaya provided the comparison functor KF : A→ AFFλ is an equivalence of categories.

3.4 Proposition. If (F , λ) is an Azumaya monad on A, then the functor F admits a left adjoint.

Proof. With our previous notation, we have the commutative diagram:

A KF //

F
''

AFFλ
UFFλ
��

A .

(3.1)

Since UFFλ : AFFλ → A always has a left adjoint and since KF is an equivalence of categories, the
composite F = UFFλ ·KF has a left adjoint. tu

This observation allows for a first characterization of Azumaya monads.

3.5 Theorem. Let F = (F,m, e) be a monad on A and λ : FF → FF a BD-law. The following
are equivalent:

(a) (F , λ) is an Azumaya monad;
(b) the functor F : A → A is monadic and the left FFλ-module structure on F defined in
Proposition 3.2 is Galois;

(c) the functor F : A → A is monadic (with some adjunction η, ε : L a F ), and the composite
(as in 2.12):

tK : FF
FFη−−→ FFFL

FλL−−→ FFFL
FmL−−−→ FFL

mL−−→ FL

is an isomorphism of monadsFFλ → T , where T is the monad on A generated by this adjunction
L a F .
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Proof. That (a) and (b) are equivalent follows from Proposition 2.15.
(b)⇔(c) In both cases, F is monadic, and thus, F allows for an adjunction, say L a F with unit

η : 1 → FL. Write T for the monad on A generated by this adjunction. Since the left FFλ-module
structure on the functor F is the composite:

FFF
Fλ−→ FFF

Fm−−→ FF
m−→ F,

it follows from 2.12 that the monad morphism tK : FFλ → T induced by the diagram:

A KF //

F

$$

AFFλ

UFFλ

��
A

L

dd

φFFλ

LL

is the composite:
tK : FF

FFη−−→ FFFL
FλL−−→ FFFL

FmL−−−→ FFL
mL−−→ FL.

Thus, F is FFλ-Galois if and only if tK is an isomorphism. tu

3.6. The isomorphism AFFλ ' (AFλ)F̂ . According to 2.2, for any monad BD-law λ : FF → FF ,
the assignment:

(A,FF (A)
%−→ A) 7→ ((A,F (A)

eF (A)−−−→ FF (A)
%−→ A), F (A)

FeA−−→ FF (A)
%−→ A)

yields an isomorphism of categories Pλ : AFFλ −→ (AFλ)F̂ , where for any module ((A, h), g) ∈
(AFλ)F̂ ,

P−1
λ ((A, h), g) = (A,FF (A)

Fh−→ F (A)
g−→ A).

There is a functor KF : A→ (AFλ)F̂ ,

A 7→ ((F (A), FF (A)
λA−→ FF (A)

mA−−→ F (A)), FF (A)
mA−−→ F (A)),

with KF = P−1
λ ·KF and a commutative diagram:

A KF //

φFλ ""

(AFλ)F̂

UF̂
��

P−1
λ // AFFλ

UFFλ
��

AFλ UFλ
// A .

Proof. Direct calculation shows that:

PλKF(A) = ((F (A), FF (A)
λA−→ FF (A)

mA−−→ F (A)), FF (A)
mA−−→ F (A)),

for all A ∈ A. tu

It is obvious that KF : A → AFFλ is an equivalence (i.e., F is Azumaya) if and only if KF : A →
(AFλ)F̂ is an equivalence. To apply Proposition 2.13 to the functor KF , we will need a functor left
adjoint to φFλ whose existence is not a consequence of the Azumaya condition. For this, the invertibility
of λ plays a crucial part.
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3.7 Proposition. Let F = (F,m, e) be a monad on A with an invertible monad BD-law λ : FF → FF .

(1) λ−1 : FF λ → F λF is a distributive law inducing a monad (FλF)λ−1 = (F λF,m, e) where:

m = mλm · Fλ−1F : FFFF → FF, e = ee : 1→ FF,

and λ is an isomorphism of monads (FλF)λ−1 → (FFλ)λ.
(2) There is an isomorphism of categories:

Φ : (AFλ)F̂λ → (AF)
(F̂λ)λ−1

, ((A, h), g) 7→ ((A, g), h).

(3) λ−1 induces a comparison functor K ′F : A→ (AF)
(F̂λ)λ−1

(' A(FλF)λ−1
),

A 7→ ((F (A), FF (A)
mA−−→ F (A)), FF (A)

λA−→ FF (A)
mA−−→ F (A)),

with commutative diagrams:

A
K′F //

φF $$

(AF)
(F̂λ)λ−1

U
(F̂λ)

λ−1

��
AF ,

A KF //

K′F $$

(AFλ)F̂λ

Φ

��
(AF)

(F̂λ)λ−1
.

Proof. (1), (2) follow by Proposition 2.3; (3) is shown similarly to 3.6. tu

For λ invertible, it follows from the diagrams in Sections 3.6, 3.7 that F is an Azumaya monad if and
only if the functor

K ′F : A→ (AF)
(F̂λ)λ−1

is an equivalence of categories.
Note that if λ : FF → FF is a BD-law, then λ can be seen as a monad BD-law λ : F λF λ → F λF λ,

and it is not hard to see that the corresponding comparison functor:

KFλ : A→ (A(Fλ)λ)
(F̂λ)λ

takes A ∈ A to

(F (A), FFF (A)
F (λA)−−−→ FFF (A)

F ((mλ)A)−−−−−→ FF (A)
(mλ)A−−−→ F (A)).

Now, if λ2 = 1, then λ = λ−1 and (Fλ)λ = F . Thus, the category (A(Fλ)λ)
(F̂λ)λ

can be identified
with the category (AF)

(F̂λ)λ−1
. Modulo this identification, the functor K ′Fλ corresponds to the functor

KFλ . It now follows from the preceding remark:

3.8 Proposition. Let F = (F,m, e) be a monad on A with a BD-law λ : FF → FF . If λ2 = 1, then
(F , λ) is an Azumaya monad if and only if (Fλ, λ) is so.

3.9. Azumaya monads with right adjoints. Let F = (F,m, e) be a monad with an invertible BD-law
λ : FF → FF . Assume F to admit a right adjoint functor R, with η, ε : F a R, inducing a comonad
R = (R, δ, ε) (see 2.1). Since λ : F λF → FF λ is an invertible distributive law, there is a comonad
R̂ = R̂(λ−1)� on AFλ lifting the comonad R and that is right adjoint to the monad F̂ (see 2.7), yielding
a category isomorphism:

ΨFλ : (AFλ)F̂λ → (AFλ)R̂,

where, for any ((A, h), g) ∈ (AFλ)F̂λ ,
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ΨFλ((A, h), g) = ((A, h), g̃) with g̃ : A
ηA−→ RF (A)

R(g)−−→ R(A),

and a commutative diagram (see (2.4)):

A K //

φFλ ""

(AFλ)F̂λ
UF̂λ
��

ΨFλ // (AFλ)R̂

UR̂

��
AFλ

= // AFλ .

(3.2)

For K : A K−→ (AFλ)F̂λ
ΨFλ−−→ (AFλ)R̂, one has for any A ∈ A,

K(A) = ((F (A),mA · λA), R(mA) · ηF (A)).

Therefore, the A-component αA of the induced R̂-comodule structure α : φFλ → R̂φFλ on the
functor φFλ induced by the commutative diagram (3.2) (see Section 2.14), is the composite:

αA : F (A)
ηF (A)−−−→ RFF (A)

R(mA)−−−−→ RF (A).

It then follows that, for any (A, h) ∈ AFλ , the (A, h)-component t(A,h) of the corresponding comonad
morphism t : φFλUFλ → R̂ is the composite:

t(A,h) : F (A)
ηF (A)−−−→ RFF (A)

R(mA)−−−−→ RF (A)
R(h)−−→ R(A). (3.3)

These observations lead to the following characterizations of Azumaya monads.

3.10 Theorem. Let F = (F,m, e) be a monad on A, λ : FF → FF an invertible monad BD-law, and
R a comonad right adjoint to F (with η, ε : F a R). Then, the following are equivalent:

(a) (F , λ) is an Azumaya monad;
(b) (i) φFλ is comonadic; and

(ii) φFλ is R̂-Galois, that is:
t(A,h) in (3.3) is an isomorphism for any (A, h) ∈ AFλ or

χ : FF
ηFF−−→ RFFF

RmF−−−→ RFF
Rλ−→ RFF

Rm−−→ RF is an isomorphism.

Proof. Recall first that the monad Fλ is of effective descent type means that φFλ is comonadic.
By Proposition 2.15, the functor K making the triangle (3.2) commute is an equivalence of categories

(i.e., the monad F is Azumaya) if and only if the monad Fλ is of an effective descent type and the
comonad morphism t : φFλUFλ → R̂ is an isomorphism. Moreover, according to Theorem 2.12 in [6],
t is an isomorphism if and only if for any object A ∈ A, the φFλ(A)-component tφFλ (A) : FφFλ(A) →
RφFλ(A) is an isomorphism. Using now that φFλ(A) = (F (A),mλ

A = mA · λA), it is easy to see that
χA = tφFλ (A) for all A ∈ A. This completes the proof. tu

The existence of a right adjoint of the comparison functor K can be guaranteed by conditions on the
base category.
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3.11. Right adjoint for K. With the data given above, assume A to have equalizers of coreflexive
pairs. Then:

(1) the functor K : A → (AFλ)R̂ (see 3.9) admits a right adjoint R : (AFλ)R̂ → A whose value at
((A, h), ϑ) ∈ (AFλ)R̂ is the equalizer:

R((A, h), ϑ)
i((A,h),ϑ) // A

ϑ
**

ηA ""

R(A)

RF (A)
R(h)

::

;

(2) for any A ∈ A, RK(A) is the equalizer:

RK(A)
iK(A) // F (A)

R(mA)· ηF (A)

,,

R(λA)· ηF (A) ((

RF (A)

RFF (A)
R(mA)

66

.

Proof. (1) According to 2.16, R((A, h), ϑ) is the object part of the equalizer of:

A
ϑ //

γ(A,h)
// R(A) ,

where γ is the composite UFλ
UFλe−−−→ UFλφFλUFλ = UFλF

UFλ t−−−→ UFλR̂. It follows from the description
of t that γ(A,h) is the composite

A
eA−−→ F (A)

ηF (A)−−−→ RFF (A)
R(mA)−−−−→ RF (A)

R(h)−−→ R(A)

which is just the composite R(h) · ηA, since:

• ηF (A) · eA = RF (eA) · ηA by naturality of η and
• mA · F (eA) = 1 because e is the unit for F .

(2) For any A ∈ A, K(A) fits into the diagram (3.2). tu

3.12 Definition. Write FF for the subfunctor of the functor F determined by the equalizer of the diagram:

F

Rm· ηF
++

Rλ· ηF ''

RF

RFF
Rm

66

.

We call the monad F central if FF is (isomorphic to) the identity functor.

Since R is right adjoint to the functor K, K is fully faithful if and only if RK ' 1.
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3.13 Theorem. Assume A to admit equalizers of coreflexive pairs. Let F = (F,m, e) be a monad on
A, λ : FF → FF an invertible BD-law and R a comonad right adjoint to F . Then, the comparison
functor K : A→ (AFλ)R̂ is:

(i) full and faithful if and only if the monad F is central;
(ii) an equivalence of categories if and only if the monad F is central and the functor R is

conservative.

Proof. (i) follows from the preceding proposition.
(ii) Since F is central, the unit η : 1 → RK of the adjunction K a R is an isomorphism by (i).

If ε is the counit of the adjunction, then it follows from the triangular identity Rε · η R = 1 that Rε is
an isomorphism. Since R is assumed to be conservative (reflects isomorphisms), this implies that ε is
an isomorphism, too. Thus, K is an equivalence of categories. tu

Dualizing the notion of an Azumaya monad leads to Azumaya comonads.

3.14 Definition. For a comonad G = (G, δ, ε) on A, a comonad distributive law κ : GG→ GG (see 2.4)
satisfying the Yang–Baxter equation is called a comonad BD-law (or just a BD-law).

The pair (G, κ) is said to be an Azumaya comonad provided that the (obvious) comparison functor
Kκ : A→ AGGκ is an equivalence.

We leave it for the reader to dualize results about Azumaya monads to Azumaya comonads.
Recall that comonad BD-laws are obtained from monad BD-laws by adjunctions (see 7.4 in [5]):

3.15 Proposition. Let F = (F,m, e) be a monad on A and λ : FF → FF a monad BD-law. If F
has a right adjoint functor R, then there is a comonad (R, δ, ε) with a comonad YB-distributive law
κ : RR→ RR, where m a δ, ε a e and λ a κ. Moreover, λ is invertible if and only if κ is so.

The next observation shows the transfer of the Galois property to an adjoint functor.

3.16 Proposition. Assume F = (F,m, e) to be a monad on A with an invertible monad BD-law λ :

FF → FF and η, ε : F a R an adjunction inducing a comonad R = (R, δ, ε) with invertible comonad
BD-law κ : RR → RR (see Proposition 3.15). Then, the functor φFλ is R̂-Galois if and only if the
functor φR

κ
is F̃-Galois.

Proof. By Theorem 3.10 and its dual, we have to show that, for any (A, h) ∈ AFλ , the composite:

t(A,h) : F (A)
ηF (A)−−−→ RFF (A)

R(mA)−−−−→ RF (A)
R(h)−−→ R(A)

is an isomorphism if and only if, for any (A, θ) ∈ ARκ , this is so for the composite:

t(A,θ) : F (A)
F (θ)−−→ FR(A)

F (δA)−−−→ FRR(A)
εR(A)−−−→ R(A).

By symmetry, it suffices to prove one implication. Therefore, suppose that the functor φFλ is
R̃-Galois. Since m a δ, δ is the composite:

R
ηR−→ RFR

RηFR−−−→ RRFFR
RRmR−−−−→ RRFR

RRε−−→ RR.
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Considering the diagram:

FR(A)
FηR(A)// FRFR(A)

FRηFR(A) //

εFR(A)

��

FR2F 2R(A)
FR2mR(A) //

εRF2R(A)

��

FR2FR(A)
FR2εA//

εRFR(A)

��

FR2(A)

εR(A)

��
F (A)

ηF (A) &&

F (θ)

OO

FR(A)
ηFR(A) // RF 2R(A)

RmR(A) // RFR(A)
RεA // R(A)

RF 2(A)
RF 2(θ)

55

RmA
// RF (A)

RF (θ)

55

in which the top left triangle commutes by one of the triangular identities for F a R and the other partial
diagrams commute by naturality, one sees that t(A,θ) is the composite:

F (A)
ηF (A)−−−→ RFF (A)

RmA−−−→ RF (A)
RF (θ)−−−→ RFR(A)

RεA−−→ R(A).

Since (A, θ) ∈ ARκ , the pair (A,F (A)
F (θ)−−→ FR(A)

εA−→ A), being Ψ−1(A, θ) (see 2.1), is an object
of the category AFλ . It then follows that t(A,θ) = t(A,εA·F (θ)). Since the functor φFλ is assumed to be
R̃-Galois, the morphism t(A,εA·F (θ)), and, hence, also t(A,θ), is an isomorphism, as desired. tu

In view of the properties of separable functors (see 2.19) and Definition 3.3, for an Azumaya monad
F , FFλ is a separable monad if and only if F is a separable functor. In this case, φFλ is also a separable
functor, that is the unit e : 1 → F splits. Dually, for an Azumaya comonad R, RRκ is separable if and
only if the functor R is separable. Thus, we have:

3.17 Theorem. Under the conditions of Proposition 3.16, suppose further that A is a Cauchy complete
category. Then, the following are equivalent:

(a) (F , λ) is an Azumaya monad, and FFλ is a separable monad;
(b) (F , λ) is an Azumaya monad, and the unit e : 1→ F is a split monomorphism;
(c) φFλ is R̂-Galois, and e : 1→ F is a split monomorphism;
(d) (R, κ) is an Azumaya comonad, and the counit ε : R→ 1 is a split epimorphism;
(e) φRκ is F̃-Galois, and ε : R→ 1 is a split epimorphism;
(f) φRκ is F̃-Galois, andRRκ is a separable comonad.

Proof. (a)⇒(b)⇒(c) follow by the preceding remarks.
(c)⇒(a) Since A is assumed to be Cauchy complete, by Corollary 3.17 in [18], the splitting of e

implies that the functor φFλ is comonadic. Now, the assertion follows by Theorem 3.10.
Since ε is the mate of e, ε is a split epimorphism if and only if e is a split monomorphism (e.g., 7.4

in [5]), and the splitting of ε implies that the functor φRκ is monadic. Applying now Theorem 3.10, its
dual and Proposition 3.16 gives the desired result. tu

4. Azumaya Algebras in Braided Monoidal Categories

4.1. Algebras and modules in monoidal categories. Let (V ,⊗, I, τ) be a strict monoidal
category ([17]). An algebra A = (A,m, e) in V (or V-algebra, V-monoid) consists of an object A of
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V endowed with multiplication m : A ⊗ A → A and unit morphism e : I → A, subject to the usual
identity and associative conditions.

For a V-algebraA, a leftA-module is a pair (V, ρV ), where V is an object of V and ρV : A⊗ V → V

is a morphism in V , called the left action (or A-left action) on V , such that ρV (m ⊗ V ) = ρV (A ⊗ ρV )

and ρV (e⊗ V ) = 1.
Left A-modules are objects of a category AV whose morphisms between objects f : (V, ρV ) →

(W, ρW ) are morphism f : V → W in V , such that ρW (A⊗ f) = f · ρV . Similarly, one has the category
VA of right A-modules.

The forgetful functor AU : AV → V , taking a leftA-module (V, ρV ) to the object V , has a left adjoint,
the free A-module functor:

φA : V →AV , V 7→ (A⊗ V,mA ⊗ V ).

There is another way of seeing the category of left A-modules involving modules over the monad
associated with the V-algebra A.

Any V-algebra A = (A,m, e) defines a monad Al = (A⊗−, η, µ) on V by putting:

• ηV = e⊗ V : V → A⊗ V ,
• µV = m⊗ V : A⊗ A⊗ V → A⊗ V .

The corresponding Eilenberg–Moore category VAl of Al-modules is exactly the category AV of left
A-modules, and AU a F is the familiar forgetful-free adjunction between VAl and V . This gives in
particular that the forgetful functor AU : AV → V is monadic. Hence, the functor AU creates those
limits that exist in V .

Symmetrically, writing Ar for the monad on V , whose functor part is − ⊗ A, the category VA is
isomorphic to the Eilenberg–Moore category VAr ofAr-modules, and the forgetful functor UA : VA → V
is monadic and creates those limits that exist in V .

If V admits coequalizers, A is a V-algebra, (V, %V ) ∈ VA a right A-module and (W, ρW ) ∈ AV a left
A-module, then their tensor product (over A) is the object part of the coequalizer:

V ⊗ A⊗W
%V ⊗W //

V⊗ρW
// V ⊗W // V ⊗AW.

4.2. Bimodules. If A and B are V-algebras, an object V in V is called an (A,B)-bimodule if there are
morphisms ρV : A ⊗ V → V and %V : V ⊗ B → V in V , such that (V, ρV ) ∈ AV , (V, %V ) ∈ VB and
%V (ρV ⊗B) = ρV (A⊗%V ). A morphism of (A,B)-bimodules is a morphism in V , which is a morphism
of left A-modules, as well as of right B-modules. Write AVB for the corresponding category.

Let I be the trivial V-algebra (I, 1I : I = I ⊗ I → I, 1I : I → I). Then, IV = VI = V , and for any
V-algebraA, the category AVI is (isomorphic to) the category of leftA-modules AV , while the category

IVA is (isomorphic to) the category of right A-modules VA. In particular, IVI = V .

4.3. The monoidal category of bimodules. Suppose now that V admits coequalizers and that the
tensor product preserves these coequalizer in both variables (i.e., all functors V ⊗ − : V → V , as
well as − ⊗ V : V → V for V ∈ V preservedcoequalizers). The last condition guarantees that if A, B
and C are V-algebras and if M ∈ AVB and N ∈ BVC , then M ⊗B N ∈ AVC ,
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• if D is another V-algebra and P ∈ CVD, then the canonical morphism:

(M ⊗B N)⊗C P →M ⊗B (N ⊗C P )

induced by the associativity of the tensor product, is an isomorphism in AVD,

• (AVA,−⊗A −,A) is a monoidal category.

Note that (co)algebras in this monoidal category are called A-(co)rings.

4.4. Coalgebras and comodules in monoidal categories. Associated with any monoidal category
V = (V ,⊗, I), there are three monoidal categories Vop, Vr and (Vop)r obtained from V by reversing,
respectively, the morphisms, the tensor product and both the morphisms and tensor product, i.e.,
Vop = (Vop,⊗, I), Vr = (V ,⊗r, I), where V ⊗r W := W ⊗ V and (Vop)r = (Vop,⊗r, I) (see, for
example, [23]). Note that (Vop)r = (Vr)op.

Coalgebras and comodules in a monoidal category V = (V ,⊗, I) are, respectively, algebras and
modules in Vop = (Vop,⊗, I). If C = (C, δ, ε) is a V-coalgebra, we write VC (resp. CV) for the category
of right (resp. left) C-comodules. Thus, VC = (Vop)C and CV = C(Vop). Moreover, if C ′ is another
V-coalgebra, then the category CVC′ of (C, C ′)-bicomodules is C(Vop)C′ . Writing Cl (resp. Cr) for the
comonad on V with functor-part C ⊗− (resp. −⊗C), one has that VC (resp. CV) is just the category of
Cl-comodules (resp. Cr-comodules).

4.5. Duality in monoidal categories. One says that an object V of V admits a left dual, or left adjoint, if
there exist an object V ∗ and morphisms db : I → V ⊗V ∗ and ev : V ∗⊗V → I , such that the composites:

V
db⊗V−−−→ V ⊗ V ∗ ⊗ V V⊗ev−−−→ V, V ∗

V ∗⊗db−−−−→ V ∗ ⊗ V ⊗ V ∗ ev⊗V ∗−−−−→ V ∗,

yield the identity morphisms. db is called the unit and ev the counit of the adjunction. We use the
notation (db, ev : V ∗ a V ) to indicate that V ∗ is left adjoint to V with unit db and counit ev. This
terminology is justified by the fact that such an adjunction induces an adjunction of functors:

db⊗ − , ev ⊗ − : V ∗ ⊗ − a V ⊗ − : V → V ,

as well as an adjunction of functors:

− ⊗ db, − ⊗ ev : − ⊗ V a − ⊗ V ∗ : V → V ,

i.e., for any X, Y ∈ V , there are bijections:

V(V ∗ ⊗X, Y ) ' V(X, V ⊗ Y ) and V(X ⊗ V, Y ) ' V(X, Y ⊗ V ∗).

Any adjunction (db, ev : V ∗ a V ) induces a V-algebra and a V-coalgebra,

SV,V ∗ = (V ⊗ V ∗, V ⊗ V ∗ ⊗ V ⊗ V ∗ V ∗⊗ev⊗V−−−−−−→ V ⊗ V ∗, db : I → V ⊗ V ∗),

CV ∗,V = (V ⊗ V ∗, V ⊗ V ∗ V ∗⊗db⊗V−−−−−−→ V ⊗ V ∗ ⊗ V ⊗ V ∗, ev : V ∗ ⊗ V → I).

Dually, one says that an object V of V admits a right adjoint if there exist an object V ] and morphisms
db′ : I → V ] ⊗ V and ev′ : V ⊗ V ] → I , such that the composites:

V ] db⊗V ]−−−−→ V ] ⊗ V ⊗ V ] V ]⊗ev−−−→ V ], V
V⊗db−−−→ V ⊗ V ] ⊗ V ev⊗V−−−→ V,

yield the identity morphisms.
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4.6 Proposition. Let V ∈ V be an object with a left dual (V ∗, db, ev).

(i) For a V-algebra A and a left A-module structure ρV : A⊗ V → V on V , the morphism:

t(V,ρV ) : A
A⊗db−−−→ A⊗ V ⊗ V ∗ ρV ⊗V ∗−−−−→ V ⊗ V ∗

(the mate of ρV under V(A⊗ V, V ) ' V(A, V ⊗ V ∗)) is a morphism from the V-algebra A to the
V-algebra SV,V ∗ .

(ii) For a V-coalgebra C and a right C-comodule structure %V : V → V ⊗ C, the morphism:

tc(V,%V ) : V ∗ ⊗ V V ∗⊗%V−−−−→ V ∗ ⊗ V ⊗ C ev⊗C−−−→ C

(the mate of %V under V(V, V ⊗ C) ' V(V ∗ ⊗ V,C)) is a morphism from the V-coalgebra CV,V ∗

to the V-coalgebra C.

4.7 Definition. Let V ∈ V be an object with a left dual (V ∗, db, ev).

(i) For a V-algebraA, a leftA-module (V, ρV ) is called Galois if the morphism t(V,ρV ) : A→ V ⊗V ∗

is an isomorphism between the V-algebras A and SV,V ∗ and is said to be faithfully Galois if, in
addition, the functor V ⊗− : V → V is conservative.

(ii) For a V-coalgebra C, a right C-comodule (V, %V ) is called Galois if tc(V,%V ) : V ∗ ⊗ V → C is
an isomorphism between the V-coalgebras CV,V ∗ and C and is said to be faithfully Galois if, in
addition, the functor V ⊗− : V → V is conservative.

4.8. Braided monoidal categories. A braided monoidal category is a quadruple (V ,⊗, I, τ), where
(V ,⊗, I) is a monoidal category, and τ , called the braiding, is a collection of natural isomorphisms:

τV,W : V ⊗W → W ⊗ V, V,W ∈ V ,

subject to two hexagon coherence identities (e.g., [17]). A symmetric monoidal category is a monoidal
category with a braiding τ , such that τV,W · τW,V = 1 for all V,W ∈ V . If V is a braided category
with braiding τ , then the monoidal category Vr becomes a braided category with braiding given by
τV,W := τW,V . Furthermore, given V-algebras A = (A,mA, eA) and B = (B,mB, eB), the triple:

A⊗ B = (A⊗B, (mA ⊗mB) · (A⊗ τB,A ⊗B), eA ⊗ eB)

is again a V-algebra, called the braided tensor product of A and B.
The braiding also has the following consequence (e.g., [24]):

If an object V in V admits a left dual (V ∗, db : I → V ⊗V ∗, ev : V ∗⊗V → I), then (V ∗, db′, ev′)

is right adjoint to V with unit and counit:

db′ : I
db−→ V ⊗ V ∗

τ−1
V ∗,V−−−→ V ∗ ⊗ V, ev′ : V ⊗ V ∗

τV,V ∗−−−→ V ∗ ⊗ V ev−→ I.

Thus, there are isomorphisms (V ∗)] ' V and (V ])∗ ' V , and one uses the:

4.9 Definition. An object V of a braided monoidal category V is said to be finite if V admits a left (and,
hence, also a right) dual.



Axioms 2015, 4 52

For the rest of this section, V = (V ,⊗, I, τ) will denote a braided monoidal category.

Recall that a morphism f : V → W in V is a copure epimorphism (monomorphism) if for anyX ∈ V ,
the morphism f ⊗X : V ⊗X → W ⊗X (and, hence, also, the morphism X ⊗ f : X ⊗ V → X ⊗W )
is a regular epimorphism (monomorphism).

4.10 Proposition. Let V be a braided monoidal category admitting equalizers and coequalizers.
For a finite object V ∈ V with left dual (V ∗, db, ev), the following are equivalent:

(a) V ⊗− : V → V is conservative (monadic, comonadic);
(b) ev : V ∗ ⊗ V → I is a copure epimorphism;
(c) −⊗ V : V → V is conservative (monadic, comonadic);
(d) db : I → V ⊗ V ∗ is a pure monomorphism.

Proof. Since V is assumed to admit a left dual, it admits also a right dual (see 4.8). Hence, the
equivalence of the properties listed in (a) (and in (c)) follows from 2.11. It only remains to show the
equivalence of (a) and (b), since the equivalence of (c) and (d) will then follow by duality.

(a)⇒(b) If V ⊗− : V → V is monadic, then it follows from Theorem 2.4 in [25] that each component
of the counit of the adjunction V ∗⊗− a V ⊗−, which is the natural transformation ev⊗−, is a regular
epimorphism. Thus, ev : V ∗ ⊗ V → I is a copure epimorphism.

(b)⇒(a) To say that ev : V ∗ ⊗ V → I is a copure epimorphism is to say that each component of
the counit ev ⊗ − of the adjunction V ∗ ⊗ − a V ⊗ − is a regular epimorphism, which implies (see,
e.g., [25]) that V ⊗− : V → V is conservative. tu

4.11 Remark. In Proposition 4.10, if the tensor product preserves regular epimorphisms, then (b) is
equivalent to requiring ev : V ∗ ⊗ V → I to be a regular epimorphism. If the tensor product in
V preserves regular monomorphisms, then (d) is equivalent to requiring db : I → V ⊗ V ∗ to be
a regular monomorphism.

4.12. Opposite algebras. For a V-algebraA = (A,m, e), define the opposite algebraAτ = (A,mτ , eτ )

in V with multiplication mτ = m · τA,A and unit eτ = e. Denote by Ae = A ⊗ Aτ and by eA =

Aτ ⊗ A the braided tensor products. Then, A is a left Ae-module, as well as a right eA-module by the
structure morphisms:

A⊗ Aτ ⊗ A
A⊗τA,A−−−−→ A⊗ A⊗ A A⊗m−−−→ A⊗ A m−→ A,

A⊗ Aτ ⊗ A
τA,A⊗A−−−−→ A⊗ A⊗ A m⊗A−−−→ A⊗ A m−→ A.

By properties of the braiding, the morphism τA,A : A ⊗ A → A ⊗ A induces a distributive law
from the monad (Aτ )l to the monad Al satisfying the Yang–Baxter equation, and the monad Al(Aτ )l is
just the monad (Ae)l. Thus, the category of Al(Aτ )l-modules is the category AeV of left Ae-modules.
Symmetrically, the category of Ar(Aτ )r-modules is the category VeA of right eA-modules.

4.13. Azumaya algebras. Given a V-algebra A = (A,m, e), by Proposition 3.2, there are
two comparison functors:

K l : V → VAl(Aτ )l = AeV , Kr : V → VAr(Aτ )r = VeA,
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given by the assignments:

K l : V 7−→ (A⊗ V, A⊗ A⊗ A⊗ V A⊗mτ⊗V−−−−−→ A⊗ A⊗ V m⊗V−−−→ A⊗ V ),

Kr : V 7−→ (V ⊗ A, V ⊗ A⊗ A⊗ A V⊗mτ⊗A−−−−−→ V ⊗ A⊗ A V⊗m−−−→ V ⊗ A)

with commutative diagrams:

V Kl //

A⊗− ��

AeV

AeU}}
V ,

V Kr //

−⊗A ��

VeA

UeA~~
V .

(4.1)

The V-algebra A is called left (resp. right) Azumaya provided (Al, τA,A) (resp. (Ar, τA,A)) is
an Azumaya monad.

4.14 Remark. It follows from Proposition 3.8 that if τ 2
A,A = 1, the monad Al (resp. Ar) is Azumaya if

and only if (Aτ )l (resp. (Aτ )l) is. Thus, in a symmetric monoidal category, a V-algebra is left (right)
Azumaya if and only if its opposite is so.

A basic property of these algebras is the following.

4.15 Proposition. Let V be a braided monoidal category and A = (A,m, e) a V-algebra. If A is left
Azumaya, then A is finite in V .

Proof. It is easy to see that when V and AeV are viewed as right V-categories (in the sense of [26]),
K l is a V-functor. Hence, when K l is an equivalence of categories (that is, when A is left Azumaya), its
inverse equivalenceR is also a V-functor. Moreover, sinceR is left adjoint toK l, it preserves all colimits
that exist in AeV . Obviously, the functor φ(Ae)l : V → AeV is also a V-functor, and moreover, being a left
adjoint, it preserves all colimits that exist in V . Consequently, the composite R · φ(Ae)l : V → V is
a V-functor and preserves all colimits that exist in V . It then follows from Theorem 4.2 in [26] that there
exists an object A∗, such that R · φ(Ae)l ' A∗⊗−. Using now that R · φ(Ae)l is left adjoint to the functor
A⊗− : V → V , it is not hard to see that A∗ is a left dual to A. tu

4.16. Left Azumaya algebras. Let (V ,⊗, I, τ) be a braided monoidal category and A = (A,m, e)

a V-algebra. The following are equivalent:

(a) A is a left Azumaya algebra;
(b) the functor A ⊗ − : V → V is monadic, and the left (Ae)l-module structure on it induced by
the left diagram in (4.1) is Galois;

(c) (i) A is finite with left dual (A∗, db : I → A ⊗ A∗, ev : A∗ ⊗ A → I), and the functor
A⊗− : V → V is monadic; and

(ii) the composite χ0 :

A⊗A A⊗A⊗db−−−−−→ A⊗A⊗A⊗A∗
A⊗τA,A⊗A∗−−−−−−−→ A⊗A⊗A⊗A∗ m⊗A⊗A∗−−−−−→ A⊗A⊗A∗ m⊗A∗−−−→ A⊗A∗

is an isomorphism (between the V-algebras Ae and SA,A∗);
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(d) (i) A is finite with right dual (A], db′ : I → A] ⊗ A, ev′ : A ⊗ A] → I), and the functor
φ(Aτ )l : V → V(Aτ )l =AτV is comonadic; and

(ii) the composite χ :

A⊗ A db′⊗A⊗A−−−−−→ A] ⊗ A⊗ A⊗ A A]⊗m⊗A−−−−−→ A] ⊗ A⊗ A
A]⊗τA,A−−−−−→ A] ⊗ A⊗ A A]⊗m−−−→ A] ⊗ A

is an isomorphism.

Proof. (a)⇔(b) follows by Proposition 2.13.
(a)⇔(c) If A is a left Azumaya algebra, then A has a left dual by Proposition 4.15. Thus, in both

cases, A is finite, i.e., there is an adjunction (db, ev : A∗ a A). Then, the functor A∗⊗− : V → V is left
adjoint to the functor A⊗− : V → V , and the monad on V generated by this adjunction is (SA,A∗)l. It is
then easy to see that the monad morphism tKl

: (Ae)l → (SA,A∗)l corresponding to the left commutative
diagram in (4.1), is just χ0⊗−. Thus, tKl

is an isomorphism if and only if χ0 is so. It now follows from
Theorem 3.5 that (a) and (c) are equivalent.

(a)⇔(d) Any left Azumaya algebra has a left (and a right) dual by Proposition 4.15. Moreover, if A
has a right dualA], then the functorA]⊗− is right adjoint to the functorA⊗−. The desired equivalence
now follows by applying Theorem 3.10 to the monad Al and using that the natural transformation χ is
just χ⊗−. tu

4.17 Proposition. In any braided monoidal category, an algebra is left (resp. right) Azumaya if and only
if its opposite algebra is right (resp. left) Azumaya.

Proof. We just note that if (V ,⊗, I, τ) is a braided monoidal category and A is a V-algebra, then
(τ−,A)−1 : A ⊗ − → − ⊗ Aτ is an isomorphism of monads Al → (Aτ )r, while the symmetric
(τA,−)−1 : − ⊗ A→ Aτ ⊗ − is an isomorphism of monads Ar → (Aτ )l. tu

Under some conditions on V , left Azumaya algebras are also right Azumaya and vice versa:

4.18 Theorem. Let A = (A,m, e) be a V-algebra in a braided monoidal category (V ,⊗, I, τ) with
equalizers and coequalizers. Then, the following are equivalent:

(a) A is a left Azumaya algebra;
(b) the left Ae-module (A,m · (A⊗mτ )) is faithfully Galois;
(c) A is finite with right dual (A], db′ : I → A] ⊗ A, ev′ : A⊗ A] → I); the functor φ(Aτ )l : V →
V(Aτ )l =AτV is comonadic; and the composite χ in 4.16 (d) is an isomorphism;

(d) A is finite with right dual (A], db′ : I → A]⊗A, ev′ : A⊗A] → I); the functor−⊗A : V → V
is monadic; and the composite χ1:

A⊗A db′⊗A⊗A−−−−−→ A]⊗A⊗A⊗A
A]⊗τA,A⊗A−−−−−−−→ A]⊗A⊗A⊗A A]⊗m⊗A−−−−−→ A]⊗A⊗A A]⊗m−−−→ A]⊗A

is an isomorphism (between the V-algebras eA and SA],A);
(e) the right eA-module (A,m · (mτ ⊗ A)) is faithfully Galois;
(f) A is a right Azumaya algebra.
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Proof. In view of Proposition 4.10 and Remark 4.11, (a), (b) and (c) are equivalent by 4.16.
Each statement about a general braided monoidal category V has a counterpart statement obtained by

interpreting it in Vr. Doing this for Theorem 4.16, we obtain that (d), (e) and (f) are equivalent.
(c)⇔(d) The composite χ is the upper path and χ1 is the lower path in the diagram

A⊗ A
τ

��

db′·A·A// A] ⊗ A⊗ A⊗ A

A]·A·τ
��

A]·m·A // A] ⊗ A⊗ A A]·τ // A] ⊗ A⊗ A A]·m // A] ⊗ A

A⊗ A
db′·A·A

// A] ⊗ A⊗ A⊗ A
A]·τ ·A

// A] ⊗ A⊗ A⊗ A

A]·A·m
55

A]·m·A
// A] ⊗ A⊗ A,

A]·m

77

where τ = τA,A and · = ⊗. The left square is commutative by naturality, the pentagon is commutative
since τ is a braiding and the parallelogram commutes by the associativity of m. Therefore, the diagram
is commutative, and hence, χ = χ1 · τA,A, that is χ is an isomorphism if and only if χ1 is so. Thus, in
order to show that (c) and (d) are equivalent, it is enough to show that the functor φ(Aτ )l : V → AτV is
comonadic if and only if the functor −⊗A : V → V is monadic. Since V is assumed to have equalizers
and coequalizers, this follows from Lemma 2.11 and Proposition 4.10. tu

4.19 Remark. A closer examination of the proof of the preceding theorem shows that if a braided
monoidal category V admits:
• coequalizers, then any left Azumaya V-algebra is right Azumaya,
• equalizers, then any right Azumaya V-algebra is left Azumaya.

In the setting of 4.12, by Proposition 3.2, the assignment:

V 7−→ ((A⊗ V, A⊗ A⊗ V mτ⊗V−−−−→ A⊗ V ), A⊗ A⊗ V m⊗V−−−→ A⊗ V )

yields the comparison functor K : V → (V(Aτ )l)Âl = (AτV)Âl .

Now, assume the functor A ⊗ − : V → V to have a right adjoint functor [A,−] : V → V with unit
ηA : 1 → [A,A ⊗ −]. Then, there is a unique comonad structure [̂A,−] on [A,−] (right adjoint to Al;
see Section 2.1), leading to the commutative diagram:

V K //

φ(Aτ )l ''

(AτV)Âl
UÂl
��

Ψ // (AτV)[̂A,−]

U [̂A,−]

��
AτV = // AτV ,

(4.2)

where Ψ = Ψ(Aτ )l . This is just the diagram (3.2), and Theorem 3.10 provides characterizations of left
Azumaya algebras.

4.20 Theorem. Let A = (A,m, e) be an algebra in a braided monoidal category (V ,⊗, I, τ), and
assume A⊗− to have a right adjoint [A,−] (see above). Then, the following are equivalent:

(a) A is left Azumaya;
(b) the functor φ(Aτ )l : V → AτV is comonadic, and for any V ∈ V , the composite:

χV : A⊗ A⊗ V (ηA)A⊗A⊗V−−−−−−−→ [A,A⊗ A⊗ A⊗ V ]
[A,m⊗A⊗V ]−−−−−−−→ [A,A⊗ A⊗ A]

[A,τA,A⊗V ]
−−−−−−→ [A,A⊗ A⊗ V ]

[A,m⊗V ]−−−−−→ [A,A⊗ V ]

is an isomorphism;
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(c) A is finite; the functor φ(Aτ )l : V → AτV is comonadic; and the composite:

χI : A⊗ A (ηA)A⊗A−−−−−→ [A,A⊗ A⊗ A]
[A,m⊗A]−−−−−→ [A,A⊗ A]

[A,mτ ]−−−−→ [A,A]

is an isomorphism.

Proof. (a)⇔(b) follows by Theorem 3.10.
(a)⇔(c) Since A turns out to be finite, there is a right dual (A], db′, ev′) ofA. Then, A]⊗ − : V → V

and [A, − ] : V → V are both right adjoint to A ⊗ − : V → V , and thus, there is an isomorphism of
functors t : [A, − ]→ A] ⊗ − inducing the commutative diagram:

V

db′⊗V ((

(ηA)V // [A,A⊗ V ]

tA⊗V
��

A] ⊗ A⊗ V .

(4.3)

Rewriting the morphism χ̄ from 4.16(d) yields the morphism χI in (c). tu

A symmetric characterization is obtained for right Azumaya algebras provided the functor −⊗A has
a right adjoint {A,−}.

4.21 Remark. In [3], van Oystaeyen and Zhang defined Azumaya algebras A = (A,m, e) in V by
requiring A to be left and right Azumaya in our sense (see 4.13). The preceding Theorem 4.20 together
with its right-hand version correspond to the characterization of these algebras in Theorem 3.1 in [3]. As
shown in Theorem 4.18, if V admits equalizers and coequalizers, it is sufficient to require the Azumaya
property on one side.

Given an adjunction (db, ε : V ∗ a V ) in V , we know from 4.5 that SV,V ∗ = V ⊗ V ∗ is a V-algebra.
Moreover, it is easy to see that the morphism V ∗ ⊗ V ⊗ V ∗

ev⊗V ∗−−−−→ V ∗ defines a left SV,V ∗-module
structure on V ∗, while the composite V ⊗V ∗⊗V V⊗ev−−−→ V defines a right SV,V ∗-module structure on V .

Recall from [3] that an object V ∈ V with a left dual (V ∗, db, ev) is right faithfully projective if the
morphism ev : V ∗ ⊗SV,V ∗ V → I induced by ev : V ∗ ⊗ V → I is an isomorphism. Dually, an object
V ∈ V with a right dual (V ], db′, ev′) is left faithfully projective if the morphism ev′ : V ⊗S

V ],V
V ] → I

induced by ev′ : V ⊗ V ] → I is an isomorphism.
Since, in a braided monoidal category, an object is left faithfully projective if and only if it is right

faithfully projective (e.g., Theorem 3.1 in [4]), we do not have to distinguish between left and right
faithfully projective objects, and we shall call them just faithfully projective.

4.22 Theorem. Let (V ,⊗, I, τ) be a braided closed monoidal category with equalizers and coequalizers.
Let A = (A,m, e) be a V-algebra, such that the functor A ⊗ − admits a right adjoint [A,−] (hence,
− ⊗ A also admits a right adjoint {A,−}). Then, the following are equivalent:

(a) A is left Azumaya;
(b) A is right Azumaya;
(c) A is faithfully projective, and the composite:

A⊗ A (ηA)A⊗A−−−−−→ [A,A⊗ A⊗ A]
[A,m⊗A]−−−−−→ [A,A⊗ A]

[A,mτ ]−−−−→ [A,A],

where ηA is the unit of the adjunction A⊗ − a [A,−], is an isomorphism;
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(d) A is faithfully projective, and the composite:

A⊗ A (ηA)A⊗A−−−−−→ {A,A⊗ A⊗ A} {A,m⊗A}−−−−−→ {A,A⊗ A} {A,m
τ}−−−−→ {A,A},

where ηA is the unit of the adjunction − ⊗ A a {A,−}, is an isomorphism.

Proof. That (a) and (b) are equivalent follows from Theorem 4.18.
(a)⇔(c) Since in both cases, A is finite and, thus, the functor A⊗ − : V → V has both left and right

adjoints, in view of Proposition 4.10, we get from Lemma 2.11 that the functor φ(Aτ )l : V → AτV is
comonadic if and only if the functor A⊗ − : V → V is conservative. According to 2.5.1, 2.5.2 in [27],
A is faithfully projective if and only if A is finite and the functor A ⊗ − : V → V is conservative, and
hence, the equivalence of (a) and (c) follows by Theorem 4.20.

Similarly, one proves that (b) and (d) are equivalent. tu

4.23. Braided closed monoidal categories. A braided monoidal category V is said to be left closed if
each functor V ⊗ − : V → V has a right adjoint [V,−] : V → V; we write ηV , evV : V ⊗ − a [V,−].
V is called right closed if each functor − ⊗ V : V → V has a right adjoint {V,−} : V → V; we write
ηV , evV : − ⊗ V a {V,−}. V being braided left closed implies that V is also right closed. Therefore,
assume V to be closed.

If A is a V-algebra and (V, ρV ) ∈ AV , then for any X ∈ V ,

(V ⊗X, A⊗ V ⊗X ρV ⊗X−−−→ V ⊗X) ∈ AV ,

and the assignment X → (V ⊗ X, ρV ⊗ X) defines a functor V ⊗ − : V → AV . When V admits
equalizers, this functor has a right adjoint A[V,−] : AV → V , where, for any (W, ρW ) ∈ AV , A[V,W ] is
defined to be the equalizer in V of:

[V,W ] // // [A⊗ V,W ] ,

where one of the morphisms is [%V ,W ] and the other one is the composition:

[V,W ]
(A⊗− )V,W−−−−−−→ [A⊗ V,A⊗W ]

[A⊗V, ρW ]−−−−−−→ [A⊗ V,W ].

Symmetrically, for V,W ∈ VA, one defines {V,W}A.

The functor K = Ψ ·K : V → (AτV)[̂A,−] (in diagram (4.2)) has as right adjoint R : (AτV)[̂A,−] → V
(see 2.16), and since Ψ is an isomorphism of categories, the composition R · Ψ is right adjoint to the
functor K : V → (AτV)Âl . Using now that P (see 3.6) is an isomorphism of categories, we conclude
that R ·Ψ · P is right adjoint to the functor P−1 ·K : V → AeV . For any (V, h) ∈ AeV , we put:

AV := R ·Ψ · P(V, h).

Taking into account the description of the functors P , Ψ and R, one gets that AV can be obtained as
the equalizer of the diagram:

V
(ηA)V // [A,A⊗ V ]

[A,e⊗A⊗V ] //

[A,A⊗e⊗V ]
// [A,A⊗ A⊗ V ]

[A,h] //

[A,h]
// [A, V ] .
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Symmetrically, for any (V, h) ∈ VeA, we define V A as the equalizer of the diagram:

V
(ηA)V // {A, V ⊗ A}

{A,V⊗A⊗e} //

{A,V ⊗e⊗A}
// [A, V ⊗ A⊗ A}

{A,h} //

{A,h}
// {A, V } .

The functor P−1 ·K : V → AeV is just the functor A ⊗ − : V → AeV and admits as a right adjoint
the functor Ae [A,−] : AeV → V (see 4.23). As right adjoints are unique up to isomorphism, we get
an alternative proof for Femić’s Proposition 3.3 in [4]:

4.24 Proposition. Let V be a braided closed monoidal category with equalizers. For any V-algebra A,

the functors: A(−), Ae [A,−] : AeV → V
and the functors: (− )A, {A, −}eA : VeA → V

are isomorphic.

These isomorphisms allow for further characterizations of Azumaya algebras.

4.25 Theorem. Let V be a braided closed monoidal category with equalizers. Then, any V-algebra
A = (A,m, e) is left (resp. right) Azumaya if and only if:

(i) the morphism e : I → A is a pure monomorphism, and
(ii) for any (V, h) ∈ AeV , with the inclusion iV : AV → V , we have an isomorphism:

A⊗ AV A⊗ iV−−−→ A⊗ V A⊗ e⊗V−−−−−→ A⊗ A⊗ V h−→ V ;

(resp. for any (V, h) ∈ VeA, with the inclusion iV : V A → V , we have an isomorphism:

V A ⊗ V iV ⊗A−−−→ V ⊗ A V⊗ e⊗A−−−−−→ V ⊗ A⊗ A h−→ V.)

Proof. The V-algebra A is left Azumaya provided the functor K l : V → AeV is an equivalence of
categories. It follows from Equation (2.6) that the composite:

h · (A⊗ e⊗ V ) · (A⊗ iV ) : A⊗ AV → V

is just the Ψ · P(V, h)-component of the counit of K l a R and, hence, is an isomorphism. Moreover, by
Proposition 2.15, the functor φ(Aτ )l : V → AV is comonadic, whence the morphism e : I → A is a pure
monomorphism (e.g., Theorem 2.1 in [18]). This proves one direction.

For the other direction, we note that, under Conditions (i) and (ii), the counit of the adjunction P−1 ·
K l a R ·Ψ · P (and hence, also, of the adjunction K l = Ψ ·K a R) is an isomorphism and the functor
φ(Aτ )l (and hence, also, K l) is conservative (e.g., Theorem 2.1 in [18]), implying (as in the proof of
Theorem 3.13 (ii)) that K l is an equivalence of categories.

The right version of the theorem follows by duality. tu

4.26 Definition. A V-algebraA is called left (resp. right) central if there is an isomorphism I ' Ae [A,−]

(resp. I ' {A, −}eA). A is called central if it is both left and right central.

4.27 Proposition. Let V be a braided closed monoidal category with equalizers. Then:
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(i) any left (resp. right) Azumaya algebra is left (resp. right) central;
(ii) if, in addition, V admits also coequalizers, then any V algebra that is Azumaya on either side

is central.

Proof. (i) follows by Theorem 4.25, while (ii) follows from (i) and Theorem 4.18. tu

Recall that for any V-algebra A, an Ae-module M is UAe-projective provided for morphisms g :

N → L and f : M → L in AeV with UAe(g) a split epimorphism, there exists an h : M → N in AeV
with gh = f . This is the case if and only if M is a retract of a (free) Ae-module Ae ⊗ X with some
X ∈ V (e.g., [28]). We apply this in the characterization of separable algebras.

4.28 Proposition. The following are equivalent for a V-algebra A = (A,m, e):

(a) A is a separable algebra;
(b) m : A⊗ A→ A has a section ξ : A→ A⊗ A in V , such that:

(A⊗m) · (ξ ⊗ A) = ξ ·m = (m⊗ A) · (A⊗ ξ);

(c) the left Ae-module (A,m · (A⊗mτ )) is AeU -projective;
(d) the functor AeU : AeV → V is separable.

4.29 Proposition. Consider V-algebras A and B, such that the unit e : I → B of B is a split
monomorphism. If A⊗ B is separable in V , then A is also separable in V .

Proof. Since I is a retract of B in V , A is a retract of A ⊗ B in AeV . Since A ⊗ B is assumed to be
separable in V , A ⊗ B is a retract of (A ⊗ B)e in (A⊗B)eV and, hence, also in AeV . Thus, A is a retract
of Ae ⊗ Be ' (A⊗ B)e in AeV . Since Ae ⊗ Be = φAe(B

e), it follows that Ae ⊗ Be is AeU -projective,
and since retracts of a AeU -projectives are AeU -projective, A is AeU -projective, and A is separable by
Proposition 4.28. tu

Following [2], a finite object V in V is said to be a progenerator if the counit morphism ev : V ∗⊗V →
I is a split epimorphism. The following list describes some of its properties.

4.30 Proposition. Assume V to admit equalizers and coequalizers. For an algebra A = (A,m, e) in V
with A admitting a left adjoint (A∗, db, ev) (see 4.5), consider the following statements:

(1) A is a progenerator;

(2) the morphism db : I → A⊗ A∗ is a split monomorphism;

(3) the functor A⊗− : V → V is separable;

(4) the unit morphism e : I → A is a split monomorphism;

(5) the functor A⊗− : V → V is conservative (monadic, comonadic);

(6) A⊗ A∗ is a separable V-algebra.

One always has (1)⇔ (2)⇔ (3)⇔ (4)⇒ (5) and (1)⇒ (6).

If I is projective (w.r.t. regular epimorphisms) in V , then (5)⇒ (1).
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Proof. Since A admits a left adjoint (A∗, db, ev), the functor A∗⊗− : V → V is left, as well as right
adjoint to the functor A⊗− : V → V . For any V ∈ V , the composite:

V
db⊗V−−−→ A⊗ A∗ ⊗ V

τ−1
A∗,A⊗V−−−−−→ A∗ ⊗ A⊗ V

is the V -component of the unit of the adjunction A ⊗ − a A∗ ⊗ − : V → V , while the morphism
A∗⊗A⊗ V ev⊗V−−−→ V is the V -component of the counit of the adjunction A∗⊗− a A⊗− : V → V . To
say that db : I → A⊗ A∗ (resp. ev : A∗ ⊗ A → I) is a split monomorphism (resp. epimorphism) is to
say that the unit (resp. counit) of the adjunction A⊗ − a A∗ ⊗ − (resp. A∗ ⊗ − a A⊗ − ) is a split
monomorphism (resp. epimorphism). From the observations in 2.17, one gets (1)⇔(2)⇔(3).

By Proposition 4.10, the properties listed in (5) are equivalent. Since V admits equalizers, it is Cauchy
complete, and (3)⇒(5) follows from Proposition 3.16 in [18].

If e : I → A is a split monomorphism, then the natural transformation e⊗− : 1V → A⊗− is a split
monomorphism; applying Proposition 2.20 to the pair of functors (A ⊗ − , 1V) gives that the functor
A⊗− : V → V is separable, proving (4)⇒(3).

If A is a progenerator, then ev : A∗⊗A→ I has a splitting ζ : I → A∗⊗A. Consider the composite:

φ : A
ζ⊗A−−→ A∗ ⊗ A⊗ A A∗⊗m−−−−→ A∗ ⊗ A ev−→ I.

We claim that φ · e = 1. Indeed, we have:

ev · A∗ ⊗m · ζ ⊗ A · e = ev · A∗ ⊗m · A∗ ⊗ A⊗ e · ζ = ev · ζ = 1.

The first equality holds by naturality, the second one, since e is the unit for the V-algebra A, and the
third one since, ζ is a splitting for ev : A∗ ⊗ A→ I . Thus, (2) implies (4).

Now, ifA is again a progenerator, then the morphism ev : A∗⊗A→ I has a splitting ζ : I → A∗⊗A,
and direct inspection shows that the morphism:

ξ = A⊗ ζ ⊗ A∗ : A⊗ A∗ → A⊗ A∗ ⊗ A⊗ A∗

is a splitting for the multiplication A ⊗ ev ⊗ A∗ of the V-algebra A ⊗ A∗ satisfying condition (b) of
Proposition 4.28. Thus, A⊗A∗ is a separable V-algebra, proving the implication (2)⇒(6).

Finally, suppose that I is projective (w.r.t. regular epimorphisms) in V and that the functor A ⊗ − :

V → V is monadic. Then, by Theorem 2.4 in [25], each component of the counit of the adjunction
A∗⊗− a A⊗− is a regular epimorphism. Since ev : A∗⊗A→ I is the I-component of the counit, ev is
a regular epimorphism and, hence, splits, since I is assumed to be projective w.r.t. regular epimorphisms.
Thus, A is a progenerator. This proves the implication (5)⇒(1). tu

4.31 Theorem. Let V be a braided monoidal category with equalizers and coequalizers. For an algebra
A = (A,m, e) in V , the following are equivalent:

(a) A is a separable left Azumaya V-algebra;
(b) A is a progenerator, and the morphism χ0 : A ⊗ A → A ⊗ A∗ in 4.16 (c) is an isomorphism
between the V-algebras Ae and SA,A∗;

(c) e : I → A is a split monomorphism, and (A,m · (A⊗mτ )) ∈AeV is a Galois module.
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Proof. (a)⇔(c) In view of Proposition 4.28, this is a special case of 3.17.
(b)⇔(c) is an easy consequence of Proposition 4.30 and Theorem 4.16. tu

To bring back our general theory to the starting point, let R be a commutative ring with identity
and MR the category of R-modules. Then, for any M,N ∈ MR, there is the canonical twist map
τM,N : M ⊗R N → N ⊗R M . Putting [M,N ] := HomR(M,N), then (MR,− ⊗R −, R, [−,−], τ) is
a symmetric monoidal closed category. We have the canonical adjunction ηM , εM : M ⊗R − a [M,−].

4.32. Algebras in MR. For any R-algebra A = (A,m, e), τA,A : A ⊗R A → A ⊗R A is an invertible
(involutive) BD-law allowing for the definition of the (opposite) algebra Aτ = (A,m · τ, e). The monad
A⊗R − is Azumaya provided the functor K : MR → AeM,

M 7−→ ((A⊗RM, A⊗R A⊗R A⊗RM
A⊗Rmτ⊗RM−−−−−−−−→ A⊗R A⊗RM

m⊗RM−−−−→ A⊗RM),

is an equivalence of categories. Obviously, this holds if and only if A is an Azumaya R-algebra in the
usual sense. We have the commutative diagram:

MR
K //

φ(Aτ )l=A
τ⊗R− &&

AeM Ψ //

(e⊗RAτ )∗

��

(AτM)[̂A,−]

U [̂A,−]

��
AτM =

//
AτM

(4.4)

where (e ⊗R Aτ )∗ is the restriction of scalars functor induced by the ring morphism e ⊗R Aτ : Aτ →
A⊗R Aτ .

As is easily seen, for (M,h) ∈ AτM, the (M,h)-component t(M,h) : A ⊗R M → [A,M ] of the
comonad morphism t : φ(Aτ )lU(Aτ )l → [̂A,−] corresponding to the functor K = Ψ · K, takes any
element a⊗Rm to the map b 7→ h((ba)⊗Rm). Thus, writing a ·m for h(a⊗Rm), one has for a, b ∈ A
and m ∈M ,

t(M,h)(a⊗R m) = (b 7→ (ba) ·m).

In particular, for any N ∈MR, tφ(Aτ )l (N)(a⊗R b⊗R n) = (c 7→ (bca) · n).

Since the canonical morphism i : R → A factors through the center of A, it follows from
Theorem 8.11 in [18] that the functor A ⊗R − : MR → AM (and hence, also, Aτ ⊗R − : MR → AτM)
is comonadic if and only if i is a pure morphism of R-modules. Applying Theorem 4.20 and using that
K is an equivalence of categories if and only if K = Ψ · K is so, we get several characterizations of
Azumaya R-algebra.

4.33 Theorem. An R-algebra A is an Azumaya R-algebra if and only if the canonical morphism i :

R→ A is a pure morphism of R-modules and one of the following holds:

(a) for any M ∈ AτM, there is an isomorphism:

A⊗RM → [A,M ], a⊗R m 7→ [b 7→ (ba) ·m];

(b) for any N ∈MR, there is an isomorphism:

A⊗R A⊗R N → [A,A⊗R N ], a⊗R b⊗R n 7→ [c 7→ bca⊗R n];
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(c) AR is finitely generated projective, and there is an isomorphism:

A⊗R A→ [A,A], a⊗R b 7→ [c 7→ bca];

(d) for any (A,A)-bimodule M , the evaluation map is an isomorphism:

A⊗RMA →M, a⊗R m 7→ a ·m.

Proof. (a) follows by Theorem 3.10; (b) and (c) are derived from Theorem 4.20.
(c) An R-module is finite in the monoidal category MR if and only if it is finitely generated and

projective over R and Theorem 4.15 applies.
(d) is a translation of Theorem 4.25 into the present context. tu

For a (von Neumann) regular ring R, i : R → A is always a pure R-module morphism, and hence,
over such rings, (equivalent) Properties (a) to (d) are sufficient to characterize Azumaya algebras.

5. Azumaya Coalgebras in Braided Monoidal Categories

Throughout, (V ,⊗, I, τ) will denote a strict monoidal braided category. The definition of coalgebras
C = (C,∆, ε) in V is recalled in 4.4.

5.1. The coalgebra Ce. Let C be a V-coalgebra. The braiding τC,C : C⊗C → C⊗C provides a comonad
BD-law allowing for the definition of the opposite coalgebra Cτ = (Cτ ,∆τ = τC,C · ∆, ετ = ε) and
a coalgebra:

Ce := (C ⊗ Cτ , (C ⊗ τ ⊗ Cτ )(∆⊗∆τ ), ε⊗ ε).

With the induced distributive law of the comonad Cl over the comonad (Cτ )l, we have an isomorphism
of categories V(Cτ )lCl ' V(Ce)l = CeV .

5.2 Definition. (see 3.14) A V-coalgebra C is said to be left Azumaya provided for the functor Cl =

C ⊗− : V → V , the pair (Cl, τC,C ⊗−) is an Azumaya comonad, i.e., the comparison functor:

Kτ : V → CeV , V 7−→ (C ⊗ V, C ⊗ V ∆⊗V−−−→ C ⊗ C ⊗ V C⊗∆τ⊗V−−−−−→ C ⊗ C ⊗ C ⊗ V ),

is an equivalence of categories. It fits into the commutative diagram

V Kτ //

C⊗− %%

CeV = V(Ce)l

CeU
��
V .

(5.1)

C is said to be right Azumaya if the corresponding conditions for Cr = −⊗ C are satisfied.

Similar to 4.15, we have:

5.3 Proposition. Let C = (C,∆, ε) be a coalgebra in a braided monoidal category V . If C is left
Azumaya, then C is finite in V .
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Proof. Suppose that a V-coalgebra C is left Azumaya. Then, the functor C ⊗ − : V → V admits a
right adjoint [C, − ] : V → V by the dual of Proposition 3.4. Write ϑ for the composite (C ⊗∆τ ) ·∆ :

C → C ⊗ C ⊗ C. Then, for any V ∈ V , Kτ (V ) = (C ⊗ V, ϑ⊗ V ), and thus, the V -component of the
left Ce-comodule structure on the functor C ⊗ − : V → V , induced by the commutative diagram (5.1),
is the morphism ϑ⊗ V : C ⊗ V → C ⊗ C ⊗ C ⊗ V . From 2.14, we then see that the V -component tV
of the comonad morphism induced by the above diagram is the composite:

C ⊗ [C, V ]
ϑ⊗[C,V ]−−−−→ C ⊗ C ⊗ C ⊗ [C, V ]

C⊗C⊗(evC)V−−−−−−−−→ C ⊗ C ⊗ V,

where evC is the counit of the adjunction C ⊗ − a [C, − ].
Next, let σV : [C, I]⊗V → [C, V ] be the transpose of the morphism (evC)I⊗V : C⊗[C, I]⊗V → V ,

and consider the diagram:

C ⊗ [C, I]⊗ V ϑ⊗[C,I]⊗V //

C⊗σV
��

C ⊗ C ⊗ C ⊗ [C, I]⊗ V
C⊗C⊗C⊗σV

��

C⊗C⊗(evC)I⊗V

++
C ⊗ [C, V ]

ϑ⊗[C,V ]
// C ⊗ C ⊗ C ⊗ [C, V ]

C⊗C⊗(evC)V

// C ⊗ C ⊗ V .

In this diagram the rectangle is commutative by the naturality of composition. Since σV is the
transpose of the morphism (evC)I⊗V , the transpose of σV , which is the compositeC⊗[C, I]⊗V C⊗σV−−−→
C⊗ [C, V ]

(evC)V−−−−→ V , is (evC)I⊗V . Hence, the triangle in the diagram is also commutative. Now, since:

(C ⊗ C ⊗ (evC)I ⊗ V ) · (ϑ⊗ [C, I]⊗ V ) = tI ⊗ V,

it follows from the commutativity of the diagram that tI⊗V = tV ·(C⊗σV ); since C is assumed to be left
Azumaya, both tI and tV are isomorphisms, and one concludes thatC⊗σV is an isomorphism. Moreover,
the functor C ⊗ − : V → V is comonadic, hence conservative. It follows that σV : [C, I]⊗ V → [C, V ]

is an isomorphism for all V ∈ V . Thus, the functor [C, I] ⊗ − : V → V is also right adjoint to the
functor C ⊗ − : V → V . It is now easy to see that [C, I] is right adjoint to C. tu

The dual of Theorem 3.5 provides the first characterizations of left Azumaya coalgebras.

5.4 Theorem. For a V-coalgebra C = (C,∆, ε), the following are equivalent:

(a) C is a left Azumaya V-coalgebra;
(b) the functor C ⊗− : V → V is comonadic, and the left (Ce)l-comodule structure on it, induced
by the commutative diagram (5.1), is Galois;

(c) (i) C is finite with right dual (C], db′ : I → C] ⊗ C, ev′ : C ⊗ C] → I); the functor C ⊗ − :

V → V is comonadic; and

(ii) the composite χ0 :

C⊗C] ∆⊗C]−−−→ C⊗C⊗C] C⊗∆⊗C]−−−−−→ C⊗C⊗C⊗C] C⊗τ⊗C]−−−−−→ C⊗C⊗C⊗C] C⊗C⊗ev′−−−−−→ C⊗C

is an isomorphism (between the V-coalgebras SC,C] and Ce);
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(d) (i) C is finite with left dual (C∗, db : I → C ⊗ C∗, ev : C∗ ⊗ C → I), and the functor
φ(Cτ )l : V → V(Cτ )l = CτV is monadic; and

(ii) the composite χ :

C∗ ⊗ C C∗⊗∆−−−→ C∗ ⊗ C ⊗ C C∗⊗τ−−−→ C∗ ⊗ C ⊗ C C∗⊗∆⊗C−−−−−→ C∗ ⊗ C ⊗ C ⊗ C ev⊗C⊗C−−−−−→ C ⊗ C

is an isomorphism.

Proof. (a) and (b) are equivalent by the dual of Theorem 3.5.
The equivalences (a)⇔(c) and (a)⇔(d) follow from Proposition 5.3 by dualizing the proofs of the

corresponding equivalences in Theorem 4.16. tu

Similarly, the dual form of Theorem 4.16 yields conditions for right Azumaya coalgebras C, that is
making Cr = −⊗ C an Azumaya comonad. Dualizing Theorem 4.18 gives:

5.5 Theorem. Let C = (C,∆, ε) be a V-coalgebra in a braided monoidal category V with equalizers
and coequalizers. Then, the following are equivalent:

(a) C is a left Azumaya coalgebra;
(b) the left Ce-comodule (C, (C ⊗∆τ ) ·∆) is cofaithfully Galois;
(c) there is an adjunction db′, ev′ : C a C]; the functor − ⊗ C : V → V is comonadic; and the
composite χ in 5.4 (c) is an isomorphism;

(d) the right eC-comodule (C, (∆τ ⊗ C) ·∆) is cofaithfully Galois;
(e) C is a right Azumaya coalgebra.

Under suitable assumptions, the base category V may be replaced by a comodule category over
a cocommutative coalgebra. For this, we consider the:

5.6. Cotensor product. Suppose now that V = (V ,⊗, I, τ) is a braided monoidal category with
equalizers and D = (D,∆D, εD) is a coalgebra in V . If (V, ρV ) ∈ VD and (W, %W ) ∈ DV , then their
cotensor product (over D) is the object part of the equalizer:

V ⊗D W
iV,W // V ⊗W

ρV ⊗W //

V⊗%W
// V ⊗D ⊗W

Suppose, in addition, that either:

- for any V ∈ V , V ⊗− : V → V and −⊗ V : V → V preserve equalizers, or

- V is Cauchy complete, and D is coseparable.

Each of these condition guarantee that for V,W,X ∈ DVD,

• V ⊗D W ∈ DVD;

• the canonical morphism (induced by the associativity of the tensor product):

(V ⊗D W )⊗D X → V ⊗D (W ⊗D X)

is an isomorphism in DVD;
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• (DVD,−⊗D −, D, τ̃), where τ̃ is the restriction of τ , is a braided monoidal category.

When D is cocommutative (i.e., τD,D · ∆ = ∆), then for any (V, ρV ) ∈ DV , the composite ρV1 =

τ−1
D,V · ρV : V → V ⊗D, defines a right D-comodule structure on V . Conversely, if (W, %W ) ∈ VD, then
%W1 = τW,D · %W : W → D ⊗W defines a left D-comodule structure on W . These two constructions
establish an isomorphism between DV and VD, and thus, we do not have to distinguish between left and
right D-comodules. In this case, the cotensor product of two D-comodules is another D-comodule, and
cotensoring over D makes DV (as well as VD) a braided monoidal category with unit D.

5.7. D-coalgebras. Consider V-coalgebras C = (C,∆C, εC) and D = (D,∆D, εD) with D
cocommutative. A coalgebra morphism γ : C → D is called cocentral provided the diagram:

C
∆C //

∆C
��

C ⊗ C C⊗γ // C ⊗D
τC,D
��

C ⊗ C
γ⊗C

// D ⊗ C

is commutative. When this is the case, (C, γ) is called a D-coalgebra.
To specify a DV-coalgebra structure on an object C ∈ V is to give C a D-coalgebra structure

(C = (C,∆C, εC), γ). Indeed, if γ : C → D is a cocentral morphism, C can be viewed as an object
of DV (and VD) via:

C
∆C−−→ C ⊗ C γ⊗C−−→ D ⊗ C, (C

∆C−−→ C ⊗ C C⊗γ−−→ C ⊗D
τC,D−−→ D ⊗ C),

and ∆C factors through the iC,C : C ⊗D C → C ⊗ C by some (unique) morphism ∆′C : C → C ⊗D C,
that is ∆C = iC,C ·∆′C .

The triple CD = (C,∆′C, γ) is a coalgebra in the braided monoidal category DV .

Conversely, any DV-coalgebra, (C,∆′C : C → C ⊗D C, εC : C → D) induces a V-coalgebra:

C = (C,C
∆′C−→ C ⊗D C

iC,C−−→ C ⊗ C,C εC−→ D
εD−→ I),

and the pair (C, εC) is a D-coalgebra.
Related to any V-coalgebra morphisms γ : C → D, there is the corestriction functor:

(− )γ : CV → DV , (V, %V ) 7→ (V, (γ ⊗ V ) · %V ),

and usually, one writes (V )γ = V . If the category CV admits equalizers, then one has the
coinduction functor:

C ⊗D − : DV → CV , W 7→ (C ⊗D W,∆C ⊗D W ),

defining an adjunction:
(− )γ a C ⊗D − : DV → CV .

Considering C as a (D, C)-bicomodule by C ∆−→ C ⊗R C
γ⊗C−→ D ⊗R C, the corestriction functor is

isomorphic to C ⊗C − : CV → DV .
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If (C, γ) is a D-coalgebra, then the category CD(DV) can be identified with the category CV , and
modulo this identification, the functor

CD ⊗D − : DV → CD(DV)

corresponds to the coinduction functor C ⊗D − : DV → CV .

5.8. Azumaya D-coalgebras. Let D be a cocommutative V-coalgebra. Then, a D-coalgebra
C = (C,∆C, εC) is said to be left Azumaya provided the comonad (Cl, τ̃C,C ⊗D −), where:

Cl = C ⊗D − : DV → DV ,

is Azumaya, i.e., (see 3.14), the comparison functor K τ̃ : DV → C⊗DC τ̃V defined by:

V 7−→ (C ⊗D V, C ⊗D V ∆C⊗DV−−−−−→ C ⊗D C ⊗D V
C⊗D∆τ̃

C⊗
DV

−−−−−−−→ C ⊗D C ⊗D V )

is an equivalence of categories. In this setting, specializing Theorem 5.4 yields various characterizations
of AzumayaD-coalgebras. For vector space categories, AzumayaD-coalgebras C over a cocommutative
coalgebra D (over a field) were defined and characterized in Theorem 3.14 in [7].

Now, let R be again a commutative ring with identity and MR the category of R-modules.
As an additional notion of interest, the dual algebra of a coalgebra comes in.

5.9. Coalgebras in MR. An R-coalgebra C = (C,∆, ε) consists of an R-module C with R-linear
maps comultiplication ∆ : C → C ⊗R C and counit ε : C → R subject to coassociativity and
counitality conditions. C ⊗R − : MR → MR is a comonad, and it is customary to write CM := MC⊗−

R

for the category of left C-comodules. We denote by HomC(M,N) the comodule morphisms between
M,N ∈ CM. In general, CM need not be a Grothendieck category, unless CR is a flat R-module
(e.g., 3.14 in [29]).

The dual module C∗ = HomR(C,R) has an R-algebra structure by defining for
f, g ∈ C∗, f ∗ g = (g ⊗ f) ·∆ (the definition opposite to 1.3 in [29]), yielding the monad C∗ =

(C∗, ∗.ε∗), and there is a faithful functor:

Φ : CM→ C∗M, (M,%) 7→ C∗ ⊗RM
C∗⊗%−−−→ C∗ ⊗R C ⊗M

ev⊗M−−−→M,

where ev denotes the evaluation map. The functor Φ is full if and only if for any N ∈MR,

αN : C ⊗R N → HomR(C∗, N), c⊗ n 7→ [f 7→ f(c)n],

is injective, and this is equivalent to CR being locally projective (α-condition, e.g., 4.2 in [29]). In this
case, CM can be identified with the full subcategory σ[C∗C] ⊂ C∗M subgenerated by C as C∗-module
(see [29,30]).

The R-module structure of C is of considerable relevance for the related constructions, and for
convenience, we recall:
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5.10 Remark. For CR the following are equivalent:

(a) CR is finitely generated and projective;
(b) C ⊗R − : MR →MR has a left adjoint;
(c) HomR(C,−) : MR →MR has a right adjoint;
(d) C∗ ⊗R − → HomR(C,−), f ⊗R − 7→ (c 7→ f(c) · −), is a (monad) isomorphism;
(e) C ⊗R − → HomR(C∗,−), c⊗R − 7→ (f 7→ f(c) · −), is a (comonad) isomorphism;
(f) Φ : CM→ C∗M is a category isomorphism.

If this holds, there is an algebra anti-isomorphism EndR(C) ' EndR(C∗) and we denote the canonical
adjunction by ηC , εC : C ⊗R − a C∗ ⊗R −.

5.11. The coalgebra Ce. As in 5.1, the twist map τC,C : C ⊗R C → C ⊗R C provides an (involutive)
comonad BD-law allowing for the definition of the opposite coalgebra Cτ = (Cτ ,∆τ , ετ ) and
a coalgebra:

Ce := (C ⊗R Cτ , (C ⊗R τ ⊗R Cτ )(∆⊗R ∆τ ), ε⊗R ε).

The category CeM of left Ce-comodules is just the category of (C,C)-bicomodules (e.g., [31], 3.26
in [29]). A direct verification shows that the endomorphism algebra of C as a Ce-comodule is just the
center of C∗, that is,

Z(C∗) = HomC
e

(C,C) ⊂ CHom(C,C) ' C∗.

If CR is locally projective, an easy argument shows that C ⊗R C is also locally projective as
an R-module, and then, CeM is a full subcategory of (Ce)∗M.

5.12 Definition. An R-coalgebra C is said to be an Azumaya coalgebra provided (C ⊗R −, τC,C ⊗R −)

is an Azumaya comonad (on MR), i.e., (see 3.14) the comparison functor K : MR → CeM defined by:

M 7−→ (C ⊗RM, C ⊗RM
∆⊗RM−−−−→ C ⊗R C ⊗RM

C⊗∆τ⊗RM−−−−−−−→ C ⊗ C ⊗R C ⊗RM)

is an equivalence of categories. We have the commutative diagram:

RM K //

C⊗R− ''

CeM
CeU
��

RM .

By Proposition 2.15, the functor K is an equivalence provided:

(i) the functor C ⊗R − : RM→ RM is comonadic, and
(ii) the induced comonad morphism C ⊗R HomR(C,−)→ Ce ⊗R −

is an isomorphism.

If R ' EndC
e

(C) ' Z(C∗), the isomorphism in (ii) characterizes C as a Ce-Galois comodule
as defined in 4.1 in [32], and if CR is finitely generated and projective, the condition reduces to
an R-coalgebra isomorphism C ⊗R C∗ ' Ce.

An R-coalgebra C = (C,∆, ε) is said to be coseparable provided C⊗R− : MR →MR is a separable
comonad. This is equivalent to requiring ∆ : C → C ⊗R C to split in CeM. For more characterizations
of these coalgebras, we refer to Section 3 and 3.29 in [29].
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For any coseparable coalgebra C, Z(C∗) is a direct summand of C∗.

Indeed, let ω : C ⊗R C → C denote the splitting morphism for ∆; we obtain the splitting sequence
of Z(C∗)-modules:

C∗ ' HomC
e

(C,C ⊗R C)
HomC

e
(C,ω)−−−−−−−→ HomC

e

(C,C) ' Z(C∗).

For an Azumaya coalgebra C, the free functor φ(Cτ )l : MR → CτM is monadic by the dual of
Theorem 3.5, and hence, in particular, it is conservative. It then follows that, for each X ∈ MR, the
morphism ε ⊗R X : C ⊗R X → X is surjective. For X = R, this yields that ε : C → R is surjective
(hence, splitting). By Theorem 3.17, this means that C is also a coseparable coalgebra.

It follows from the general Hom-tensor relations that the functor K : MR → CeM has a right adjoint
CeHom(C,−) : C

eM→MR (e.g., 3.9 in [29]), and we denote the unit and counit of this adjunction by η
and ε, respectively.

Besides the characterizations derived from Theorem 5.4, we have from Theorem 3.17:

5.13. Characterization of Azumaya coalgebras. For an R-coalgebra C, the following are equivalent:

(a) C is an Azumaya coalgebra;
(b) (i) εX : C ⊗R C

e
Hom(C,X)→ X is an isomorphism for any X ∈ CeM,

(ii) η
M

: M 7→ CeHom(C,C ⊗RM) is an isomorphism for any M ∈MR.
(c) C is a Ce-Galois comodule; C∗ is a central R-algebra; and the functor C ⊗R − : RM → RM
is comonadic;

(d) C∗ is an Azumaya algebra.

As shown in Proposition 5.3, an Azumaya coalgebra C is finite in MR, that is CR is finitely generated
and projective (see Remark 5.10). Coalgebras C with CR finitely generated and projective for which
C∗ is an Azumaya R-algebra were investigated by Sugano in [8]. As an easy consequence, he also
observed that an R-algebra A with AR finitely generated and projective is Azumaya if and only if A∗ is
an Azumaya coalgebra.

Acknowledgments

This research was partially supported by Volkswagen Foundation (Ref. I/85989). The first author
also gratefully acknowledges the support by the Shota Rustaveli National Science Foundation Grant
DI/12/5-103/11.

Author Contributions

The work is part of a joint project of the two authors (see references [5,6,21,33]) in which algebraic
and coalgebraic structures are to be formulated and studied in general categories.

Conflicts of Interest

The authors declare no conflict of interest.



Axioms 2015, 4 69

References

1. Fisher-Palmquist, J. The Brauer group of a closed category. Proc. Am. Math. Soc. 1975, 50,
61–67.

2. Pareigis, B. Non-additive ring and module theory IV. The Brauer group of a symmetric monoidal
category. Lect. Notes Math. 1976, 549, 112–133.

3. Van Oystaeyen, F.; Zhang, Y. The Brauer group of a braided monoidal category. J. Algebra
1998, 202, 96–128.
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