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Introduction

There are various generalisations of the notions of (weak) bialgebras and Hopf algebras
in the literature, mainly for (braided) monoidal categories, and we refer to Bohm [6],
the introductions to Alonso Alvarez e.a. [2], Béhm e.a. [9], and [13, Remarks 36.18] for
more information about these.

Bimonads and Hopf monads on arbitrary categories were introduced in [23] and the
purpose of the present paper is to develop a weak version of these notion, that is, the
initial conditions on the behaviour of the involved distributive laws towards unit and
counit are replaced by weaker conditions.

Recall that for a bialgebra (H,m,e,d,€) over a commutative ring k, there is a com-
mutative diagram (®j = ®)

M (M@ HM®@m,M®H)
\ /H )—>\ |

(M ® H,M ®m),

where M is the category of k-modules, My the category of right H-modules, and M
denotes the category of mixed bimodules; the latter can also be considered as (MH)E,
that is, the category of H-comodules over My where H is the lifting of the comonad
— ® H to My. H is a Hopf algebra provided the functor — ® H is an equivalence of
categories (Fundamental Theorem of Hopf modules).

Concentrating on the essential parts of this setting, we consider, for any category A,
the diagram

A—— %
AT,
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where T is some monad on A, G is some comonad on the category At of T-modules,
¢1 and U® denote the respective free and forgetful functors, and K is any functor making
the diagram commutative.

Having such a diagram, one may ask when the functor K allows for a right adjoint K.
If such is the case, we have a monad P on A, a monad morphism ¢ : P — T, the free
functor ¢p : A — Ap, and the Eilenberg-Moore comparison functor Kp : (AT)® — Ap
for the monad P.

If A is Cauchy complete and P is a separable Frobenius monad, then the change-of-
base-functor ¢ : Ap — At exists (see Proposition 2.2). As a consequence, Kp has a left
adjoint Lp (Proposition 3.6) leading to the commutative diagram

K
A——— Ap > (AT)C (0.2)
Pp Lp
u
o7 Us
Y
At

Essentially, a Fundamental Theorem should describe the existence of a right (left)
adjoint to the functor K and, eventually, an equivalence between the categories Ap and
(AT)C. This, evidently, requires to study the functors ¢p and Kp.

For a bimonad H on A with weak monad—comonad entwining w : HH — HH,
a comparison functor K, : A — AL(w) (the category of mixed bimodules) is considered.
The existence of left and right adjoints for K|, is described by equalisers and coequalisers
of certain pairs of morphisms, respectively. Weak braided bimonads are defined by the
existence of a monad—comonad entwining w: HH — HH as well as a comonad-monad
entwining w : HH — HH. Referring to both of them, an antipode is defined and if it
exists, one gets weak braided Hopf monads. For these monads, the Fundamental Theorem
is proved.

After assembling preliminaries in Section 1 and properties of separable Frobenius
monads in Section 2, the theory just sketched is outlined in Section 3.

Section 4 deals with the application of this to endofunctors H on a category A
endowed with a monad H as well as a comonad structure H, and a weak monad-—
comonad entwining w : HH — HH. Exploiting ideas from [33] and Béhm [5], these data
allow for the definition of a comonad G on Ay as well as a monad T on A7 (Proposi-
tions 4.3, 4.5). As a result, the category Aﬁ(w) of mixed H-bimodules is isomorphic to
the categories (Ay)® and (A7)t (see Theorems 4.4, 4.6). If w is a compatible entwining
(i.e. 0 -m = Hm-wH - H§, Section 4.1), there is a functor

Ko A= AlW), a— (H(a),ma,d,),
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leading to commutativity of the diagram corresponding to (0.1). Conditions for the exis-
tence of a right and a left adjoint functor for K, are investigated (Propositions 4.10, 4.11).
These problems were considered in [23] for proper compatible entwinings w.

In Section 5, we define weak 7-bimonads, also called weak braided bimonads (Defini-
tion 5.2), based on a weak Yang—Baxter operator 7 : HH — HH (Section 5.1). This type
of operator was introduced by Alonso Alvarez e.a. in [1] for monoidal categories and is
here adapted to the more general setting.

The conditions on weak braided bimonads induce a weak monad—comonad entwining
w: HH — HH as well as a weak comonad-monad entwining w : HH — HH and
allow to refine the results in Section 4: the natural transformation € := He - @ - He :
H — H is idempotent and its splitting yields a separable Frobenius monad HE (see
Proposition 5.11). Then, if K, has a right adjoint functor K, the induced monad P is
just H¢ and the diagram corresponding to (0.2) can be completed.

The weak bialgebras over a commutative ring k as considered by Béhm e.a. in (8] are
weak braided bimonads in our sense (7 the ordinary twist, £ = &) and for this case
some of our results are shown there, including the Frobenius and separability property
of Hé(= H,) ([8, Proposition 4.4]).

Eventually, in Section 6, weak braided Hopf monads are defined as weak braided bi-
monads H with an antipode (Definition 6.1). In monoidal categories, these correspond to
the weak braided Hopf algebras considered in [2,3].

We show that for a braided bimonad, in Cauchy complete categories, the existence of
an antipode is equivalent to the functor K, having a left adjoint and a monadic right
adjoint and this leads to an equivalence between the categories of Hé-modules and Aﬁ(w)
(Fundamental Theorem 6.6). B

Examples for our weak braided bimonads and weak braided Hopf monads are the
weak braided Hopf algebras in strict monoidal Cauchy complete categories considered by
Alonso Alvarez et al. in [1 3], the weak bimonoids and weak Hopf monoids in braided
monoidal categories as defined by Pastro et. al. in [25] and also showing up in [9, Sec-
tions 3, 4]. These all subsume the braided Hopf algebras considered, e.g., by Takeuchi
[31] and Schauenburg [26] and, of course, the weak Hopf algebras in vector space cat-
egories introduced by Bohm et al. in [10]. Moreover, we generalise the bimonads and
7-Hopf monads defined on arbitrary categories in [23] and these include, for example,
bimonoids in duoidal categories (e.g. [24]).

Opmonoidal monads T = (T,m,e) on strict monoidal categories (V,®,I) were also
called bimonads by Bruguieres et al. in [12] and these were generalised to weak bimonads
in monoidal categories by Bohm et al. in [9]. As pointed out in [22, Section 5|, the
bimonads from [12] yield a special case of an entwining of the monad T with the comonad
— ® T(I), where T(I) has a coalgebra structure derived from the opmonoidality of T.
To transfer the structures from [9] to arbitrary categories, one has to consider weak
entwinings between monads and comonads. It is planned to elaborate details for this in
a subsequent article.
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1. Preliminaries

1.1. Monads and comonads. Recall that a monad T on a category A (or shortly an
A-monad T) is a triple (T, m, e) where T : A — A is a functor with natural transforma-
tions m: TT — T, e: 1 — T, satisfying the usual associativity and unitality conditions.
A T-module is an object a € A with a morphism h : T'(a) — a subject to associativ-
ity and unitality conditions. The (Eilenberg—Moore) category of T-modules is denoted
by At and there is an adjunction

EeT,ET (bT Ut :AT —>A7
with ¢t : A — Ay and Ut : At — A given by the respective assignments
a+— (T'(a),m,) and (a,h) — a,

while et = e and (e7)(q, n) = h for each (a, h) € At.

If T = (RF,ReF,n) is the monad generated on A by an adjoint pair n,e: F
R: B — A, then there is the comparison functor Kt : B — At which assigns to each
object b € B the T-algebra (R(b), R(£5)), and to each morphism f : b — &’ the morphism
R(f): R(b) — R(V'), satisfying Ur KT = R and K1F = ¢v. This situation is illustrated
by the diagram

The functor R is called monadic (resp. premonadic) if the comparison functor Kt is
an equivalence of categories (resp. full and faithful).

1.2. Theorem. (Beck [4]) Letn,e: F'4 R: B — A be an adjunction, and T = (RF, ReF,n)
the corresponding monad on A.

(1) The comparison functor Kt :B — At has a left adjoint Lt : At — B if and only if
for each (a,h) € At, the pair of morphisms (F(h),ep()) has a coequaliser in B.

(2) R is monadic if and only if it is conservative and, for any (a,h) € A1, the pair of
morphisms (F(h),ep(q)) has a coequaliser and this coequaliser is preserved by R.

Dually, a comonad G on A (or shortly an A-comonad G) is a triple (G, d,¢) where
G : A — A is a functor with natural transformations § : G — GG, ¢ : G — 1, and
G-comodules are objects a € A with morphisms 6 : a — G(a). Both notions are sub-
ject to coassociativity and counitality conditions. The (Eilenberg—Moore) category of
G-comodules is denoted by A® and there is a cofree functor
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% A — AS a s (G(a),d,),
which is right adjoint to the forgetful functor
US:A® = A, (a,0) — a.

If n,e: F 4 R: A — B is an adjoint pair and G = (FR, FnR,¢) is the comonad on A
associated to (R, F'), then one has the comparison functor

K®:B— AS, b— (F(b), F(n))

for which U® - K¢ = F and K€ - R = ¢C. One says that the functor F' is precomonadic
if K© is full and faithful, and it is comonadic if K© is an equivalence of categories.

1.3. Cauchy completeness. A morphism e : A — A in A is idempotent if e? = e and
A is said to be Cauchy complete if idempotents split in A in the sense that for every
idempotent e : a — a, there exists an object @ and morphisms p:a —-a@and i : @ — «a
such that ip = e and pi = 1g. In this case, (@, ¢) is the equaliser of e and 1, and (@, p) is the
coequaliser of e and 1,. Hence any category admitting either equalisers or coequalisers
is Cauchy complete.

1.4. Proposition. Let G be a comonad on A. If A is Cauchy complete, then so is AC.
Moreover, the forgetful functor U® : A® — A preserves and creates splitting of idempo-
tents. Explicitly, if e : (a,0) — (a,0) is an idempotent morphism in A® and ifa 2> @ = a
is a splitting of e in A, then (a,G(p) -0 -1i) is a G-comodule in such a way that p and i
become morphisms of G-comodules. Similarly, if T is a monad on A, then the forgetful
functor Ut : At — A preserves and creates splitting of idempotents.

Proof. The result follows from the fact that the forgetful functor U® : A® — A pre-
serves and creates coequalisers, while the functor Ut : At — A preserves and creates
equalisers. O

1.5. Split (co)equalisers. Recall (e.g. from [19]) that a diagram

d
« ——=d — (1.1)
01

with pdy = pd; is said to be split by a pair of morphisms i : x — o’ and s : @’ — a if
pi = 1., 0ps = 14 and 918 = ip. Then p is an (absolute) coequaliser (preserved by any
functor).

A pair of morphisms (9p, 01 : a = a') in A is called split if there exists a morphism
s:a’ — a with dps = 1 and 0,59y = 0150;. In this case, 015 : a’ — a’ is an idempotent,
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and if we assume A to be Cauchy complete and if o/ 2 Lais a splitting of the
idempotent 0 s, then the diagram

s 7
/80\ /\
QQQIHQ‘
o p

is a split coequaliser. Conversely, if the above diagram is a split coequaliser, then s makes
the pair (9p, 01 : @ = a’) split. Thus, when A is Cauchy complete, a pair (9p, 01 : a = a’)
is part of a split coequaliser diagram if and only if it is split.

If F: A — Bis a functor, (0p, 01 : @ = d') is called F-split if the pair of morphisms
(F(0o),F(01) : F(a) = F(a’)) in B is split. The dual notions are those of cosplit pairs
and F-cosplit pairs.

Given a monad T (resp. comonad G) on A and a category X, one may consider the
functor category [X, A] and the induced monad [X, T] (resp. comonad [X,G]) thereon,
whose functor part sends a functor F' : X — A to the composite TF : X — A (resp.
GF : X — A). Symmetrically, one has the induced monad [T,X] (resp. comonad [G, X])
on [A, X], whose functor-part sends F’ : A — X to F'T : A — X (resp. FG : A — X).

1.6. (Bi)module functors. Given a monad T = (T, m,e) on A and a category X, a left
T-module with domain X is an object of the Eilenberg—Moore category [X, A] ix,7) of the
monad [X, T]. Thus, a left T-module with domain X is a functor M : X — A together
with a natural transformation ¢ : TM — M, called the action (or T-action) on M, such
that p-eM =1 and ¢o-Tpo = 0-mM. A morphism of left T-modules with domain X is a
natural transformation in [X; A] that commutes with the T-actions.

Similarly, for a category Y, the category of right T-modules with codomain Y is defined
as the Eilenberg-Moore category [A, Y]t y) of the monad [T, Y].

Let S be another monad on A. A (T,S)-bimodule is a functor N : A — A equipped
with two natural transformations g; : TN — N and g, : NS — N such that (N, ) €
X, Alx,1, (N, 0r) € [A,Y]ry) and o, - 01S = 0; - T'¢r. A morphism of (T,S)-bimodules
is a morphism of left T-modules which is simultaneously a morphism of right S-modules.
We write [X, A]is 1) for the corresponding category.

1.7. Canonical modules. Let T = (T, m, e) be an arbitrary monad on A. Using the asso-
ciativity and unitality of the multiplication m, we find that for any functor M : X — A,
the pair (TM,mM) is a left T-module. Moreover, if v : M — M’ is a natural transfor-
mation, then Tv : TM — TM' is a morphism of left T-modules.

Symmetrically, for any functor N : A — Y, the pair (NT, Nm) is a right T-module,
and if v : N — N’ is a natural transformation, then vT : NT — NT' is a morphism
of right T-modules. In particular, (T,m) can be regarded as a right as well as a left
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T-module; again by the associativity of m, (T, m,m) is a (T, T)-bimodule. Moreover, if S
is another monad on A and ¢ :S — T is a monad morphism, then

T,ST L TT % T) is a left S-module;
T,TS AN o N T) is a right S-module;
(iii) (T,7T 2 T,7S L% TT 22 T) is a (T,S)-bimodule;

(i) (
) (
) (
(iv) (T,ST 5 TT 2 T,TT 2 T) is an (S, T)-bimodule;
) (
) (
) (

(ii

v) (T,ST L 7T 2 7,78 L% TT 2 T) is an (S, S)-bimodule;
(vi) (¢T1,e1¢T - PT1L) is a right S-module;
(vii) (Ut,Utet - tUt) is a left S-module.
1.8. Tensor product of module functors. Let T be a monad on A and X and Y arbitrary
categories. If (N, p) is a left T-module and (M, g) a right T-module, then their tensor
product (over T) is defined as the object part of the coequaliser

N canM N

MN 1

MTN

MeTN (1.2)
Mp

in [X, Y], provided that such a coequaliser exists. We often abbreviate can-ly N o canMNV ,

or even to can.

1.9. Proposition. Let S, T be monads on a category A. If the modules (M, o) € [A,X][1x]
and (N, pi, pr) € [A, Aljs 71 are such that the tensor product M&tN exists, then there is
a natural transformation

C: (M@TN)S% MTN
making M®@TN into a right S-module in such a way that the diagram

oN
(MTN, MTp,) ——=
Mp,

can

(MN, Mp,)

(M®71N,()

is a coequaliser in [A,X]is x). The action ¢ is uniquely determined by the property
¢- cany’NS = can]g’N - Mp,.

Proof. Note first that both (MTN, MTp,) and (M N, Mp,) are objects of the category
[A, X][s x], and that both oN and M p; can be seen as morphisms in [A, X](s x (the former
by naturality of composition, the latter because (N, p;, pr) € [A, A](s 11). Now, since the
functor

[S,X]: (A, X] = [AX]
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preserves all colimits (hence coequalisers), the result follows from [17, Proposi-
tion 2.3]. O

1.10. Comodule functors. Similarly as for monads, one defines comodule functors over a
comonad G on a category A. A left G-comodule functor is a pair (F,0), where F' : X — A
is a functor and 6 : F' — GF' is a natural transformation inducing commutativity of the
diagrams

r-. ar F GF

N e

F GF —— GGF.
G

)

Symmetrically, right G-comodule functors A — Y are defined.

1.11. Cotensor product of comodule functors. Let G be a comonad on A and X, Y
arbitrary categories. If (C,0) is a right G-comodule functor A — X and (D, ) is a left
G-comodule functor Y — A, then their cotensor product (over G) is defined as the object
part of the equaliser

cang’D 0D

CD

C®°D

CGD (1.3)

Ccv

in [Y, X], provided that such an equaliser exists. We often abbreviate cangD to can®P,

or even to can.
Now recall the dual of [27, Lemma 21.1.5] and Dubuc’s Adjoint Triangle Theorem [15].

1.12. Monads and adjunctions. For categories A, B and C, consider adjunctions n,¢ : F' -
R:A—Candn/,¢’: F' 4R :B — C, with corresponding monads T and T’, and let

AL-]B

PRE

C

be a commutative diagram with some functor K. Write g for the composite

P PR - PREF ZEE KE

Then tx = R'vk is a monad morphism T — T (see [15]).
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1.13. Theorem. In the situation considered in 1.12, suppose that R' is a premonadic
functor. Then K has a left adjoint K if and only if the following coequaliser (used as the
definition of K ) exists in [B, A],

FR'e q

FR'F'R FR’ K

R f’/

FR'KFR = FRFR

When this is the case, the unit  : 1 — KK and counit ¢ : KK — 1 of the adjunc-
tion K - K are the unique such natural transformations yielding commutativity of the
diagrams, respectively,

e qK
F'R 1 FR=FRK —— KK
ST e
€
KFR ——= KK, 1.

Kq

Precomposing the image of the last square under R’ with nR’ and using the fact that
R'~,. is a monad morphism T’ — T, we get the commutative diagram

R'F'R R'e R

R/’YKR/ R'n

nR'
RFR = RKFR 9=

R'KK.
Since R'e’ -7’ R’ = 1 by one of the triangular identities for F’ < R’, one gets
R'n=Rq-nR'. (1.4)

1.14. Comonads and adjunctions. Again let n,e : F 4 R: A - B and v/,¢' : F/ 41 R :
A — C be adjunctions and now consider the corresponding comonads G and G'. Let

K&
F
A

be a commutative diagram (no commutativity for R and R’ is required) and define

B
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vk KR X5 REF'KR = RFR 5, R

Then tx = F'7yg is a comonad morphism G — G'.

65

1.15. Theorem. In the situation described in 1.1/, suppose that F' is precomonadic. Then

K has a right adjoint K if and only if the following equaliser exists in [C,B],

L RF/W/

K RF’ RF'R'F’

nRF’ Rt, F'=RF'~, F'

/

RFRF' = RF'KRF'

When this equaliser exists, the unit 77 : 1 — KK and counit & : K

K of the

adjunction K 4 K are the unique such natural transformations yielding commutativity

of the diagrams, respectively,

11— KK KK ™~ KRF'
x | | |
RF = RF'K, 1 — R'F'.
n
Moreover, one has
F'e=¢cF' . Fu.

1.16. The restriction- and change-of-base functors. Any morphism
1:S=(S,m% e = T=(T,m',e")

of monads on A (that is, a natural transformation ¢ : S — T such that ¢ - e

t-mS=m" - (u)) gives rise (see [4]) to the functor

Ay = As, (a,h) = (a b ta),
called the restriction-of-base functor. It is clear that :* makes the diagram

s

AT;AS

|

A

=¢e' and
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commute. Since the forgetful functor Us : As — A is clearly monadic, it follows from
Theorem 1.13 that ¢* has a left adjoint ¢; : Ag — Ay if and only if the pair of natural
transformations

¢T1Us €5

¢1SUs = ¢1UsdpsUs $1Us — ~ = = 1y, (1.6)

oUs
where ¢ : ¢15S — ¢T is the composite ¢1.5 RALN o1l = ¢otUtodT erér, o1, has a
coequaliser g : ¢1Us — 1 in [As, At]. This ¢ : As — A1, when it exists, is called the
change-of-base functor. Recalling that for any S-algebra (a,g), Us((€s)(a,9)) = g and
(e1¢7Us)(a,9) = M, one finds that « sends an S-algebra (a, g) to the object u(a, g) in
the coequaliser diagram in A,

o75(a) o) o)~ 1(a,g) (17)

¢T(La) me

1T (a)

1.17. Remark. (1) Since (¢7,e7¢T - ¢1¢) is a right S-module by Section 1.7(vi), the
diagram

S

prm PTL eToT
67185 == 615 = ¢TT - 4
eTpTS- PTLS
prm®
is a coequaliser in [A, At]. Observing that the pair ¢SS ————= ¢1.5 is just the
eTPTS- PTLS
. ¢1Us esds . . o1 eToT
pair ¢1SUsps d1Us s , it follows that gos is o175 — 1T —— .
oUsés

.
(2) Tt is easy to see that Usest*¢r is the composite ST LT ™ T and since

o Ust"or =Utor =T,
o Uretgr =m’,

.
« Uro=TS 2517 2 T,
we may identify the pairs
(UT¢TUS EsL*¢T, UTQUsb*(bT), (TmT . TLT, mTT . TLT).

Thus, if the coequaliser diagram (1.6) exists and if its image under the functor
[As,Ut] : [As, AT] — [As, A] is again a coequaliser, we get a coequaliser
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Tm'-TuT Urqt*¢r
TST —=TT
m ' T-T.T

UTL!L*d)T.

Since (T, m"-T¢) is a right S-module, while (T, m'-.T) is a left S-module (see Section 1.7),
one concludes that Uttit*¢r = T®sT and Urq* ot = cang’T.

1.18. Proposition. If . : S — T is a morphism of A-monads such that the change-of-base
functor v : As — At exists, then the diagram

AL-AS

N

At
commutes (up to isomorphism).

Proof. Since Us - t* = Ut (see Section 1.16), ¢s 4 Us and ¢ 4 +*, the result follows by
uniqueness of left adjoints. 0O

2. Separable Frobenius monads

The crucial role of separable Frobenius functors (e.g. [28]) in the theory of weak bi-
monads was pointed out by Szlachdnyi in [30] and such functors are used by Béhm et
al. in [9] as an integral part of their definition of weak bimonads on monoidal categories.
In this section we show that in our approach separable Frobenius monads S are of inter-
est since they imply the existence of the change-of-base functor for monad morphisms
S—T.

2.1. Definition. A Frobenius A-monad is an endofunctor S : A — A which carries an
A-monad structure S = (S,m>,e%) and an A-comonad structure S = (5, 46°,¢%) such
that the following diagram commutes

S
ss— "% . 958 (2.1)

\m
S6° S SmS

~g

mSS

SSS SS.

S = (8,m>,e3,8°,¢%) is called separable Frobenius if, in addition, m® - §% = 1.
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2.2. Proposition. Let S = (S, m>, >, 8°,£%) be a Frobenius separable monad on a Cauchy
complete category A. Then for any morphism ¢ : S — T of monads, the change-of-base
functor v : As — At exists.

Proof. We claim that, under our assumptions, (1.6) is a split pair, a splitting morphism
being the composite

pre’U. #1065
T ¢rUs —— ¢T5Us =2 ¢T55Us o2 ¢TSUS

Indeed, that o - 7 =1 follows from commutativity of the diagram

$re’Us $16°Us

o1Us ¢1SUs

$1SSUs

¢1SUs

$Tm°Us oUs

¢1SUs ¢1Us .

1

Here the square and the curved region commute since (¢, ) is a right S-module by
Section 1.7(vii), while the triangle commutes by separability of the monad S.
Next, to show that ¢tUses - 7 - oUs = ¢1Uses - m - p7UsSes, consider the diagram

S

¢1SUs o1Us ¢1SUs p1SSUs ¢1SUs

\ / / / orUses
0SUs 0SSUs 0SUs
$1Se°Us
$185Us ¢1SSUs ¢p1S855Us —— ¢155Us o1Us
d’TS(S US (bTm SUS
¢T65SU5l
SSUs —— ¢1SSSU. ,
o1 S sr55eS U§¢T S brSmSUs

in which the curved region commutes since S is assumed to be Frobenius, the right-hand
parallelogram commutes since ¢ is a morphism of right S-modules, while the other regions
commute by naturality of composition. Thus the whole diagram is commutative, implying
— since m® - Se> = 1 — that

¢1Uses - - oUs = ¢1Uses - 0SUs - ¢T(5SU§.
In a similar manner one proves that

¢1Uses - 7 - ¢p1Uses = ¢rUses - 0SUs - ¢75°Us.
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So ¢p1Uses m-pUs = ¢prUses-m-¢1Uses. Therefore, the pair (1.6) splits by the morphism 7.
Since A is assumed to be Cauchy complete, At (hence the functor category [As, At]) is
also Cauchy complete (see Proposition 1.4). It then follows that the pair (1.6) admits a
(split) coequaliser. Thus the extension-of-base functor ¢ : As — At exists. O

Dually, we have:

2.3. Proposition. Let S be a separable Frobenius comonad on a Cauchy complete cate-
gory A. Then for any morphism f : S — G of comonads, the change-of-cobase functor
fr: AC — AS exists.

3. Comparison functors

Given a comonad G on A and a category B, one has the induced comonads [B, G] on
[B, A] and [G,B] on [A,B].

3.1. Comodules and adjoint functors. Consider a comonad G = (G, d,¢) on A and an
adjunction n,0: F 4 R: B — A.
There exist bijective correspondences (e.g. [16]) between

o functors K : B — A® with USK = F;

o left G-comodule structures  : F' — GF on F (i.e., (F,0) € [B, A]E¢);

e comonad morphisms from the comonad generated by F' 4 R to the comonad G;
« right G-comodule structures ¥ : R — RG on R (i.e., (R,9) € [A,B]I®B).

These bijections are constructed as follows. If USK = F, then K (b) = (F(b),0) for
some morphism ap : FI(b) - GF(b), and the collection {6, b € B} constitutes a natural
transformation 0 : ' — GF making F' a left G-comodule.

Conversely, if (F,6) € [B, A]®Cl then K : B — AS is defined by K (b) = (F(b), ).

Next, for any left G-comodule structure 0 : F' — GF, the composite

tr: FR 22 GFR % ¢

is a morphism from the comonad generated by F' 4 R to the comonad G. Then the
corresponding right G-comodule structure ¢ : R — RG on Ris R 2 RRR B RG.

Conversely, for (R,9¥) € [A,B]¢El the corresponding comonad morphism tx :
FR — G is the composite

FR Y% FrRG 29 q,

while the corresponding left G-comodule structure 6 : F' — GF on F' is the composite

FE prE 5P GF.
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3.2. Theorem. Let G = (G,d,¢) be a comonad on A and n,0 : F 4 R : B — A an
adjunction. For a functor K : B — A® with UK = F, the following are equivalent:

(a) K is an equivalence of categories;
(b) F is comonadic and the comonad morphism tx : FR — G is an isomorphism;

(¢) F is comonadic and the composite

G G
vie t KR 2R 66UCKR = ¢CFR 2% ¢

is an isomorphism.

Proof. (a) and (b) are equivalent by [20, Theorem 4.4]; (b) and (c¢) are equivalent since
UCyk =t by [15] and US reflects isomorphisms. 0

3.3. Right adjoint of K. Now fix a functor K : B — A® with commutative diagram

B — > AC (3.1)

G G
Then vg is the composite KR KR, ¢CUCKR = ¢°FR RN #© and using the fact

from Section 1.14 that U®yy is just the comonad morphism tx : FR — G induced by
the triangle, an easy calculation shows that

BUC = RUCyU® - nRU®,
where 8 : R — RG is the right G-module structure on R corresponding to the trian-
gle (3.1). Thus, when the right adjoint K of K exists, it is determined by the equaliser

diagram

RUSYS

K —— RUS RGU® = RUS¢SUS. (3.2)

BU®

It is easy to see that for any (a,) € A®, the (a,#)-component of (3.2) is the equaliser
diagram

__ L(u,g) R(@)
K(a,0) —— R(a) —= RG(a) (3.3)
Ba
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and, referring to (1.5), for the counit @: KK — 1 of K - K, one gets

U@, 0) = 0a Fi(a0)- (3.4)

Suppose now that K exists, write P for the monad on B generated by the adjunc-
tion K - K, and consider the corresponding comparison functor Kp : A® — Bp.
Then Kp(a,0) = (K(a,0),K(5(4,0))) for any (a,0) € A°. Moreover, KpK = ¢p and
UpKp = K. The situation may be pictured as

K

B v Bp fe AG (3.5)
\—/

In order to proceed, we need the following (see [27, Lemma 21.2.7]).

3.4. Proposition. Let n,c : F4R: A — C andrf/,o' : F' 4 R’ : B — C be adjunctions
with corresponding monads T and T, respectively, and let

K
_—
X

be a commutative diagram of categories and functors. Then the composite

A

F’

aQ——&

'RF Ko
T=RF . RFRF=RKFRF " L RKF=RF =T

is a monad morphism T — T.

Suppose again that K exists and consider the natural transformation ¢ : P — RF,
where 1, = L) for all b € B.

3.5. Proposition. . : P — RF is a monad morphism from the monad P to the monad
generated by the adjunction F - R.
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Proof. Applying Proposition 3.4 to the diagram

N/

in which UK = F, gives that the natural transformation,

P—KK "5, RFRK — RUSKKK £V 75, RUSK — RF,

is a monad morphism from the monad P to the monad generated by the adjunction
F = R. Since for any (a,0) € AS, U(G (4, 9)) = 0a - F(1(a,0)) (by equation (3.4)), it
follows that, for each b € B, the b-component of the above natural transformation is the
composite

UO'F(b)

W), g RUR®b) 2250 UR(®b),

P(b) 2% UFP(b)

which is easily verified to be just the morphism ¢, : P(b) — UF(b). This completes the
proof. O

We are mainly interested in the case where the functor F' is monadic. So, our standard
situation of interest, and our standard notation, will henceforth be as follows. We consider
amonad T = (T,m',e") on A, a comonad G on At, and an adjunction 7,7 : K 4 K :
(AT)® — A, where K : A — (A1)® is a functor with UgK = ¢1. Write P = (P,m", eP)
for the monad on A generated by the adjunction K 4 K and write + : P — T for the
induced morphism of monads. This is pictured in the diagram

=

in which Kp : (A7)® — Ap is the Eilenberg-Moore comparison functor for the monad P,

and thus KpK = ¢p and UpKp = K.
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3.6. Proposition. In the situation above, the functor Kp : (AT)® — Ap admits a left
adjoint Lp : Ap — (A7T)C if and only if the restriction-of-base functor t* : At — Ap
admits a left adjoint, i.e., the change-of-base functor v : Ap — At exists. Moreover,
when this is the case, 1y = UgLp.

Proof. According to Section 1.16, ¢ : Ap — At exists if and only if for each (a, g) € Ap,
the pair of morphisms (¢1(g),m! - ¢1(1a)) has a coequaliser in At, while by Proposi-
tion 1.2(1), Lp : Ap — (A1)C exists if and only if the pair of morphisms (K (g), 7k (a))
has a coequaliser in (At)C.

Since the functor U® : (A1)® — At preserves and creates coequalisers, it suffices to
show that the image of the pair (K(g),0kq)) under U°C is just the pair (¢7(g), m) -
#7(ta)). That UCK(g) = ¢7(g) follows from the equality USK = ¢1. Next, by (3.4),
UG(EK(G)) = (€T)UGK(Q) -(bT(LK(a)). But since (€T)UGK(a) = (€T)¢T(a) = ml—, we see that
US(Gk(a)) = mg - 1(ta). Hence

UG(K(Q)vaK(a)) = (¢T(g)a ml— : ¢T<[’a))
and thus the result follows. O

Now assume that the change-of-base functor ¢ : Ap — At exists, that is, Kp :
(AT)® — Ap admits a left adjoint Lp : Ap — (A7)C. Thus, for any (a,g) € Ap, u(a,g) is
given by be the coequaliser

T(9)

/\
TP(a) m TT(a) p—

q(a, 9)

T(a) u(a,g) .

Since 1y = UgLp by Proposition 3.6 and ¢-¢p = ¢ by Proposition 1.18, both triangles
in the diagram

K
A/Ax AT)C 3.7
p” P o (A7) (3.7)
foxs ! Us
At

commute. Write G; (respectively Gg) for the At-comonad generated by the adjunction
o1 1 Ut (respectively v = ¢*), and consider the related comonad morphism t4, : G1 — Go
(respectively tr, : G2 — G) corresponding to the left (respectively right) triangle in the
above diagram (see Sections 1.14 and 3.1). Since UpKp = K and ¢p (respectively Lp)
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has a right adjoint Up (respectively Kp), it follows — by uniqueness of right adjoints —
that Lp - ¢p = K. Thus we may apply [22, Proposition 1.21] to obtain the equality

tk =trp  top- (3.8)
Recall from Section 1.16 that ¢ can be obtained as the coequaliser of diagram (1.6).
3.7. Proposition. If Kp : (A1)® — Ap admits a left adjoint, then tg, = q*.

Proof. Applying the results of Section 1.14 to the left triangle in diagram (3.7) gives
that t4, = t17y, with the composite

v :opUt 29T, “uppUt = " o7UT L

Here 7 is the unit of the adjunction ¢ - ¢*, which (applying Theorem 1.15 to the diagram
Up - v* = Ut) is the unique natural transformation making the diagram

ep

opUp 1
N
¥ q
v o1tUp L0

commute with the composite

vt g LI GpUrdr = dpUpi*dr 205 gy

T

The equations Upy' = ¢ and ¢ - e = e imply commutativity of the diagram

P

€ UP UP Ep
Up PUp = UpgpUp Up
tUp=Up~'Up Upn
GTUP
Utq=UpL"q
TUP = UPL*(bTUp UPL*L!.

Since Upep - €"Up = 1 (triangular identity for ¢p - Up), it follows that Upn is the
composite

Up ﬂ) TUp = UpL ¢TUP —> UPL L.

In particular, Upn¢p is the composite

P <L TP = Upt* ¢rUp e 250 Upi*ugp = Upt*ér = Urdr.



B. Mesablishvili, R. Wisbauer / Journal of Algebra 490 (2017) 55-103 75

By Remark 1.17(1), g¢p is the composite

orP T 1T T g,

and Upﬂqﬁp is the composite

e'P T m’
P—TP —TT —T.

Since Tv-e"P=¢"T-1 (by naturality) and m'-e" = 1, one concludes that Upnop = . For

any (a,h) € At, (61)(a, n) = h, and it turns out that (g z) is just P(a) 5 T(a) 2 a
Now, by Remark 1.17,

T(ma) T(ta) m!
TPP(a) ————=TP(a) ——= TT(a) ——= T(a)
m; T(tpa))
is the coequaliser defining v/(P(a),mf) = u(¢p(a)), and it follows that u(y(, n)) =
(tgp)(a, n) is the unique morphism leading to commutativity of the diagram

T(ta ml
TP(a) " () — o T(a)
T(w) |
TT(a) t(V(a,n))
T(h)
¢ qL*(a,h)
T(a) u(e*(a, h)).

Since ¢, - ef = el and m] - T(e]) = 1 = h-T(el), it follows from this diagram that

(tcf?P)(a, h) = L!(W(a,h)) = 4 (a, h), A8 claimed. O
4. Weak entwinings

Let H be an endofunctor on any category A, admitting both a monad H = (H, m,e)
and a comonad H = (H, 6, ¢) structure, and define

o:HH ™ g 2™ oo, (4.1)

7 HH 2 g ™ gH.

The class Nat(H, H) of all natural transformations from H to itself allows for
the structure of a monoid by defining the (convolution) product of any two ¢, ¢’ €
Nat(H, H) as the composite ¢ * ¢’ = m - ¢’ - §. The identity for this product is
e-e: H— H.
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Recall that weak entwinings of tensor functors were defined by Caenepeel and De
Groot in [14] and a more general theory was formulated by Bohm (e.g. [5, Example 5.2]).

4.1. Weak monad comonad entwinings. For a natural transformation w : HH — HH,
define the natural transformations

¢ HS g < g <5 1,

k. HH M gopp 22 goa 2™ gw,

W HH22 ppg 2 g ™2 gH.

(H, H,w) is called a weak entwining (from the monad H to the comonad H) provided

(i) w-mH=Hm -wH- -Hw, 6H w=Hw- -wH - HJ, (4.2)
(ii) w-eH=H¢- 5, e¢H -w=m-HE,

and is said to be compatible if
0-m=Hm -wH - Hé. (4.3)
It is easily checked that

k-He=w-eH, eH-k=m-£{H, always hold, (4.4)
Ex€=¢& K-kK=K, kK-w=w, follow by (4.2)(i),
k-0=96, kK-o=o0, &x1=1, follow by (4.3).

4.2. Mixed bimodules. We write Aﬁﬂ(w) for the category of mixed H-bimodules, whose
objects are triples (a, h,#), where (a,h) € Ay, (a,0) € A with commutative diagram

H(a) = a—"~ H(a)

H(G)l TH(h)

HH/(a),

and whose morphisms are those in A which are H-module as well as H-comodule mor-
phisms.

The following is a particular case of [5, Proposition 5.7].

4.3. Proposition. Let H= (H, H,w) be a weak entwining on A. Then the composite

U HUy 2% HHUY <Y HHUY = HUpbuUy 2222 HU,
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is an idempotent, and if

HUy

HUy

N

G

is its splitting, then there is a comonad G = (C~1’,5~,€) on Ay, whose functor part takes an
arbitrary (a,h) € Ay to

(G(a’a h)a P(a,n) - H(h) *Wa - H(i(a,h) : HG(av h) - G(a’ h))a

and whose comultiplication § and counit & evaluated at (a, h) are the composites, respec-
tively,

PG(a,h)

HG(a,h) 22 GG(a, h),

Z(a h) H(p(a,h))
e,

Gla,h) ~“" H(a) 25 HH(a)
Gla,h) 2“5 H(a) 5 a.
We call G the comonad induced by H = (H,H,w). Obviously, U4G = G.

4.4. Theorem. Let H= (H, H,w) be a weak entwining on a Cauchy complete category A
and G the induced comonad on Ay. Then there is an isomorphism of categories

O AR (W) = (AWC  (ah,8) = ((a,h),pan - 6),
with the inverse given by ®~1((a, h), () = (a, hyiga,n - Q).

Proof. Since pi = 1, it is clear that ®®~! = 1. To show that ®'® = 1, consider an
arbitrary object (a, h, ) € AE (w). In the diagram

a—" s H( ) .
| o | \
Ha) "L HH(a) — = HH(a) " H(a)
N N

L(a,n)=%a,n) " P(a,h)

the square commutes by naturality of e, while the trapezium commutes since (a, h, 0) €
AE (w). Since h - e = 1, this means

0 =T (an) 0 ="t(an) Pan) 0

Thus ®~1®(a, h,0) = (a,h, ), that is, &~ '® =1. O
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Again by [5, Proposition 5.7], we get as counterpart of Proposition 4.3:
4.5. Proposition. Let H= (H, H,w) be a weak entwining on A. Then
— HU= H . _ H _ H _
T HUH 2280 quteHuH = paut <25 ggut <2Y gyt

is an idempotent, and if

is its splitting, then there is a comonad T = (f,ﬁz,é’) on Aﬁ, whose functor part takes
an arbitrary (a,0) € AH to

(T(a7 9)3 H(p/(a,é)) *Wq H(a) ’ i/(a,e) : T(av 9) - HT((Z, 9))7

and whose multiplication m and unit €, evaluated at an H-comodule (a,0), are the com-
posites, respectively,

) i (a,0) ) H(i{4,0))

TT(a, 0 HT(a,0 HH(a) ™5 H(a) 222, T(a,0),
a -2 H(a) 2% 7(a, 0).
We call T the monad induced by H = (H, H,w). Obviously, URT =T.

4.6. Theorem. Let H = (H, H,w) be a weak entwining on a Cauchy complete category A

and T the induced monad on AY. Then there is an isomorphism of categories
O Af(w) = (A7, (a,h,0) = ((a,0),h-i(, ),
with the inverse given by (®')~1((a,0),9) = (a,g - iany 0)-

4.7. Comparison functors. Let H = (H,H,w) be a compatible weak entwining on A.
By (4.3), there is a functor (e.g. [18, Lemma 5.1])

K, A= AW, a— (H(a),ma,d,).
Precomposing K, with ® and @’ gives functors

K:A— (Aﬂ)Gv a +— ((H(a)ama)v p(H(a),ma)' 5(1)7

K :A— (A", a = ((H(a),d,), ma- W H(a), ma))>
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leading to commutative diagrams

A" Ay A —E @ )
Ay : AR : (A ——— All ().

We will use that the splittings of ', TV (from 4.3, 4.5) lead to splittings of k, &’
(see 4.1),

(4.6)

HH il HH HH " HH
P—%‘\ AH p /_% /_i/d’H

G =Goy ; T =T¢n

4.8. Proposition. In the situation described above, consider the comonad morphism t :
duUn — G induced by the left triangle in (4.5) (see Section 3.1).

(1) For any H-module (a,h), the (a,h)-component fort is the composite

b H(a) 22 HH(a) 2% H(a) 292 G(a, h).

(2) For any a € A, the ¢pn(a)-component for t,

6 a m. D -
touta) : HH(a) 222 HHH(a) 2% HH(a) 2= G(a),

is the unique morphism leading to commutativity of the diagram

td’ﬂ(a) —
HH(a) — G(a)

Proof. (1) Since K(a) = ((H(a),ma),P(H(a), m.) " Oa), the left G-comodule structure
a : ¢y — Gy on ¢y corresponding to the left triangle in (4.5), has for its a-component
Qa = P(H(a), ma) - 9a- It then follows from Section 3.1 that, for any (a,h) € Ap, the
(a, h)-component t(, ) is the composite

G(H(a),ma) 2" Gla,h),

tan @ H(a) —2—s HH(a) 22,
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which, by naturality of composition, is the same as

b H(a) —22— HH(a) 2%

P(a,h)

H(a) G(a,h).

Then, in particular, 4, () = Pgy(a) - H(Ma) - OH(a) = Do * Ta-
(2) Since G — '~ HH é HH is an equaliser diagram and k-0 = o (see (4.4)),
1

there is a unique morphism j : HH — G such that i - j = 0. Then ton(a) = Py " Oa =
P, fa* ja = ja and the result follows. O

Symmetrically, we have:

4.9. Proposition. In the situation described in /.7, the monad morphism t : T — d)FUF
induced by the right triangle in (4.5) (see Section 3.1), has for its (a,0)-component

ia,0) H(6)

t(a,0) : T(a,0) H(a) HH(a) ™ H(a).

Our general results from Section 1 now yield:

4.10. Proposition. Let H = (H, Fl,w) be a compatible weak entwining on A. Then the
functor K : A — (Ap)® (and hence also K, : A — Ag (w)) has a right adjoint if and

only if, for any (a,h,0) € AE (w), the pair of morphisms

0
/—\
a— H(a) i HH(a) W H(a) (4.7)

has an equaliser in A.

Proof. Since the functor U® : (Ay)® — A is clearly (pre)comonadic, it follows from
Theorem 1.15 that the functor K : A — (Ay)® admits a right adjoint if and only if for
any ((a,h),v) € (Ap)C®, the pair

v

G(a,h),

B(a, h)

where 8 : Uy — UnG is the right G-comodule structure on Uy : Ay — A induced by the
triangle (4.5) (see Section 3.1), has an equaliser in A, which — since i : G — HUy is a
(split) monomorphism — is the case if and only if the pair

i(a, n)B(a, h)



B. Mesablishvili, R. Wisbauer / Journal of Algebra 490 (2017) 55-103 81

has one. According to Propositions 4.8 and 3.1, B4, 5) is the composite

G(H(a),ma) =225 G(a, h).

a €a H(a) da HH(CL) P(H(a), ma)

Since k- d =6 by (4.4) and I' =i - p, it follows by naturality of ¢ that the diagram

B(a, h)
da P(H(a),ma)
a = H(a) —= HH(a) ——— G(H(a),ma) ﬁ G(a,h)
(H(a),ma) i(a, h)

Ka=I"(H(a),mq)
HH(a) — H(a).
H(h)

is commutative. So we have

i(a,h) " Ba,n) = H(h) - 64 - €q-

Thus, the functor K : A — (Ax)® has a right adjoint if and only if for any ((a, h),v) €
(Ap)®, the pair of morphisms

i(a,h)' v

a H(a)

H(h) 64 €q

has an equaliser. Recalling that @ : AE (w) — (AR)® is an isomorphism of categories and
o~ 1((a,h),v) = (a,h, i(a, n) - V) gives the desired result. O

Symmetrically, we have:

4.11. Proposition. Let H = (H,H,w) be a compatible weak entwining on A. Then the
functor K" : A — (AH) 1 (and hence also K, : A — Aﬁ (w)) has a left adjoint if and only

if for any (a, h,0) € AE (w), the pair of morphisms

h
H(a) ﬁ HH(a) — H(a) ——a (4.8)

has a coequaliser in A.

Symmetric to 4.1 one may consider
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4.12. Weak comonad monad entwinings. For a natural transformation @ : HH — HH,
define the natural transformation

¢ H2 gy & o 25 1
(H,H,) is called a weak entwining (from comonad H to monad H) provided

(i) w-Hm=mH -Hw-wH, H0 -w=wH -Hw-/H, (4.9)
(ii) W-He=¢H-5, He-w=m-EH,

and is said to be compatible if
d-m=mH-Hw-0H. (4.10)
Here we get

Ex€=¢, 1x€=1. (4.11)

Certainly, the theory for this notion will be similar to that for monad comonad entwin-
ings. However, the mixed bimodules (as in 4.2) do not play the same role here but are
to be replaced by liftings to Kleisli categories. Nevertheless, comonad monad entwinings
will enter the picture in the next section.

5. Weak braided bimonads

In the theory of Hopf algebras H over a field k, the twist map for k-vector spaces M, N,
twyn : M ®, N — N ®; M, plays a crucial part. In particular it helps to commute
H ®; — with itself by twpg g : H ®; H — H ®;, H. Generalising this to monoidal
categories, often a braiding is required, that is, a condition on the whole category. It was
observed (e.g. in [23]) that it can be enough to have such a twist only for the functor
H under consideration, that is, a natural isomorphism 7 : HH — HH satisfying the
Yang-Baxter equation. For the study of weak braided Hopf algebras, Alonso Alvarez e.a.
suggested in [1, Definition 1.2] to consider, for any object D in a monoidal category, a
weak Yang-Bagzter operator tpp : D ® D — D ® D, which is not necessarily invertible
but only regular. Here we take up this notion and formulate it for any functor on an
arbitrary category.

5.1. Weak Yang Baxter operator. Given an endofunctor H : A — A, a pair of natural
transformations 7,7 : HH — HH is said to be a weak YB-pair provided the following

equalities hold:

rrvor=7r, v 7=7, v =1"1 (5.1)
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Hr-tH-Hr=7H - -Ht-7H, (5.2)
Hr'-7H-H7 =7H- -H7' -7H',

and for V := 7.7/,

TH-HV =HV.-7H, H7t-VH=H71-VH, (5.3)
TH-HV =HV-7H, Ht'-VH=H7-VH.

The conditions in (5.2) are the usual Yang-Baxter equations for 7 and 7/, respectively.
The equations in (5.1) and (5.3) are obviously satisfied if 7/ = 7~! and in this case 7 is
known as Yang—Baxter operator.

5.2. Definition. Let H = (H, m,e) a monad, H = (H,d,¢) a comonad on A, and 7,7’ :
HH — HH a weak YB-pair with V := 7 -7/. The triple H = (H,H, 7) is called a weak
braided bimonad (or weak T-bimonad) provided

7Y HmH - 66 -ee = 0H -6-e = HmH - HTH - 56 - ee.

(1) m-V=m,V-§=4;

(2) V-He=7-eH,He-V=c¢H -7, V-eH=71-He,cH -V =He - T;
(3) 0H-t=Hr-7H -H0,7-mH =Hm-7H - Ht;

(4) Hé-7=7H-H7-5H,7-Hm =mH - HT - 7H;

(5) 6-m=mm-HtH - 0;

(6) ee-mm-HSH =e¢-m-mH = ee-mm-H7t'H - HOH,;

(7)

For vector space categories and (finite dimensional) tensor functors H ® — with 7 the
twist map, these conditions were introduced in [10, Definition 1]. For monoidal categories
and monoidal functors the conditions are those for a weak braided bialgebra introduced
and studied by Alonso Alvarez e.a. [1,2] and we can — and will — freely use essential
parts of their results in our situation. Note that if V is the identity of H, the conditions
(1)—(4) in the definition describe the invertible double entwinings considered in [23].

The following observations provide the key to apply our previous results.

5.3. Related entwinings. Given the data from Definition 5.2, define

mH

w:HH s g s HuH HH,
o:-HH 2 g ™ g 2 gH.

From the Sections 4.1 and 4.12 we get the natural transformations

eH w eH = He w He
— — — —

¢:HS g S g 25 H, ¢ H
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and the obvious equalities
w-He=0=w-eH, E-e=e=¢-e.
Recalling ¢ and & from 4.1, we define
v HS g S 2| v.H 2 0 S HE 2 H
With these notions we collect the basic identities proved in [2].

5.4. Proposition. Let H= (H, H,T) be a weak braided bimonad on A. Then

(1) &, &, x and X are idempotent (w.r.t. composition) and respect unit and counit of H;
(2) ¢m-HE=¢ - mand €-m-EH =€ -m;

(3) HE-6-6=6-Cand EH -§-E=05-€&;

(4) c-eH=xH-6 andc-He = HY-0;

(5) Heco=m-Hx andeH -c=m-XH;

6) & Xx=6E X=X E=xXE=88 X=X X=X =X 6=¢

Proof. (1) is shown in [2, Proposition 2.9]; (2), (3) are from [2, Proposition 2.14];
(4) is shown in [2, Proposition 2.6], (5) in [2, Proposition 2.4], and (6) in [2, Propo-
sition 2.10]. O

The following shows the way to apply results from the preceding section.

5.5. Proposition. Let H= (H, H,T) be a weak braided bimonad. Then

(
(

e (H, H,w) is a compatible weak (monad comonad) entwining;
o (H,H,@) is a compatible weak (comonad monad) entwining.
Proof. As easily seen, condition (5) in 5.2 yield the equalities (4.3) and (4.10) and also
implies (4.2(i)) and (4.9(i)) for w and @, respectively (e.g. [7,22]). Now Propositions 2.3

and 2.5 in [2| show the equations in (4.2)(ii) and (4.9)(ii). O
Direct inspection yields the technical observation:
5.6. Lemma. Suppose that f,g : X — X are idempotents in an arbitrary category such

that fg =g and gf = f. If X 25 Xy s X (resp. X 2% X, o, X ) is a splitting of
the idempotent f (resp. g), then

; f i g
X, X ==X  (resp. Xy —>X—=%X)
1 1
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is a (split) equaliser diagram, while
f Pg 9 Pf
X—=X—X, (resp. X —= X —— Xy)
1 1

is a (split) coequaliser diagram.

Henceforth we work over a Cauchy complete category A, with a fixed a splitting of €,

H H (5.4)

&
o E /\
HE H~—>HH — >~ HHH —— HH (5.5)

is a (split) equaliser in [A, A].

Proof. Since Hm - §H - eH = xH - § by Proposition 5.4 (4), we have to show that the
diagram

§
_E /\
HE H 5 HH m HH
X

is a split equaliser. Let us first show that the pair

§
H HH HH (5.6)
§ xH

is cosplit by the morphism He : HH — H. Indeed, since He - § =1 and He - xH -0 =
X - He - 0 = x, it remains to show that xH -0 - x = ¢ - x. For this, consider the diagram
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H X H
eH (1) eH
Hx
HH HH
H
\ (2) SH XH' )
HHy
YH- 6 SH HHH HHH
(3) l H6H (4) Hm
HHH ——~ HHHH A g P g
HM © /
H )

HH H
He

in which the
o regions (1), (2), (5) and (6) commute by naturality of composition;
« region (3) commutes by coassociativity of J;
« region (4) commutes by Proposition 5.4(5);

o the curved regions commute by Proposition 5.4(4).

Hence the whole diagram commutes, implying
xH-0-x=90-He-xH-0=6"x.

So the pair (5.6) is cosplit by the morphism He and hence one finds its equaliser by
splitting the idempotent y = He - YH - 6. But since £ - x = x and x - € = £ by Propo-
sition 5.4 (6) and (£ - ¢ is the splitting of the idempotent & (see (5.4)), it follows from
Lemma 5.6 that (5.5) is a (split) equaliser diagram. O

Symmetrically, we have:

5.8. Proposition. In the situation of Proposition /.11, the diagram

HH —— HHH HH H H¢
HS mH eH

is a (split) coequaliser diagram in [A,A].
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Since Hm-0H -eH = xH -0 and eH-mH -H§ = m-xH by Proposition 5.4(4) and (5),
Propositions 5.7 and 5.8 immediately yield:

5.9. Corollary. Let H= (H, H,T) be a weak braided bimonad A. Then

§
_ £ /—\
HE H HH HH
~ s A xH -~
F CHe

and

/—\ 3 _
HH HH H—" HE
~ _XxH m/ RN 7
T Ec~ B \Lf/

is a (split) coequaliser yielding the comonad

Fg = (Hg,ég, eg) with Hg = HE, og = (q5q%) -6 - andeg = ¢ - i
The next result provides the technical data to show Frobenius separability.

5.10. Lemma. Let H= (H, H,7) be a weak braided bimonad and consider the composite

S gH T, gEhE,

vil—sH

Then mE - v = €€ and one has commutativity of the diagrams

Hé vHE HEHEHE HE : Hfv HEHEHE
_ 3 L o J o o
'8 HSm?S 8 méHE
¥ v
H HH —— HfHS, H HH — HSHS.
P E 6 “q*
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Proof. The diagram

1—° og—° gy - gy
He Hw
H
\ HH HH < HHH
m He HHe
H—~———H~— HH

commutes by naturality and since @ is an entwining (Proposition 5.5). Now equations
from 5.3 and £-m -&EH = & -m (Proposition 5.4(2)) yield commutativity of the diagram

H. H
g g™ gg " pgm
m
1—* ~H- - H~— H
e €

and the splitting £ = £ qE implies mé v = ek,
In the diagram

— e £ — 3 _ gHHg _ —HEEHg _
B gpt T gt T pEgpe U gegene

3 HE HEHE \ HE EHS
_ H®EH® L
H HH HHH¢ — HSHHS
eH ¢CHHE
0H HH.S HEHLE
HHH — HHH H¢HH
HEH ¢"HH
K} Hm HEm
(a) Hm  (b) HH — HEH
q*H
HoE HEGE
HH HH HH¢ S HEHS
xH Hq® ¢ HE

o the triangle commutes by the splitting of &;

o region (a) commutes by Proposition 5.4 (4);

« region (b) commutes because Proposition 5.4 (2) induces ¢ -m-EH = ¢ -m;
e the other regions commute by naturality.
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Since yH -6 - =64 by Proposition 5.7, we obtain from this commutativity of the left
hand diagram.
Next, in the diagram

_ 3 _ 3 _ 3 o 3 o
HfH—%>H5HL§>H5HHM>H5H5HuH5H5H5

K3 EH l SHH J/ \ HEEH HE . SHE
He HS¢H = P
H HH P HHH HSHH H¢HHS
\ (a) B EHH EHHE
He HEH B
5 HH Py HHH HHH¢
©] mH WLHE
Hx
HH HH - HHE
Hq§
EH EH GEHE
HEH HEH — - HEHS
Hx HEGE

« the top triangle commutes by the splitting of &;
« region (a) commutes since from Proposition 5.4(1) and (3) we get

EH - 6-e=E(H-6-(-e=0-E-e=0-¢;

o region (b) commutes by Proposition 5.4(4);
o the other regions commute by naturality.

Thus the whole diagram is commutative, and in the light of the equality qg X = qg,
derived from & - ¥ = € in Proposition 5.4(6), commutativity of the right hand diagram
follows. O

The following generalises [26, Proposition 4.2] and [29, Proposition 1.6] (see also |8,
Proposition 4.4]).

5.11. Proposition. Let H = (H, H,7) be a weak braided bimonad on A. Then the quintuple
(HS,m®, e; O EE) s a separable Frobenius monad.

Proof. Using the results of Lemma 5.10, it is easy to verify that the diagram correspond-
ing to (2.1) is commutative and that m¢ - dg=1lye. O

5.12. Proposition. Let H = iﬂ,n, 7) be a weak braided bimonad on A and suppose
the functor K, : A — AJ(w) admits a right adjoint K : Afj(w) — A. Then
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ﬂg = (HE, mg, eg) is the monad generated by the adjunction K, - K and (& is the
corresponding morphism of monads H¢ — H (as in Proposition 3.5).

Proof. Suppose there is an adjunction

n,8: K, 4K : A} (w) — A;

\I I

consider the monad (KK,,, K£K,,,7) it generates on A. Write + : KK,, — H for the cor-
responding morphism of monads (as in Proposition 3.5). Since, by Proposition 4.10, the
functor K, : A — Aﬁ( ) admits a right adjoint if and only if for every (a, h,0) € AE (w),
the pair of morphisms (4.7) has an equaliser in A, and since K, (a) = (H(a),ma,d,) for
all a € A, it follows from Proposition 5.7 that KK, = HE¢ and that £ = .

According to Theorem 1.15, the unit 7: 1 — KK, = HE of the adjunction K, 4 K
is the unique such natural transformation yielding, for all a € A, commutativity of the
diagram

It then follows that 7, = qa Lf Ny = qa €a-
Next, since for any a € A, Eg_ (q) = Mq - H(:8) by (3.4), it follows that

K(Ex, (a) : KK KK,(a) = H H*(a) » KK, (a) = H*(a)

is the unique morphism making the diagram

- ) 2 0y
H¢HE(a) —— > HH%(a)

[ me®
KEk,(a) HH/(a)
H(a) H(a)

o m|

commute and we calculate (recall (5.4))

K(€K (a))

@m\
|

g 'F(ng(a)) = qg “mg - H(g) - qug(a) ={qg M- (L Lg)a-

This completes the proof. O
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H.SH mH SH

. Hm
HH*H H3 H? H?
HeH? ®
HSH (2)
HmH Hm
(1) H* H* H* H?
T sz H?>m
H. H H?>mH H2qn (4)
HSH? r \ wH
m Hm H® ) H* Hm )
(6) H2>m (8)
H*m
HmH
H3 ) H3 H* H* m
HSH wH?
mH (10)
Hm §H
H2
Fig. 1.

By symmetry, we also have:

H2

HS

Hm

91

5.13. Proposition. Let H = (H,H,7) be a weak bmidfd bimonad on A and suppose the
functor K, : A — Ag (w) admits a left adjoint K : Aﬁ (w) = A. Then FIE = (HS, )
is the comonad generated by the adjunction K 4 K, and qE :H— PE is a comonad

morphism.

_According to Section 1.7, the monad morphism £ ﬂg — H equips H with an

Hé-bimodule structure, where the left and right actions are the composites, respectively,

E LZH m 7HLZ m
p: H'H “X HH = H, pr: HHS = HH ™ H.

5.14. Proposition. For a weak braided bimonad H = (H,H,7) on A, 0 = Hm - 6H co-

equalises the pair (p.H,Hp;), i.e.,
o-prH=0-Hp.
Proof. Since (5.5) is an equaliser diagram and since in Fig. 1

o diagram (1) commutes since e is the unit of the monad T;
o diagrams (2) and (10) commute by Proposition 5.5;
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o diagrams (3), (7) and (9) commute by associativity of m;
o diagrams (4), (5), (6) and (8) commute by naturality,

one sees that o - p,H = Hm-6H-Hm-HifH =0 - Hp,.. O
Suppose now that the tensor product H® ¢H exists, i.e., there is a coequaliser diagram

prH

HHSH ——= HH —~ H® H, (5.7)
Hp; -
where £ = canHHg’H. Note that, by Proposition 1.9, H®H has a right H-module structure

such that ¢ is a morphism of right H-modules. More_over, since o coequalises p,.H and
Hpy, the composite p - o : HH — G (see (4.6)) also coequalises them, and since diagram
(5.7) is a coequaliser, there exists a unique natural transformation v : H®,e H — G
making the diagram a

_ prH
HH¢H ——= HH L H®H (5.8)
Hp; .
| Aly
p-o \
G

commute. It follows — since Untéy = p - o by Proposition 4.8 — that the diagram

HH —°% -~ HH (5.9)
Untén
H@ye H — G

commutes. Precomposing this square with He and using o-He = ¢ (e.g. [23, 5.2]), we get
p-0=r-0-He. (5.10)
5.15. H as Hg-bicomodule. The comonad morphism qg ‘H— ﬁg equips H with an

ﬁg—bicomodule structure, where the left and right coactions are the composites, respec-
tively,

3 3
0 :H % HH " HeH, 6 H S HH % HH.

Moreover, there is a unique natural transformation 7/ : T — H oHe H making the
triangle in the diagram
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0,.H

Holeg - _ HH ——= HH.H
A HO, ¢
34/ |
| o1’
T

commute. Here 7’ and T are as defined in the diagrams (4.6).

93

(5.11)

5.16. Proposition. Let H = (H, H,7) be a weak braided bimonad on A. Viewing H as a

Y3 Y3 8 m ra < .
right H¢-module by the structure map HH¢ RNy § 2 LN H, then ¢¢ : H — HE is a

morphism of right ﬂg-modules.

Proof. For this, we have to show commutativity of the diagram

_ E1r€ _
HHE o HEHE
HLE i l 171E
m qE _
HH H HE,

HHE HHE HH
ok
_ -7 ¢H
HH ~ H
ml \qu
qg =
H HE.

In this diagram, the triangle commutes by naturality of composition, and the trapezoid
commutes, since ¢ is a (split) monomorphism and &-m-£H = &-m by Proposition 5.4(2).

This completes the proof. O

Consider now the diagram

_ ~H
HHEH HH —' > HouH
Hp - . _
ngéH l \L qEH q
T 5 mé £ m )
HEHEH HEH 7 gm gy

(5.12)
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in which qEH -prH = méH - qEHEH , since qE is a morphism of right H-modules by
Proposition 5.16, ng -Hp,=H Epl . qEH €H because of naturality of composition, and
the bottom row is a split coequaliser, since the pair (H,p;) is a left H-module (see
Remark 1.17 (1)). It then follows

5.17. Proposition. Let H = (H, H,7) be a weak braided bimonad on A. In the situation
described above, there is a unique morphism q : H® g H — H making the trapezoid in
the diagram (5.12) commutative and this is a morphism of right H-modules.

Proof. According to Section 1.7, the morphisms qEH , 1*H and m are morphisms of right
H-modules. Then the composite m - £H - qEH = p - ng (and hence also g - /) is a
morphism of right H-modules, implying — since ¢ and ¢H are both epimorphisms of right
H-modules — that ¢ is also a morphism of right H-modules. O

5.18. Proposition. Suppose v : H@,« H — G in (5.8) is an epimorphism. If the mor-
phisms f,g: H— H are such that fx1=gx*1, then f+x£=gx*¢.

Proof. If f,g: H — H are morphisms such that f*1=g¢=x1, then
m-fH-0=m-gH -0
and since o - He = 0, we have
m-fH-0c-He=m-gH -0 - He.

According to Section 1.7, fH and gH can be seen as morphisms of the right H-module
(HH,Hm) to itself, while m is a morphism from the right H-module (HH, Hm) to
the H-module (H,m). Moreover, ¢ is also a morphism of right H-modules (e.g. [23,
Section 5.1]). Thus the composites m- fH - o and m - gH - o both are morphisms of right
H-modules. It then follows from the right hand version of [23, Lemma 3.2] that

m-fH-c=m-gH -o.
Next, since 0 = k-0 =1i-p-ocand p-o =L (by (5.9)), we have
m.fH.g.’y.g:m.gH.g.y.g’
and [ and v being epimorphisms we get m - fH -1 =m - gH -1, thus
m-fH -k=m-gH - k.
Recalling that k- He =w - eH and w-eH = HE - § (see (4.4), (4.2)(ii)), we get
m-fH-k-He=m-fH -w-eH=m-fH -Hf -6 = fx¢,

and similarly, one derives m - gH - k- He = g+ €. Thus, fx=gx{. O
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Since & is (clearly) a morphism of right H-modules, Proposition 1.4 yields

5.19. Proposition. The composite GH £> HHH 2 HH 2 G makes G into a

right H-module such that p: HH — G and i : G — HH both are morphisms of right
H-modules.

5.20. Corollary. v: H®, : H — G is a morphism of right H-modules.

Proof. Since, in diagram (5.9), the morphisms o, p and ¢ are all morphisms of right
H-modules (see [23, 5.1] and Proposition 5.19), and since ¢ and ¢H are both epimor-
phisms, it follows that ~ is also a morphism of right H-modules. O

6. Weak braided Hopf monads

In this section, we define an antipode for weak braided bimonads H = (H, H, 7) and
formulate various forms of the Fundamental Theorem. The definition corresponds to
that in [10,2] and in other papers on (generalisations of) weak Hopf algebras. For the
notations we refer to the preceding section.

6.1. Definition. Given a weak braided bimonad H, a natural transformation S : H — H
is called an antipode if

1xS=¢ Sx1=¢ Sx1x5=28.

Since £ x1=1=1%¢ (see (4.4), (4.11)), we also get 1% S %1 = 1.
A weak braided bimonad H with an antipode is called a weak braided Hopf monad or
a weak T-Hopf monad.

6.2. Proposition. Let H= (H,H,7) be a weak braided Hopf monad on a Cauc@y complete
category A. Then the functor K, : A — Aﬁ (w) admits a right adjoint K : Aﬁ (w) — A.

Proof. Suppose that H has an antipode S. By Proposition 4.10, we have to show that for
any (a, h,0) € AE (w), the pair (4.7) has an equaliser. We claim that the pair is cosplit

by the composite d : H(a) Say H(a) 2, 4. Indeed, in the proof of [2, Proposition 3.5 (ii)]
it is shown that

H(h) b, -eq-d-0=0-d-0.
It remains to prove that
d-H(h) 6q-€q=1.

For this, consider the diagram
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e [ H(h)

a%—H(a) %—HH(G) e

in which

o the left triangle commutes by Proposition 5.4 (1);

o the right triangle commutes because S is an antipode;
e the top square commutes by naturality of S

o the bottom square commutes since (a, h) € Ay.

So the whole diagram commutes and since h - e, = 1, the outer paths show that the
desired equality holds.

Thus the composite d -0 : a LN H(a) Sa, H(a) 2y ais an idempotent and if
alyalaisa splitting of this idempotent, then the diagram

0

a—sa— H(a) —— HH(a) — H(a)
€a ba H(h)

is a (split) equaliser in A. Thus, K exists and for any (a, h, 6) € AE (w), K(a,h,0) =a. 0O
Dual to Proposition 6.2, we observe:

6.3. Proposition. Let H= (H,H,7) be a weaﬁ braided Hopf monad on a Cauchy complete

category A. Then the functor K, : A — AZ (w) admits a left adjoint K : Ag (w) = A

that takes (a,h,0) € AE (w) to the object @ which splits the idempotent a LN H(a) Sy

H(a) Ly a. Moreover, the diagram

H(a) —= HH(a) —— H(a) —>=a ——>1
H(0) Ma €a da

is a (split) coequaliser.
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6.4. Proposition. Let H= (H, H,T) be a weak braided Hopf monad on a Cauchy complete
category A. Then, for any (a,h,0) € Ag (w), the diagram

GLHCL)

(
lH(ﬁQ)

aTH(a)

with the idempotent S, : a LN H(a) Sa, H(a) 2 oa (see proof of Proposition 6.2) is

commutative.
Proof. We compute

h-H(Ba)-0=h-H(h)- H(S,) - H(9) -0
=h-mg-H(S,)-0-6
=h-€H(a) Wa " €H(a) O
=¢eq-H(h) w,-H(O) - eq
=¢q-0-h-e, =1.
The second and sixth equations hold since (a,h) € Ay and (a,0) € AP the third one

holds by the definition of an antipode, the forth one by naturality of e and ¢, and the
fifth one by the fact that (a,h,0) € Afj (w). O

6.5. Proposition. Let H= (H, H,7) be a weak braided Hopf monad on a Cauchy complete
category A. Then

(1) K,:A— AE (w) admits both a left and a right adjoint K, K : AE (w) = A;
(2) the unit n : 1 — KK of K 4 K is a split monomorphism, while the counit € :
KK — 1 of K 4K is a split epimorphism.

Proof. According to Propositions 6.2 and 6.3, K, : A — AE (w) admits both left and
right adjoints K, K. For any object (a, h,0) € AE (w), Ba :a LN H(a) Sy H(a) 2y ais

idempotent (see proof of Proposition 6.2) with a splitting a 2oy @22 q and
K(a,h,0) = K(a,h,0) = a.

Moreover,
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h

//\

is the defining coequaliser diagram for K (a, h,8), while

‘ /—\

@ ——>a " H(a) Ta>HH(a) —— H{(a)

€a

is the defining equaliser diagram for K (a, h, 0).
It is easy to verify directly, using (1.4) and (1.5), that

N(ah0) = H(qa) 0 and Eq n ey =h- H(ta)
Now, in view of Proposition 6.4, we compute
E(a,h,0) "N (a,h0) = h-H(ta) H(qa) -0 =h-H(B,) 0=1.
Thus €((q, 1), 0) 1s a split epimorphism, while 7 ((4, 1), ¢) is a split monomorphism. 0O

We are now ready to state and prove our main result. It subsumes the original version
of the Fundamental Theorem proved for weak Hopf algebras over fields in [10, Theo-
rem 3.9] as well as various generalisations, for example, for algebras over commutative
rings in [32, Theorem 5.12], [13, Theorem 36.16], for Hopf algebroids in [6, Theorem 4.14],
and for weak braided Hopf algebras on monoidal categories [2, Proposition 3.6].

6.6. Fundamental Theorem. Let H = (H, H,T) be a weak braided bimonad on a Cauchy
complete category A, and T and G the monad and comonad induced on A" and on Ay,
respectively. Then the following are equivalent:

(a) H is a weak braided Hopf monad;

(b) the functor K, : A — AE (w) admits both left and right adjoints, and the right
adjoint is monadic; a

(c) the functor K, : A — AE (w) admits both left and right adjoints, and the left adjoint
is comonadic; a

(d) the induced natural transformation v : H® ¢ H — G is an isomorphism;

(e) the induced natural transformation ' : T — H&MeH is an isomorphism.

Moreover, if the (equivalent) conditions above hold, then there is an equivalence of
categories A ~ Ag (w).
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Proof. (a) = (b). If H is a weak braided Hopf monad, then, by Propositions 6.2 and 6.3,
the functor K, : A — AE (w) admits a right adjoint K and a left adjoint K. So it
remains to prove that K is monadic. By Proposition 6.5, the counit of the adjunction
K 4 K is a split epimorphism. Moreover, since A is assumed to be Cauchy complete, so
is Aﬁ (w) by Proposition 1.4. Applying now the dual of [21, Proposition 3.16] gives that