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The theories of (Hopf) bialgebras and weak (Hopf) bialge-
bras have been introduced for vector space categories over 
fields and make heavily use of the tensor product. As first 
generalisations, these notions were formulated for monoidal 
categories, with braidings if needed. The present authors de-
veloped a theory of bimonads and Hopf monads H on arbi-
trary categories A, employing distributive laws, allowing for 
a general form of the Fundamental Theorem for Hopf alge-
bras. For τ -bimonads H, properties of braided (Hopf) bial-
gebras were captured by requiring a Yang–Baxter operator 
τ : HH → HH. The purpose of this paper is to extend the 
features of weak (Hopf) bialgebras to this general setting in-
cluding an appropriate form of the Fundamental Theorem. 
This subsumes the theory of braided Hopf algebras (based on 
weak Yang–Baxter operators) as considered by Alonso Álvarez 
and others.
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Introduction

There are various generalisations of the notions of (weak) bialgebras and Hopf algebras 
in the literature, mainly for (braided) monoidal categories, and we refer to Böhm [6], 
the introductions to Alonso Álvarez e.a. [2], Böhm e.a. [9], and [13, Remarks 36.18] for 
more information about these.

Bimonads and Hopf monads on arbitrary categories were introduced in [23] and the 
purpose of the present paper is to develop a weak version of these notion, that is, the 
initial conditions on the behaviour of the involved distributive laws towards unit and 
counit are replaced by weaker conditions.

Recall that for a bialgebra (H, m, e, δ, ε) over a commutative ring k, there is a com-
mutative diagram (⊗k = ⊗)

M
−⊗H

φH

M
H
H

U
˜H

MH ,

M (M ⊗H,M ⊗m,M ⊗ δ)

(M ⊗H,M ⊗m) ,

where M is the category of k-modules, MH the category of right H-modules, and MH
H

denotes the category of mixed bimodules; the latter can also be considered as (MH)˜H , 
that is, the category of ˜H-comodules over MH where ˜H is the lifting of the comonad 
− ⊗ H to MH . H is a Hopf algebra provided the functor − ⊗ H is an equivalence of 
categories (Fundamental Theorem of Hopf modules).

Concentrating on the essential parts of this setting, we consider, for any category A, 
the diagram

A
K

φT

(AT)G

UG

AT,

(0.1)
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where T is some monad on A, G is some comonad on the category AT of T-modules, 
φT and UG denote the respective free and forgetful functors, and K is any functor making 
the diagram commutative.

Having such a diagram, one may ask when the functor K allows for a right adjoint K. 
If such is the case, we have a monad P on A, a monad morphism ι : P → T , the free 
functor φP : A → AP, and the Eilenberg–Moore comparison functor KP : (AT)G → AP
for the monad P.

If A is Cauchy complete and P is a separable Frobenius monad, then the change-of-
base-functor ι! : AP → AT exists (see Proposition 2.2). As a consequence, KP has a left 
adjoint LP (Proposition 3.6) leading to the commutative diagram

A
φP

K

φT

AP
LP

ι!

(AT)G

UG

AT .

(0.2)

Essentially, a Fundamental Theorem should describe the existence of a right (left) 
adjoint to the functor K and, eventually, an equivalence between the categories AP and 
(AT)G. This, evidently, requires to study the functors φP and KP.

For a bimonad H on A with weak monad–comonad entwining ω : HH → HH, 
a comparison functor Kω : A → A

H
H(ω) (the category of mixed bimodules) is considered. 

The existence of left and right adjoints for Kω is described by equalisers and coequalisers 
of certain pairs of morphisms, respectively. Weak braided bimonads are defined by the 
existence of a monad–comonad entwining ω : HH → HH as well as a comonad–monad 
entwining ω : HH → HH. Referring to both of them, an antipode is defined and if it 
exists, one gets weak braided Hopf monads. For these monads, the Fundamental Theorem 
is proved.

After assembling preliminaries in Section 1 and properties of separable Frobenius 
monads in Section 2, the theory just sketched is outlined in Section 3.

Section 4 deals with the application of this to endofunctors H on a category A
endowed with a monad H as well as a comonad structure H, and a weak monad–
comonad entwining ω : HH → HH. Exploiting ideas from [33] and Böhm [5], these data 
allow for the definition of a comonad G on AH as well as a monad T on AH (Proposi-
tions 4.3, 4.5). As a result, the category AH

H(ω) of mixed H-bimodules is isomorphic to 
the categories (AH)G and (AH)T (see Theorems 4.4, 4.6). If ω is a compatible entwining 
(i.e. δ ·m = Hm · ωH ·Hδ, Section 4.1), there is a functor

Kω : A → A
H
H(ω), a �→ (H(a),ma, δa),
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leading to commutativity of the diagram corresponding to (0.1). Conditions for the exis-
tence of a right and a left adjoint functor for Kω are investigated (Propositions 4.10, 4.11). 
These problems were considered in [23] for proper compatible entwinings ω.

In Section 5, we define weak τ -bimonads, also called weak braided bimonads (Defini-
tion 5.2), based on a weak Yang–Baxter operator τ : HH → HH (Section 5.1). This type 
of operator was introduced by Alonso Álvarez e.a. in [1] for monoidal categories and is 
here adapted to the more general setting.

The conditions on weak braided bimonads induce a weak monad–comonad entwining 
ω : HH → HH as well as a weak comonad–monad entwining ω : HH → HH and 
allow to refine the results in Section 4: the natural transformation ξ := Hε · ω · He :
H → H is idempotent and its splitting yields a separable Frobenius monad Hξ (see 
Proposition 5.11). Then, if Kω has a right adjoint functor K, the induced monad P is 
just Hξ and the diagram corresponding to (0.2) can be completed.

The weak bialgebras over a commutative ring k as considered by Böhm e.a. in [8] are 
weak braided bimonads in our sense (τ the ordinary twist, ξ = εs) and for this case 
some of our results are shown there, including the Frobenius and separability property 
of Hξ(= Hs) ([8, Proposition 4.4]).

Eventually, in Section 6, weak braided Hopf monads are defined as weak braided bi-
monads H with an antipode (Definition 6.1). In monoidal categories, these correspond to 
the weak braided Hopf algebras considered in [2,3].

We show that for a braided bimonad, in Cauchy complete categories, the existence of 
an antipode is equivalent to the functor Kω having a left adjoint and a monadic right 
adjoint and this leads to an equivalence between the categories of Hξ-modules and AH

H(ω)
(Fundamental Theorem 6.6).

Examples for our weak braided bimonads and weak braided Hopf monads are the 
weak braided Hopf algebras in strict monoidal Cauchy complete categories considered by 
Alonso Álvarez et al. in [1–3], the weak bimonoids and weak Hopf monoids in braided 
monoidal categories as defined by Pastro et. al. in [25] and also showing up in [9, Sec-
tions 3, 4]. These all subsume the braided Hopf algebras considered, e.g., by Takeuchi 
[31] and Schauenburg [26] and, of course, the weak Hopf algebras in vector space cat-
egories introduced by Böhm et al. in [10]. Moreover, we generalise the bimonads and 
τ -Hopf monads defined on arbitrary categories in [23] and these include, for example, 
bimonoids in duoidal categories (e.g. [24]).

Opmonoidal monads T = (T, m, e) on strict monoidal categories (V, ⊗, I) were also 
called bimonads by Bruguières et al. in [12] and these were generalised to weak bimonads
in monoidal categories by Böhm et al. in [9]. As pointed out in [22, Section 5], the 
bimonads from [12] yield a special case of an entwining of the monad T with the comonad 
− ⊗ T (I), where T (I) has a coalgebra structure derived from the opmonoidality of T. 
To transfer the structures from [9] to arbitrary categories, one has to consider weak 
entwinings between monads and comonads. It is planned to elaborate details for this in 
a subsequent article.
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1. Preliminaries

1.1. Monads and comonads. Recall that a monad T on a category A (or shortly an 
A-monad T) is a triple (T, m, e) where T : A → A is a functor with natural transforma-
tions m : TT → T , e : 1 → T , satisfying the usual associativity and unitality conditions. 
A T-module is an object a ∈ A with a morphism h : T (a) → a subject to associativ-
ity and unitality conditions. The (Eilenberg–Moore) category of T-modules is denoted 
by AT and there is an adjunction

eT, εT : φT � UT : AT → A,

with φT : A → AT and UT : AT → A given by the respective assignments

a �→ (T (a),ma) and (a, h) �→ a,

while eT = e and (εT)(a, h) = h for each (a, h) ∈ AT.
If T = (RF, RεF, η) is the monad generated on A by an adjoint pair η, ε : F �

R : B → A, then there is the comparison functor KT : B → AT which assigns to each 
object b ∈ B the T-algebra (R(b), R(εb)), and to each morphism f : b → b′ the morphism 
R(f) : R(b) → R(b′), satisfying UTKT = R and KTF = φT. This situation is illustrated 
by the diagram

B

R

KT
AT

UT

A

F φT

.

The functor R is called monadic (resp. premonadic) if the comparison functor KT is 
an equivalence of categories (resp. full and faithful).

1.2. Theorem. (Beck [4]) Let η, ε : F � R : B → A be an adjunction, and T = (RF, RεF, η)
the corresponding monad on A.

(1) The comparison functor KT : B → AT has a left adjoint LT : AT → B if and only if 
for each (a, h) ∈ AT, the pair of morphisms (F (h), εF (a)) has a coequaliser in B.

(2) R is monadic if and only if it is conservative and, for any (a, h) ∈ AT, the pair of 
morphisms (F (h), εF (a)) has a coequaliser and this coequaliser is preserved by R.

Dually, a comonad G on A (or shortly an A-comonad G) is a triple (G, δ, ε) where 
G : A → A is a functor with natural transformations δ : G → GG, ε : G → 1, and 
G-comodules are objects a ∈ A with morphisms θ : a → G(a). Both notions are sub-
ject to coassociativity and counitality conditions. The (Eilenberg–Moore) category of 
G-comodules is denoted by AG and there is a cofree functor



60 B. Mesablishvili, R. Wisbauer / Journal of Algebra 490 (2017) 55–103
φG : A → A
G, a �→ (G(a), δa),

which is right adjoint to the forgetful functor

UG : AG → A, (a, θ) �→ a.

If η, ε : F � R : A → B is an adjoint pair and G = (FR, FηR, ε) is the comonad on A
associated to (R, F ), then one has the comparison functor

KG : B → A
G, b → (F (b), F (ηb))

for which UG ·KG = F and KG · R = φG. One says that the functor F is precomonadic
if KG is full and faithful, and it is comonadic if KG is an equivalence of categories.

1.3. Cauchy completeness. A morphism e : A → A in A is idempotent if e2 = e and 
A is said to be Cauchy complete if idempotents split in A in the sense that for every 
idempotent e : a → a, there exists an object a and morphisms p : a → a and i : a → a

such that ip = e and pi = 1a. In this case, (a, i) is the equaliser of e and 1a and (a, p) is the 
coequaliser of e and 1a. Hence any category admitting either equalisers or coequalisers 
is Cauchy complete.

1.4. Proposition. Let G be a comonad on A. If A is Cauchy complete, then so is AG. 
Moreover, the forgetful functor UG : AG → A preserves and creates splitting of idempo-
tents. Explicitly, if e : (a, θ) → (a, θ) is an idempotent morphism in AG and if a 

p−→ a
i−→ a

is a splitting of e in A, then (a, G(p) · θ · i) is a G-comodule in such a way that p and i
become morphisms of G-comodules. Similarly, if T is a monad on A, then the forgetful 
functor UT : AT → A preserves and creates splitting of idempotents.

Proof. The result follows from the fact that the forgetful functor UG : A
G → A pre-

serves and creates coequalisers, while the functor UT : AT → A preserves and creates 
equalisers. �
1.5. Split (co)equalisers. Recall (e.g. from [19]) that a diagram

a
∂0

∂1

a′
p

x (1.1)

with p∂0 = p∂1 is said to be split by a pair of morphisms i : x → a′ and s : a′ → a if 
pi = 1x, ∂0s = 1a′ and ∂1s = ip. Then p is an (absolute) coequaliser (preserved by any 
functor).

A pair of morphisms (∂0, ∂1 : a ⇒ a′) in A is called split if there exists a morphism 
s : a′ → a with ∂0s = 1 and ∂1s∂0 = ∂1s∂1. In this case, ∂1s : a′ → a′ is an idempotent, 
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and if we assume A to be Cauchy complete and if a′ p−→ x i−→ a′ is a splitting of the 
idempotent ∂1s, then the diagram

a
∂0

∂1

a′

s

p
x

i

is a split coequaliser. Conversely, if the above diagram is a split coequaliser, then s makes 
the pair (∂0, ∂1 : a ⇒ a′) split. Thus, when A is Cauchy complete, a pair (∂0, ∂1 : a ⇒ a′)
is part of a split coequaliser diagram if and only if it is split.

If F : A → B is a functor, (∂0, ∂1 : a ⇒ a′) is called F -split if the pair of morphisms 
(F (∂0), F (∂1) : F (a) ⇒ F (a′)) in B is split. The dual notions are those of cosplit pairs
and F -cosplit pairs.

Given a monad T (resp. comonad G) on A and a category X, one may consider the 
functor category [X, A] and the induced monad [X, T] (resp. comonad [X, G]) thereon, 
whose functor part sends a functor F : X → A to the composite TF : X → A (resp. 
GF : X → A). Symmetrically, one has the induced monad [T, X] (resp. comonad [G, X]) 
on [A, X], whose functor-part sends F ′ : A → X to F ′T : A → X (resp. FG : A → X).

1.6. (Bi)module functors. Given a monad T = (T, m, e) on A and a category X, a left
T-module with domain X is an object of the Eilenberg–Moore category [X, A][X,T] of the 
monad [X, T]. Thus, a left T-module with domain X is a functor M : X → A together 
with a natural transformation � : TM → M , called the action (or T-action) on M , such 
that � · eM = 1 and � · T� = � ·mM . A morphism of left T-modules with domain X is a 
natural transformation in [X, A] that commutes with the T-actions.

Similarly, for a category Y, the category of right T-modules with codomain Y is defined 
as the Eilenberg–Moore category [A, Y][T,Y] of the monad [T, Y].

Let S be another monad on A. A (T, S)-bimodule is a functor N : A → A equipped 
with two natural transformations �l : TN → N and �r : NS → N such that (N, �l) ∈
[X, A][X,T], (N, �r) ∈ [A, Y][T,Y] and �r · �lS = �l · T�r. A morphism of (T, S)-bimodules 
is a morphism of left T-modules which is simultaneously a morphism of right S-modules. 
We write [X, A][S,T] for the corresponding category.

1.7. Canonical modules. Let T = (T, m, e) be an arbitrary monad on A. Using the asso-
ciativity and unitality of the multiplication m, we find that for any functor M : X → A, 
the pair (TM, mM) is a left T-module. Moreover, if ν : M → M ′ is a natural transfor-
mation, then Tν : TM → TM ′ is a morphism of left T-modules.

Symmetrically, for any functor N : A → Y, the pair (NT, Nm) is a right T-module, 
and if ν : N → N ′ is a natural transformation, then νT : NT → NT ′ is a morphism 
of right T-modules. In particular, (T, m) can be regarded as a right as well as a left 
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T-module; again by the associativity of m, (T, m, m) is a (T, T)-bimodule. Moreover, if S
is another monad on A and ι : S → T is a monad morphism, then

(i) (T, ST ιT−−→ TT
m−→ T ) is a left S-module;

(ii) (T, TS Tι−−→ TT
m−→ T ) is a right S-module;

(iii) (T, TT m−→ T, TS Tι−−→ TT
m−→ T ) is a (T, S)-bimodule;

(iv) (T, ST ιT−−→ TT
m−→ T, TT m−→ T ) is an (S, T)-bimodule;

(v) (T, ST ιT−−→ TT
m−→ T, TS Tι−−→ TT

m−→ T ) is an (S, S)-bimodule;
(vi) (φT, εTφT · φTι) is a right S-module;
(vii) (UT, UTεT · ιUT) is a left S-module.

1.8. Tensor product of module functors. Let T be a monad on A and X and Y arbitrary 
categories. If (N, ρ) is a left T-module and (M, �) a right T-module, then their tensor 
product (over T) is defined as the object part of the coequaliser

MTN
�N

Mρ
MN

canM,N
T

M⊗TN (1.2)

in [X, Y], provided that such a coequaliser exists. We often abbreviate canM,N
T to canM,N , 

or even to can.

1.9. Proposition. Let S, T be monads on a category A. If the modules (M, �) ∈ [A, X][T,X]
and (N, ρl, ρr) ∈ [A, A][S,T] are such that the tensor product M⊗TN exists, then there is 
a natural transformation

ζ : (M ⊗T N)S → M⊗TN

making M⊗TN into a right S-module in such a way that the diagram

(MTN,MTρr)
�N

Mρl

(MN,Mρr)
can (M⊗TN, ζ)

is a coequaliser in [A, X][S,X]. The action ζ is uniquely determined by the property

ζ · canM,N
T S = canM,N

T ·Mρr.

Proof. Note first that both (MTN, MTρr) and (MN, Mρr) are objects of the category 
[A, X][S,X], and that both �N and Mρl can be seen as morphisms in [A, X][S,X] (the former 
by naturality of composition, the latter because (N, ρl, ρr) ∈ [A, A][S,T]). Now, since the 
functor

[S,X] : [A,X] → [A,X]
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preserves all colimits (hence coequalisers), the result follows from [17, Proposi-
tion 2.3]. �
1.10. Comodule functors. Similarly as for monads, one defines comodule functors over a 
comonad G on a category A. A left G-comodule functor is a pair (F, θ), where F : X → A

is a functor and θ : F → GF is a natural transformation inducing commutativity of the 
diagrams

F
θ

GF

εF

F,

F
θ

θ

GF

δF

GF
Gθ

GGF.

Symmetrically, right G-comodule functors A → Y are defined.

1.11. Cotensor product of comodule functors. Let G be a comonad on A and X, Y
arbitrary categories. If (C, θ) is a right G-comodule functor A → X and (D, ϑ) is a left 
G-comodule functor Y → A, then their cotensor product (over G) is defined as the object 
part of the equaliser

C⊗GD
canC,D

G
CD

θD

Cϑ
CGD (1.3)

in [Y, X], provided that such an equaliser exists. We often abbreviate canC,D
G to canC,D, 

or even to can.

Now recall the dual of [27, Lemma 21.1.5] and Dubuc’s Adjoint Triangle Theorem [15].

1.12. Monads and adjunctions. For categories A, B and C, consider adjunctions η, ε : F �
R : A → C and η′, ε′ : F ′ � R′ : B → C, with corresponding monads T and T′, and let

A

R

K
B

R′

C

be a commutative diagram with some functor K. Write γK for the composite

F ′ F ′η−−→ F ′RF = F ′R′KF
ε′KF−−−−→ KF.

Then tK = R′γK is a monad morphism T′ → T (see [15]).
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1.13. Theorem. In the situation considered in 1.12, suppose that R′ is a premonadic 
functor. Then K has a left adjoint K if and only if the following coequaliser (used as the 
definition of K) exists in [B, A],

FR′F ′R′ FR′ε′

FtKR′=FR′γ
K

R′

FR′ q
K

FR′KFR′ = FRFR′

εFR′

.

When this is the case, the unit η : 1 → KK and counit ε : KK → 1 of the adjunc-
tion K � K are the unique such natural transformations yielding commutativity of the 
diagrams, respectively,

F ′R′

γ
K
R′

ε′ 1
η

KFR′
Kq

KK,

FR = FR′K

ε

qK
KK

ε

1.

Precomposing the image of the last square under R′ with ηR′ and using the fact that 
R′γ

K
is a monad morphism T′ → T, we get the commutative diagram

R′

ηR′

η′R′

R′F ′R′

R′γ
K
R′

R′ε′

R′

R′η

RFR′ = R′KFR′ R′Kq=Rq
R′KK.

Since R′ε′ · η′R′ = 1 by one of the triangular identities for F ′ � R′, one gets

R′η = Rq · ηR′. (1.4)

1.14. Comonads and adjunctions. Again let η, ε : F � R : A → B and η′, ε′ : F ′ � R′ :
A → C be adjunctions and now consider the corresponding comonads G and G′. Let

B
K

F

C

F ′

A

be a commutative diagram (no commutativity for R and R′ is required) and define
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γK : KR
η′KR−−−−→ R′F ′KR = R′FR

R′ε−−→ R′.

Then tK = F ′γK is a comonad morphism G → G′.

1.15. Theorem. In the situation described in 1.14, suppose that F ′ is precomonadic. Then 
K has a right adjoint K if and only if the following equaliser exists in [C, B],

K
ι

RF ′ RF ′η′

ηRF ′

RF ′R′F ′

RFRF ′ = RF ′KRF ′

Rt
K

F ′=RF ′γ
K

F ′

.

When this equaliser exists, the unit η : 1 → KK and counit ε : K � K of the 
adjunction K � K are the unique such natural transformations yielding commutativity 
of the diagrams, respectively,

1

η

η
KK

ιK

RF = RF ′K,

KK

ε

Kι
KRF ′

γ
K
F ′

1
η′

R′F ′.

Moreover, one has

F ′ε = εF ′ · Fι. (1.5)

1.16. The restriction- and change-of-base functors. Any morphism

ι : S = (S,mS, eS) → T = (T,mT, eT)

of monads on A (that is, a natural transformation ι : S → T such that ι · eS = eT and 
ι ·mS = mT · (ιι)) gives rise (see [4]) to the functor

ι∗ : AT → AS, (a, h) �→ (a, h · ιa),

called the restriction-of-base functor. It is clear that ι∗ makes the diagram

AT

UT

ι∗

AS

US

A
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commute. Since the forgetful functor US : AS → A is clearly monadic, it follows from 
Theorem 1.13 that ι∗ has a left adjoint ι! : AS → AT if and only if the pair of natural 
transformations

φTSUS = φTUSφSUS

φTUS εS

�US

φTUS
q

ι! , (1.6)

where � : φTS → φT is the composite φTS
φTι−−→ φTT = φTUTφT

εTφT−−−→ φT, has a 
coequaliser q : φTUS → ι! in [AS, AT]. This ι! : AS → AT, when it exists, is called the 
change-of-base functor. Recalling that for any S-algebra (a, g), US((εS)(a,g)) = g and 
(εTφTUS)(a,g) = mT

a, one finds that ι! sends an S-algebra (a, g) to the object ι!(a, g) in 
the coequaliser diagram in AT,

φTS(a)
φT(g)

φT(ιa)

φT(a)
q(a,g)

ι!(a, g)

φTT (a)
mT

a

.

(1.7)

1.17. Remark. (1) Since (φT, εTφT · φTι) is a right S-module by Section 1.7(vi), the 
diagram

φTSS
φTm

S

εTφTS· φTιS
φTS

φTι
φTT

εTφT
φT

is a coequaliser in [A, AT]. Observing that the pair φTSS
φTm

S

εTφTS· φTιS
φTS is just the 

pair φTSUSφS
φTUS εSφS

�USφS

φTUSφS , it follows that qφS is φTS
φTι−−→ φTT

εTφT−−−→ φT.

(2) It is easy to see that US εSι
∗φT is the composite ST ιT−−→ TT

mT
−−→ T and since

• USι
∗φT = UTφT = T ,

• UTεTφT = mT,
• UT� = TS

Tι−−→ TT
mT
−−→ T ,

we may identify the pairs

(UTφTUS εSι
∗φT, UT�USι

∗φT), (TmT · TιT, mTT · TιT ).

Thus, if the coequaliser diagram (1.6) exists and if its image under the functor 
[AS, UT] : [AS, AT] → [AS, A] is again a coequaliser, we get a coequaliser
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TST
TmT·TιT

mTT ·TιT

TT
UTqι

∗φT
UTι!ι

∗φT.

Since (T, mT·Tι) is a right S-module, while (T, mT·ιT ) is a left S-module (see Section 1.7), 
one concludes that UTι!ι

∗φT = T⊗ST and UTqι
∗φT = canT,T

S .

1.18. Proposition. If ι : S → T is a morphism of A-monads such that the change-of-base 
functor ι! : AS → AT exists, then the diagram

A

φT

φS
AS

ι!

AT

commutes (up to isomorphism).

Proof. Since US · ι∗ = UT (see Section 1.16), φS � US and ι! � ι∗, the result follows by 
uniqueness of left adjoints. �
2. Separable Frobenius monads

The crucial role of separable Frobenius functors (e.g. [28]) in the theory of weak bi-
monads was pointed out by Szlachányi in [30] and such functors are used by Böhm et 
al. in [9] as an integral part of their definition of weak bimonads on monoidal categories. 
In this section we show that in our approach separable Frobenius monads S are of inter-
est since they imply the existence of the change-of-base functor for monad morphisms 
S → T .

2.1. Definition. A Frobenius A-monad is an endofunctor S : A → A which carries an 
A-monad structure S = (S, mS, eS) and an A-comonad structure S = (S, δS, εS) such 
that the following diagram commutes

SS
mS

δSS

SδS

SSS

SmSS
δS

SSS
mSS

SS.

(2.1)

S = (S, mS, eS, δS, εS) is called separable Frobenius if, in addition, mS · δS = 1.



68 B. Mesablishvili, R. Wisbauer / Journal of Algebra 490 (2017) 55–103
2.2. Proposition. Let S = (S, mS, eS, δS, εS) be a Frobenius separable monad on a Cauchy 
complete category A. Then for any morphism ι : S → T of monads, the change-of-base 
functor ι! : AS → AT exists.

Proof. We claim that, under our assumptions, (1.6) is a split pair, a splitting morphism 
being the composite

π : φTUS
φTe

SUS
φTSUS

φTδ
SUS

φTSSUS
�SUS

φTSUS .

Indeed, that � · π = 1 follows from commutativity of the diagram

φTUS

1

φTe
SUS

φTSUS
φTδ

SUS
φTSSUS

φTm
SUS

�SUS
φTSUS

�US

φTSUS
�US

φTUS .

Here the square and the curved region commute since (φT, �) is a right S-module by 
Section 1.7(vii), while the triangle commutes by separability of the monad S.

Next, to show that φTUSεS · π · �US = φTUSεS · π · φTUSSεS, consider the diagram

φTSUS

φTδ
SUS

φTSeSUS

�US
φTUS

φTe
SUS

φTSUS
φTδ

SUS
φTSSUS

�SUS
φTSUS

φTUSεS

φTSSUS

φTδ
SSUS

�SUS

φTSδSUS

φTSSSUS
φTm

SSUS

�SSUS

φTSSUS

�SUS

φTUS

φTSSUS
φTSSeSUS

φTSSSUS
φTSmSUS

,

in which the curved region commutes since S is assumed to be Frobenius, the right-hand 
parallelogram commutes since � is a morphism of right S-modules, while the other regions 
commute by naturality of composition. Thus the whole diagram is commutative, implying 
– since mS · SeS = 1 – that

φTUSεS · π · �US = φTUSεS · �SUS · φTδ
SUS.

In a similar manner one proves that

φTUSεS · π · φTUSεS = φTUSεS · �SUS · φTδ
SUS.
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So φTUSεS·π·�US = φTUSεS·π·φTUSεS. Therefore, the pair (1.6) splits by the morphism π. 
Since A is assumed to be Cauchy complete, AT (hence the functor category [AS, AT]) is 
also Cauchy complete (see Proposition 1.4). It then follows that the pair (1.6) admits a 
(split) coequaliser. Thus the extension-of-base functor ι! : AS → AT exists. �

Dually, we have:

2.3. Proposition. Let S be a separable Frobenius comonad on a Cauchy complete cate-
gory A. Then for any morphism f : S → G of comonads, the change-of-cobase functor 
f! : AG → A

S exists.

3. Comparison functors

Given a comonad G on A and a category B, one has the induced comonads [B, G] on 
[B, A] and [G, B] on [A, B].

3.1. Comodules and adjoint functors. Consider a comonad G = (G, δ, ε) on A and an 
adjunction η, σ : F � R : B → A.

There exist bijective correspondences (e.g. [16]) between

• functors K : B → A
G with UGK = F ;

• left G-comodule structures θ : F → GF on F (i.e., (F, θ) ∈ [B, A][B,G]);
• comonad morphisms from the comonad generated by F � R to the comonad G;
• right G-comodule structures ϑ : R → RG on R (i.e., (R, ϑ) ∈ [A, B][G,B]).

These bijections are constructed as follows. If UGK = F , then K(b) = (F (b), θb) for 
some morphism αb : F (b) → GF (b), and the collection {θb, b ∈ B} constitutes a natural 
transformation θ : F → GF making F a left G-comodule.

Conversely, if (F, θ) ∈ [B, A][B,G], then K : B → A
G is defined by K(b) = (F (b), θb).

Next, for any left G-comodule structure θ : F → GF , the composite

tK : FR
θR−−→ GFR

Gσ−−→ G

is a morphism from the comonad generated by F � R to the comonad G. Then the 

corresponding right G-comodule structure ϑ : R → RG on R is R ηR−−→ RFR
RtK−−−→ RG.

Conversely, for (R, ϑ) ∈ [A, B][G,B], the corresponding comonad morphism tK :
FR → G is the composite

FR
Fϑ−−→ FRG

σG−−→ G,

while the corresponding left G-comodule structure θ : F → GF on F is the composite 

F
Fη−−→ FRF

tKF−−−→ GF .
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3.2. Theorem. Let G = (G, δ, ε) be a comonad on A and η, σ : F � R : B → A an 
adjunction. For a functor K : B → A

G with UGK = F , the following are equivalent:

(a) K is an equivalence of categories;
(b) F is comonadic and the comonad morphism tK : FR → G is an isomorphism;
(c) F is comonadic and the composite

γK : KR
ηGKR−−−−→ φGUGKR = φGFR

φGσ−−−→ φG

is an isomorphism.

Proof. (a) and (b) are equivalent by [20, Theorem 4.4]; (b) and (c) are equivalent since 
UGγK = tK by [15] and UG reflects isomorphisms. �
3.3. Right adjoint of K. Now fix a functor K : B → A

G with commutative diagram

B
K

F

A
G

UG

A.

(3.1)

Then γK is the composite KR
ηGKR−−−−→ φGUGKR = φGFR

φGε−−→ φG and using the fact 
from Section 1.14 that UGγK is just the comonad morphism tK : FR → G induced by 
the triangle, an easy calculation shows that

βUG = RUGγKUG · ηRUG,

where β : R → RG is the right G-module structure on R corresponding to the trian-
gle (3.1). Thus, when the right adjoint K of K exists, it is determined by the equaliser 
diagram

K
ι

RUG
RUGηG

βUG
RGUG = RUGφGUG. (3.2)

It is easy to see that for any (a, θ) ∈ A
G, the (a, θ)-component of (3.2) is the equaliser 

diagram

K(a, θ)
ι(a,θ)

R(a)
R(θ)

βa

RG(a) (3.3)
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and, referring to (1.5), for the counit σ : KK → 1 of K � K, one gets

UG(σ(a, θ)) = σa · F (ι(a, θ)) . (3.4)

Suppose now that K exists, write P for the monad on B generated by the adjunc-
tion K � K, and consider the corresponding comparison functor KP : A G → BP. 
Then KP(a, θ) = (K(a, θ), K(σ(a, θ))) for any (a, θ) ∈ A G. Moreover, KPK = φP and 
UPKP = K. The situation may be pictured as

B

φP

KF

BP
UP

A
G

K

UG

KP

A .

(3.5)

In order to proceed, we need the following (see [27, Lemma 21.2.7]).

3.4. Proposition. Let η, σ : F � R : A → C and η′, σ′ : F ′ � R′ : B → C be adjunctions 
with corresponding monads T and T′, respectively, and let

A
K

B

C

F
F ′

be a commutative diagram of categories and functors. Then the composite

T = RF
η′RF

R′F ′RF = R′KFRF
R′KσF

R′KF = R′F ′ = T ′

is a monad morphism T → T′.

Suppose again that K exists and consider the natural transformation ι : P → RF , 
where ιb = ιK(b) for all b ∈ B.

3.5. Proposition. ι : P → RF is a monad morphism from the monad P to the monad 
generated by the adjunction F � R.
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Proof. Applying Proposition 3.4 to the diagram

A
G UG

K

A

R

B

K F

in which UGK = F , gives that the natural transformation,

P = KK
ηKK−−−→ RFKK = RUGKKK

RUGσK−−−−−→ RUGK = RF,

is a monad morphism from the monad P to the monad generated by the adjunction 
F � R. Since for any (a, θ) ∈ A G, UG(σ(a, θ)) = σa · F (ι(a, θ)) (by equation (3.4)), it 
follows that, for each b ∈ B, the b-component of the above natural transformation is the 
composite

P (b)
ηP (b)−−−→ UFP (b) UF (ιb)−−−−−→ UFUF (b)

UσF (b)−−−−−→ UF (b),

which is easily verified to be just the morphism ιb : P (b) → UF (b). This completes the 
proof. �

We are mainly interested in the case where the functor F is monadic. So, our standard 
situation of interest, and our standard notation, will henceforth be as follows. We consider 
a monad T = (T, mT, eT) on A, a comonad G on AT, and an adjunction η , σ : K � K :
(AT)G → A, where K : A → (AT)G is a functor with UGK = φT. Write P = (P, mP, eP)
for the monad on A generated by the adjunction K � K and write ι : P → T for the 
induced morphism of monads. This is pictured in the diagram

A

φP

KφT

AP
UP

LP

(AT)G

K

UG

KP

AT ,

(3.6)

in which KP : (AT)G → AP is the Eilenberg–Moore comparison functor for the monad P, 
and thus KPK = φP and UPKP = K.
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3.6. Proposition. In the situation above, the functor KP : (AT)G → AP admits a left 
adjoint LP : AP → (AT)G if and only if the restriction-of-base functor ι∗ : AT → AP
admits a left adjoint, i.e., the change-of-base functor ι! : AP → AT exists. Moreover, 
when this is the case, ι! = UGLP.

Proof. According to Section 1.16, ι! : AP → AT exists if and only if for each (a, g) ∈ AP, 
the pair of morphisms (φT(g), mT

a · φT(ιa)) has a coequaliser in AT, while by Proposi-
tion 1.2(1), LP : AP → (AT)G exists if and only if the pair of morphisms (K(g), σK(a))
has a coequaliser in (AT)G.

Since the functor UG : (AT)G → AT preserves and creates coequalisers, it suffices to 
show that the image of the pair (K(g), σK(a)) under UG is just the pair (φT(g), mT

a ·
φT(ιa)). That UGK(g) = φT(g) follows from the equality UGK = φT. Next, by (3.4), 
UG(σK(a)) = (εT)UGK(a) ·φT(ιK(a)). But since (εT)UGK(a) = (εT)φT(a) = mT

a , we see that 
UG(σK(a)) = mT

a · φT(ιa). Hence

UG(K(g), σK(a)) = (φT(g),mT
a · φT(ιa))

and thus the result follows. �
Now assume that the change-of-base functor ι! : AP → AT exists, that is, KP :

(AT)G → AP admits a left adjoint LP : AP → (AT)G. Thus, for any (a, g) ∈ AP, ι!(a, g) is 
given by be the coequaliser

TP (a)

T (g)

T (ιa)
TT (a)

ma
T (a)

q(a, g)
ι!(a, g) .

Since ι! = UGLP by Proposition 3.6 and ι! ·φP = φT by Proposition 1.18, both triangles 
in the diagram

A
φP

K

φT

AP
LP

ι!

(AT)G

UG

AT

(3.7)

commute. Write G1 (respectively G2) for the AT-comonad generated by the adjunction 
φT � UT (respectively ι! � ι∗), and consider the related comonad morphism tφP : G1 → G2
(respectively tLP : G2 → G) corresponding to the left (respectively right) triangle in the 
above diagram (see Sections 1.14 and 3.1). Since UPKP = K and φP (respectively LP) 
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has a right adjoint UP (respectively KP), it follows – by uniqueness of right adjoints – 
that LP · φP = K. Thus we may apply [22, Proposition 1.21] to obtain the equality

tK = tLP · tφP . (3.8)

Recall from Section 1.16 that ι! can be obtained as the coequaliser of diagram (1.6).

3.7. Proposition. If KP : (AT)G → AP admits a left adjoint, then tφP = qι∗.

Proof. Applying the results of Section 1.14 to the left triangle in diagram (3.7) gives 
that tφP = ι!γ, with the composite

γ : φPUT
η φPUT−−−−→ ι∗ι!φPUT = ι∗φTUT

ι∗εT−−−→ ι∗.

Here η is the unit of the adjunction ι! � ι∗, which (applying Theorem 1.15 to the diagram 
UP · ι∗ = UT) is the unique natural transformation making the diagram

φPUP
εP

γ′UP

1
η

ι∗φTUP
ι∗q

ι∗ι!

commute with the composite

γ′ : φP
φP ηT−−−→ φPUTφT = φPUPι

∗φT
εP ι∗φT−−−−−→ ι∗φT.

The equations UPγ
′ = ι and ι · eP = eT imply commutativity of the diagram

UP
ePUP

eTUP

PUP = UPφPUP
UP εP

ιUP=UPγ
′UP

UP

UPη

TUP = UPι
∗φTUP

UTq=UPι
∗q

UPι
∗ι!.

Since UPε P · ePUP = 1 (triangular identity for φP � UP), it follows that UPη is the 
composite

UP
eTUP−−−→ TUP = UPι

∗φTUP
UP ι∗q−−−−→ UPι

∗ι!.

In particular, UPηφP is the composite

P
eTP−−−→ TP = UPι

∗φTUPφP
UP ι∗q φP−−−−−−→ UPι

∗ι!φP = UPι
∗φT = UTφT.
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By Remark 1.17(1), qφP is the composite

φTP
φTι−−→ φTT

εTφT−−−→ φT,

and UPηφP is the composite

P
eTP−−−→ TP

Tι−−→ TT
mT
−−→ T.

Since Tι ·eTP = eTT ·ι (by naturality) and mT ·eT = 1, one concludes that UPηφP = ι. For 
any (a, h) ∈ AT, (εT)(a, h) = h, and it turns out that γ(a,h) is just P (a) ιa−→ T (a) h−→ a.

Now, by Remark 1.17,

TPP (a)
T (mP

a)

mT
a· T (ιP (a))

TP (a)
T (ιa)

TT (a)
mT

a

T (a)

is the coequaliser defining ι!(P (a), mP
a) = ι!(φP(a)), and it follows that ι!(γ(a, h)) =

(tφP)(a, h) is the unique morphism leading to commutativity of the diagram

TP (a)
T (ιa)

T (ιa)

TT (a)
mT

a

T (a)

ι!(γ(a,h))TT (a)
T (h)

T (a)
qι∗(a,h)

ι!(ι∗(a, h)).

Since ιa · eP
a = eT

a and mT
a · T (eT

a ) = 1 = h · T (eT
a ), it follows from this diagram that 

(tφP)(a, h) = ι!(γ(a,h)) = qι∗(a, h), as claimed. �
4. Weak entwinings

Let H be an endofunctor on any category A, admitting both a monad H = (H, m, e)
and a comonad H = (H, δ, ε) structure, and define

σ : HH
δH−−→ HHH

Hm−−−→ HH,

σ : HH
Hδ−−→ HHH

mH−−−→ HH.

(4.1)

The class Nat(H, H) of all natural transformations from H to itself allows for 
the structure of a monoid by defining the (convolution) product of any two ϕ, ϕ′ ∈
Nat(H, H) as the composite ϕ ∗ ϕ′ = m · ϕϕ′ · δ. The identity for this product is 
e · ε : H → H.
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Recall that weak entwinings of tensor functors were defined by Caenepeel and De 
Groot in [14] and a more general theory was formulated by Böhm (e.g. [5, Example 5.2]).

4.1. Weak monad comonad entwinings. For a natural transformation ω : HH → HH, 
define the natural transformations

ξ : H
eH−−→ HH

ω−−→ HH
εH−−→ H,

κ : HH
eHH−−−→ HHH

ωH−−→ HHH
Hm−−−→ HH,

κ′ : HH
HHe−−−→ HHH

Hω−−→ HHH
mH−−−→ HH.

(H, H, ω) is called a weak entwining (from the monad H to the comonad H) provided

(i) ω ·mH = Hm · ωH ·Hω, δH · ω = Hω · ωH ·Hδ,

(ii) ω · eH = Hξ · δ, εH · ω = m ·Hξ,

(4.2)

and is said to be compatible if

δ ·m = Hm · ωH ·Hδ. (4.3)

It is easily checked that

κ ·He = ω · eH, εH · κ = m · ξH, always hold,
ξ ∗ ξ = ξ, κ · κ = κ, κ · ω = ω, follow by (4.2)(i),
κ · δ = δ, κ · σ = σ, ξ ∗ 1 = 1, follow by (4.3).

(4.4)

4.2. Mixed bimodules. We write AH
H(ω) for the category of mixed H-bimodules, whose 

objects are triples (a, h, θ), where (a, h) ∈ AH, (a, θ) ∈ A
H with commutative diagram

H(a) h

H(θ)

a
θ

H(a)

HH(a)
ωa

HH(a),

H(h)

and whose morphisms are those in A which are H-module as well as H-comodule mor-
phisms.

The following is a particular case of [5, Proposition 5.7].

4.3. Proposition. Let H = (H, H, ω) be a weak entwining on A. Then the composite

Γ : HUH
eHUH−−−−→ HHUH

ωUH−−−→ HHUH = HUHφHUH
HUH εH−−−−−→ HUH
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is an idempotent, and if

HUH

p

Γ
HUH

G

i

is its splitting, then there is a comonad G = ( ˜G, ˜δ, ̃ε) on AH, whose functor part takes an 
arbitrary (a, h) ∈ AH to

(G(a, h), p(a,h) ·H(h) · ωa ·H(i(a,h) : HG(a, h) → G(a, h)),

and whose comultiplication ˜δ and counit ε̃ evaluated at (a, h) are the composites, respec-
tively,

G(a, h)
i(a,h)−−−−→ H(a) δa−−→ HH(a)

H(p(a,h))−−−−−−→ HG(a, h)
pG(a,h)−−−−−→ GG(a, h),

G(a, h)
i(a,h)−−−−→ H(a) h−→ a.

We call G the comonad induced by H = (H, H, ω). Obviously, UH ˜G = G.

4.4. Theorem. Let H = (H, H, ω) be a weak entwining on a Cauchy complete category A
and G the induced comonad on AH. Then there is an isomorphism of categories

Φ : AH
H (ω) → (AH)G, (a, h, θ) �→ ((a, h), p(a,h) · θ),

with the inverse given by Φ−1((a, h), ζ) = (a, h, i(a,h) · ζ).

Proof. Since p i = 1, it is clear that ΦΦ−1 = 1. To show that Φ−1Φ = 1, consider an 
arbitrary object (a, h, θ) ∈ A

H
H (ω). In the diagram

a

θ

ea
H(a) h

H(θ)

a

θ

H(a)

Γ(a,h)=i(a,h)·p(a,h)

eH(a)
HH(a)

ωa

HH(a)
H(h)

H(a)

the square commutes by naturality of e, while the trapezium commutes since (a, h, θ) ∈
A

H
H (ω). Since h · e = 1, this means

θ = Γ(a.h) · θ = i(a,h) · p(a,h) · θ.

Thus Φ−1Φ(a, h, θ) = (a, h, θ), that is, Φ−1Φ = 1. �
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Again by [5, Proposition 5.7], we get as counterpart of Proposition 4.3:

4.5. Proposition. Let H = (H, H, ω) be a weak entwining on A. Then

Γ′ : HUH HUH ηH

−−−−−→ HUHφHUH = HHUH ωUH
−−−→ HHUH εHUH

−−−−→ HUH

is an idempotent, and if

HUH

p′

Γ′

HUH

T
i′

is its splitting, then there is a comonad T = (˜T , m̃, ̃e) on AH, whose functor part takes 
an arbitrary (a, θ) ∈ A

H to

(T (a, θ), H(p′(a,θ)) · ωa ·H(θ) · i′(a,θ) : T (a, θ) → HT (a, θ)),

and whose multiplication m̃ and unit ẽ, evaluated at an H-comodule (a, θ), are the com-
posites, respectively,

TT (a, θ)
i′T (a,θ)−−−−→ HT (a, θ)

H(i′(a,θ))−−−−−−→ HH(a) ma−−→ H(a)
p′
G(a,θ)−−−−−→ T (a, θ),

a
θ−−→ H(a)

p′
(a,θ)−−−−→ T (a, θ).

We call T the monad induced by H = (H, H, ω). Obviously, UH
˜T = T .

4.6. Theorem. Let H = (H, H, ω) be a weak entwining on a Cauchy complete category A
and T the induced monad on AH. Then there is an isomorphism of categories

Φ′ : AH
H (ω) → (AH)T, (a, h, θ) �→ ((a, θ), h · i′(a,θ)),

with the inverse given by (Φ′)−1((a, θ), g) = (a, g · i′(a,h), θ).

4.7. Comparison functors. Let H = (H, H, ω) be a compatible weak entwining on A. 
By (4.3), there is a functor (e.g. [18, Lemma 5.1])

Kω : A → A
H
H (ω), a �→ (H(a),ma, δa).

Precomposing Kω with Φ and Φ′ gives functors

K : A → (A H)G, a �→ ((H(a),ma), p(H(a), ma) · δa),

K ′ : A → (AH) , a �→ ((H(a), δ ), m · i′ ),
T a a (H(a), ma)
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leading to commutative diagrams

A
K

φH

(AH)G

UG

AH ,

A
K′

φH

(AH)T

UT

A
H ,

A
K

K′
Kω

(AH)G

(AH)T A
H
H (ω) .

Φ′

Φ

(4.5)

We will use that the splittings of Γ, Γ′ (from 4.3, 4.5) lead to splittings of κ, κ′

(see 4.1),

HH

p=p φH

κ
HH

G = GφH

i=iφH

,

HH

p ′=p′ φH

κ′

HH

T = TφH

i ′=i′φH

.

(4.6)

4.8. Proposition. In the situation described above, consider the comonad morphism t :
φHUH → G induced by the left triangle in (4.5) (see Section 3.1).

(1) For any H-module (a, h), the (a, h)-component for t is the composite

t(a,h) : H(a) δa−−−→ HH(a) H(h)−−−→ H(a)
p(a,h)−−−−→ G(a, h).

(2) For any a ∈ A, the φH(a)-component for t,

tφH(a) : HH(a)
δH(a)−−−−→ HHH(a) Hma−−−→ HH(a) pa−−−→ G(a),

is the unique morphism leading to commutativity of the diagram

HH(a)

σa

tφH(a)

G(a)

ia

HH(a).

Proof. (1) Since K(a) = ((H(a), ma), p(H(a), ma) · δa), the left G-comodule structure 
α : φH → GφH on φH corresponding to the left triangle in (4.5), has for its a-component 
αa = p(H(a), ma) · δa. It then follows from Section 3.1 that, for any (a, h) ∈ AH, the 
(a, h)-component t(a,h) is the composite

t(a,h) : H(a) δa−−−−−→ HH(a)
p(H(a), ma)−−−−−−−→ G(H(a),ma)

G(h)−−−−→ G(a, h),
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which, by naturality of composition, is the same as

t(a,h) : H(a) δa−−−−−→ HH(a) H(h)−−−→ H(a)
p(a,h)−−−−−→ G(a, h).

Then, in particular, tφH(a) = pφH(a) ·H(ma) · δH(a) = pa · σa.

(2) Since G
i

HH
κ

1
HH is an equaliser diagram and κ ·σ = σ (see (4.4)), 

there is a unique morphism j : HH → G such that i · j = σ. Then tφH(a) = pa · σa =
pa · ia · ja = ja and the result follows. �

Symmetrically, we have:

4.9. Proposition. In the situation described in 4.7, the monad morphism t : T → φHUH

induced by the right triangle in (4.5) (see Section 3.1), has for its (a, θ)-component

t(a,θ) : T (a, θ)
i′(a,θ)−−−→ H(a) H(θ)−−−→ HH(a) ma−−→ H(a).

Our general results from Section 1 now yield:

4.10. Proposition. Let H = (H, H, ω) be a compatible weak entwining on A. Then the 
functor K : A → (AH)G (and hence also Kω : A → A

H
H (ω)) has a right adjoint if and 

only if, for any (a, h, θ) ∈ A
H
H (ω), the pair of morphisms

a

θ

ea
H(a)

δa
HH(a)

H(h)
H(a) (4.7)

has an equaliser in A.

Proof. Since the functor UG : (AH)G → A is clearly (pre)comonadic, it follows from 
Theorem 1.15 that the functor K : A → (AH)G admits a right adjoint if and only if for 
any ((a, h), ν) ∈ (AH)G, the pair

a
ν

β(a, h)

G(a, h),

where β : UH → UHG is the right G-comodule structure on UH : AH → A induced by the 
triangle (4.5) (see Section 3.1), has an equaliser in A, which – since i : G → HUH is a 
(split) monomorphism – is the case if and only if the pair

a
i(a, h)·ν

i(a, h)·β(a, h)

H(a)
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has one. According to Propositions 4.8 and 3.1, β(a, h) is the composite

a
ea−−−→ H(a) δa−−−→ HH(a)

p(H(a), ma)−−−−−−−→ G(H(a),ma)
G(h)−−−−→ G(a, h).

Since κ · δ = δ by (4.4) and Γ = i · p, it follows by naturality of i that the diagram

a

β(a, h)

ea
H(a)

δa

δa
HH(a)

κa=Γ(H(a),ma)

p(H(a),ma)
G(H(a),ma)

G(h)

i(H(a),ma)

G(a, h)

i(a, h)

HH(a)
H(h)

H(a).

is commutative. So we have

i(a, h) · β(a, h) = H(h) · δa · ea.

Thus, the functor K : A → (AH)G has a right adjoint if and only if for any ((a, h), ν) ∈
(AH)G, the pair of morphisms

a
i(a,h)· ν

H(h)· δa· ea
H(a)

has an equaliser. Recalling that Φ : AH
H (ω) → (AH)G is an isomorphism of categories and 

Φ−1((a, h), ν) = (a, h, i(a, h) · ν) gives the desired result. �
Symmetrically, we have:

4.11. Proposition. Let H = (H, H, ω) be a compatible weak entwining on A. Then the 
functor K ′ : A → (AH)T (and hence also Kω : A → A

H
H (ω)) has a left adjoint if and only 

if for any (a, h, θ) ∈ A
H
H (ω), the pair of morphisms

H(a)

h

H(θ)
HH(a)

ma
H(a)

εa
a (4.8)

has a coequaliser in A.

Symmetric to 4.1 one may consider
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4.12. Weak comonad monad entwinings. For a natural transformation ω : HH → HH, 
define the natural transformation

ξ : H
He−−→ HH

ω−→ HH
Hε−−→ H.

(H, H, ω) is called a weak entwining (from comonad H to monad H) provided

(i) ω ·Hm = mH ·Hω · ωH, Hδ · ω = ωH ·Hω · δH,

(ii) ω ·He = ξH · δ, Hε · ω = m · ξH,

(4.9)

and is said to be compatible if

δ ·m = mH ·Hω · δH. (4.10)

Here we get

ξ ∗ ξ = ξ, 1 ∗ ξ = 1 . (4.11)

Certainly, the theory for this notion will be similar to that for monad comonad entwin-
ings. However, the mixed bimodules (as in 4.2) do not play the same role here but are 
to be replaced by liftings to Kleisli categories. Nevertheless, comonad monad entwinings 
will enter the picture in the next section.

5. Weak braided bimonads

In the theory of Hopf algebras H over a field k, the twist map for k-vector spaces M, N , 
twM,N : M ⊗k N → N ⊗k M , plays a crucial part. In particular it helps to commute 
H ⊗k − with itself by twH,H : H ⊗k H → H ⊗k H. Generalising this to monoidal 
categories, often a braiding is required, that is, a condition on the whole category. It was 
observed (e.g. in [23]) that it can be enough to have such a twist only for the functor 
H under consideration, that is, a natural isomorphism τ : HH → HH satisfying the 
Yang–Baxter equation. For the study of weak braided Hopf algebras, Alonso Álvarez e.a. 
suggested in [1, Definition 1.2] to consider, for any object D in a monoidal category, a 
weak Yang–Baxter operator tD,D : D ⊗D → D ⊗D, which is not necessarily invertible 
but only regular. Here we take up this notion and formulate it for any functor on an 
arbitrary category.

5.1. Weak Yang Baxter operator. Given an endofunctor H : A → A, a pair of natural 
transformations τ, τ ′ : HH → HH is said to be a weak YB-pair provided the following 
equalities hold:

τ · τ ′ · τ = τ, τ ′ · τ · τ ′ = τ ′, τ · τ ′ = τ ′ · τ, (5.1)
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Hτ · τH ·Hτ = τH ·Hτ · τH,

Hτ ′ · τ ′H ·Hτ ′ = τ ′H ·Hτ ′ · τH ′,

(5.2)

and for ∇ := τ · τ ′,

τH ·H∇ = H∇ · τH, Hτ · ∇H = Hτ · ∇H,

τ ′H ·H∇ = H∇ · τ ′H, Hτ ′ · ∇H = Hτ ′ · ∇H.

(5.3)

The conditions in (5.2) are the usual Yang–Baxter equations for τ and τ ′, respectively. 
The equations in (5.1) and (5.3) are obviously satisfied if τ ′ = τ−1 and in this case τ is 
known as Yang–Baxter operator.

5.2. Definition. Let H = (H, m, e) a monad, H = (H, δ, ε) a comonad on A, and τ, τ ′ :
HH → HH a weak YB-pair with ∇ := τ · τ ′. The triple H = (H, H, τ) is called a weak 
braided bimonad (or weak τ -bimonad) provided

(1) m · ∇ = m, ∇ · δ = δ;
(2) ∇ ·He = τ · eH, Hε · ∇ = εH · τ , ∇ · eH = τ ·He, εH · ∇ = Hε · τ ;
(3) δH · τ = Hτ · τH ·Hδ, τ ·mH = Hm · τH ·Hτ ;
(4) Hδ · τ = τH ·Hτ · δH, τ ·Hm = mH ·Hτ · τH;
(5) δ ·m = mm ·HτH · δδ;
(6) εε ·mm ·HδH = ε ·m ·mH = εε ·mm ·Hτ ′H ·HδH;
(7) HmH · δδ · ee = δH · δ · e = HmH ·Hτ ′H · δδ · ee.

For vector space categories and (finite dimensional) tensor functors H ⊗− with τ the 
twist map, these conditions were introduced in [10, Definition 1]. For monoidal categories 
and monoidal functors the conditions are those for a weak braided bialgebra introduced 
and studied by Alonso Álvarez e.a. [1,2] and we can – and will – freely use essential 
parts of their results in our situation. Note that if ∇ is the identity of H, the conditions 
(1)–(4) in the definition describe the invertible double entwinings considered in [23].

The following observations provide the key to apply our previous results.

5.3. Related entwinings. Given the data from Definition 5.2, define

ω : HH
δH−−→ HHH

Hτ−−→ HHH
mH−−−→ HH,

ω : HH
Hδ−−→ HHH

τH−−→ HHH
Hm−−−→ HH.

From the Sections 4.1 and 4.12 we get the natural transformations

ξ : H eH−−→ HH
ω−→ HH

εH−−→ H, ξ : H He−−→ HH
ω−→ HH

Hε−−→ H,



84 B. Mesablishvili, R. Wisbauer / Journal of Algebra 490 (2017) 55–103
and the obvious equalities

ω ·He = δ = ω · eH, ξ · e = e = ξ · e.

Recalling σ and σ from 4.1, we define

χ : H eH−−→ HH
σ−→ HH

Hε−−→ H, χ : H He−−→ HH
σ−→ HH

εH−−→ H.

With these notions we collect the basic identities proved in [2].

5.4. Proposition. Let H = (H, H, τ) be a weak braided bimonad on A. Then

(1) ξ, ξ, χ and χ are idempotent (w.r.t. composition) and respect unit and counit of H;
(2) ξ ·m ·Hξ = ξ ·m and ξ ·m · ξH = ξ ·m;
(3) Hξ · δ · ξ = δ · ξ and ξH · δ · ξ = δ · ξ;
(4) σ · eH = χH · δ and σ ·He = Hχ · δ;
(5) Hε · σ = m ·Hχ and εH · σ = m · χH;
(6) ξ · χ = ξ, ξ · χ = χ, χ · ξ = χ, χ · ξ = ξ, ξ · χ = χ, ξ · χ = ξ, χ · ξ = ξ, χ · ξ = ξ.

Proof. (1) is shown in [2, Proposition 2.9]; (2), (3) are from [2, Proposition 2.14]; 
(4) is shown in [2, Proposition 2.6], (5) in [2, Proposition 2.4], and (6) in [2, Propo-
sition 2.10]. �

The following shows the way to apply results from the preceding section.

5.5. Proposition. Let H = (H, H, τ) be a weak braided bimonad. Then

• (H, H, ω) is a compatible weak (monad comonad) entwining;
• (H, H, ω) is a compatible weak (comonad monad) entwining.

Proof. As easily seen, condition (5) in 5.2 yield the equalities (4.3) and (4.10) and also 
implies (4.2(i)) and (4.9(i)) for ω and ω, respectively (e.g. [7,22]). Now Propositions 2.3 
and 2.5 in [2] show the equations in (4.2)(ii) and (4.9)(ii). �

Direct inspection yields the technical observation:

5.6. Lemma. Suppose that f, g : X → X are idempotents in an arbitrary category such 

that fg = g and gf = f . If X pf−−→ Xf
if−→ X (resp. X pg−−→ Xg

ig−→ X) is a splitting of 
the idempotent f (resp. g), then

Xg

ig
X

f

1
X (resp. Xf

if
X

g

1
X)
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is a (split) equaliser diagram, while

X
f

1
X

pg

Xg (resp. X
g

1
X

pf

Xf )

is a (split) coequaliser diagram.

Henceforth we work over a Cauchy complete category A, with a fixed a splitting of ξ,

H

qξ

ξ
H

Hξ ιξ

.

(5.4)

5.7. Proposition. In the situation of Proposition 4.10, the diagram

Hξ ιξ

H

δ

eH
HH

δH
HHH

Hm
HH (5.5)

is a (split) equaliser in [A, A].

Proof. Since Hm · δH · eH = χH · δ by Proposition 5.4 (4), we have to show that the 
diagram

Hξ ιξ

H

δ

δ
HH

χH
HH

is a split equaliser. Let us first show that the pair

H

δ

δ
HH

χH
HH (5.6)

is cosplit by the morphism Hε : HH → H. Indeed, since Hε · δ = 1 and Hε · χH · δ =
χ ·Hε · δ = χ, it remains to show that χH · δ · χ = δ · χ. For this, consider the diagram
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H

χH· δ

χ

eH

H

eH

χH· δ

HH

(1)

δH

δH

Hχ
HH

δH

HHH

(2)

HδH

HHχ
HHH

Hm

HHH

(5)

(3)

Hm

δHH
HHHH

(4)

HHm
HHH

(6)

HHε
HH

HH
δH

Hε
H

δ

in which the

• regions (1), (2), (5) and (6) commute by naturality of composition;
• region (3) commutes by coassociativity of δ;
• region (4) commutes by Proposition 5.4(5);
• the curved regions commute by Proposition 5.4(4).

Hence the whole diagram commutes, implying

χH · δ · χ = δ ·Hε · χH · δ = δ · χ.

So the pair (5.6) is cosplit by the morphism Hε and hence one finds its equaliser by 
splitting the idempotent χ = Hε · χH · δ. But since ξ · χ = χ and χ · ξ = ξ by Propo-
sition 5.4 (6) and ιξ · qξ is the splitting of the idempotent ξ (see (5.4)), it follows from 
Lemma 5.6 that (5.5) is a (split) equaliser diagram. �

Symmetrically, we have:

5.8. Proposition. In the situation of Proposition 4.11, the diagram

HH

m

Hδ
HHH

mH
HH

εH
H

qξ

Hξ

is a (split) coequaliser diagram in [A, A].



B. Mesablishvili, R. Wisbauer / Journal of Algebra 490 (2017) 55–103 87
Since Hm ·δH ·eH = χH ·δ and εH ·mH ·Hδ = m ·χH by Proposition 5.4(4) and (5), 
Propositions 5.7 and 5.8 immediately yield:

5.9. Corollary. Let H = (H, H, τ) be a weak braided bimonad A. Then

Hξ ιξ

H

qξ

δ

δ
HH

χH
HH

Hε

is a (split) equaliser yielding the monad

H ξ = (Hξ,mξ, eξ) with mξ = qξ ·m · (ιξιξ) and eξ = qξ · e,

and

HH

m

χH
HH

m
H

He

qξ

Hξ

ιξ

is a (split) coequaliser yielding the comonad

H ξ = (Hξ, δξ, εξ) with Hξ = Hξ, δξ = (qξqξ) · δ · ιξ and εξ = ε · ιξ.

The next result provides the technical data to show Frobenius separability.

5.10. Lemma. Let H = (H, H, τ) be a weak braided bimonad and consider the composite

υ : 1 e−−−→ H
δ−−−→ HH

qξqξ−−−−→ HξHξ.

Then mξ · υ = eξ and one has commutativity of the diagrams

Hξ

δξ

υHξ

ιξ

HξHξHξ

Hξmξ

H
δ

HH
qξqξ

HξHξ,

Hξ

δξ

Hξυ

ιξ

HξHξHξ

mξHξ

H
δ

HH
qξqξ

HξHξ.
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Proof. The diagram

1

e

e
H

He

δ
HH

HHe
HHH

Hω

HH

m

δH

HH

Hε

HHH
mH

HHε

H

δ

H HH
m

commutes by naturality and since ω is an entwining (Proposition 5.5). Now equations 
from 5.3 and ξ ·m · ξH = ξ ·m (Proposition 5.4(2)) yield commutativity of the diagram

H
δ

HH
Hξ

HH

m

ξH
HH

m

1

e

e
H

ξ
H H

ξ

and the splitting ξ = ιξ · qξ implies mξ · υ = eξ.
In the diagram

Hξ

ιξ

eHξ

HHξ

Hιξ

δHξ

HHHξ

HξHξ

qξHHξ

HξHHξ

Hξ ξHξ

HξqξHξ

HξHξHξ

Hξ ιξHξ

H

δ

eH
HH

δH

HHHξ

HHιξ

qξHHξ
HξHHξ

HξHιξ

HHH

(b)Hm

HξH
HHH

Hm

qξHH

HξHH

Hξ m

HH

Hqξ
qξH

HξH

Hξqξ

HH

(a)

χH
HH

Hqξ
HHξ

qξHξ
HξHξ

• the triangle commutes by the splitting of ξ;
• region (a) commutes by Proposition 5.4 (4);
• region (b) commutes because Proposition 5.4 (2) induces qξ ·m · ξH = qξ ·m;
• the other regions commute by naturality.
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Since χH · δ · ιξ = δ · ιξ by Proposition 5.7, we obtain from this commutativity of the left 
hand diagram.

Next, in the diagram

Hξ

ιξ

Hξe
HξH

ιξH

Hξδ
HξHH

ιξHH

HξqξH

HξξH

HξHξH
HξHξqξ

Hξ ιξH

HξHξHξ

Hξ ιξHξ

H

(a)

δ

He

He
HH

Hδ
HHH

HξH

HξHH

ιξHH

HξHHξ

ιξHHξ

HH
Hδ

HHH

mH

HHHξ

mHξ

HH
Hχ

qξH

(b)

HH

qξH

Hqξ
HHξ

qξHξ

HξH
Hχ

HξH
Hξqξ

HξHξ

• the top triangle commutes by the splitting of ξ;
• region (a) commutes since from Proposition 5.4(1) and (3) we get

ξH · δ · e = ξH · δ · ξ · e = δ · ξ · e = δ · e;

• region (b) commutes by Proposition 5.4(4);
• the other regions commute by naturality.

Thus the whole diagram is commutative, and in the light of the equality qξ · χ = qξ, 
derived from ξ · χ = ξ in Proposition 5.4(6), commutativity of the right hand diagram 
follows. �

The following generalises [26, Proposition 4.2] and [29, Proposition 1.6] (see also [8, 
Proposition 4.4]).

5.11. Proposition. Let H = (H, H, τ) be a weak braided bimonad on A. Then the quintuple 
(Hξ, mξ, eξ; δξ, εξ) is a separable Frobenius monad.

Proof. Using the results of Lemma 5.10, it is easy to verify that the diagram correspond-
ing to (2.1) is commutative and that mξ · δξ = 1Hξ . �
5.12. Proposition. Let H = (H, H, τ) be a weak braided bimonad on A and suppose 
the functor Kω : A → A

H
H (ω) admits a right adjoint K : A

H
H (ω) → A. Then 
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H ξ = (Hξ, mξ, eξ) is the monad generated by the adjunction Kω � K and ιξ is the 
corresponding morphism of monads H ξ → H (as in Proposition 3.5).

Proof. Suppose there is an adjunction

η , ε : Kω � K : AH
H (ω) → A;

consider the monad (KKω, KεKω, η) it generates on A. Write ι : KKω → H for the cor-
responding morphism of monads (as in Proposition 3.5). Since, by Proposition 4.10, the 
functor Kω : A → A

H
H (ω) admits a right adjoint if and only if for every (a, h, θ) ∈ A

H
H (ω), 

the pair of morphisms (4.7) has an equaliser in A, and since Kω(a) = (H(a), ma, δa) for 
all a ∈ A, it follows from Proposition 5.7 that KKω = Hξ and that ιξ = ι.

According to Theorem 1.15, the unit η : 1 → KKω = Hξ of the adjunction Kω � K

is the unique such natural transformation yielding, for all a ∈ A, commutativity of the 
diagram

Hξ(a)
ιξa

H(a)

a.
ηa

ea

It then follows that ηa = qξa · ιξa · ηa = qξa · ea.
Next, since for any a ∈ A, εKω(a) = ma ·H(ιξa) by (3.4), it follows that

K(εKω(a)) : KKωKKω(a) = HξHξ(a) → KKω(a) = Hξ(a)

is the unique morphism making the diagram

HξHξ(a)
(ιξ)

Hξ(a)

K(εKω(a))

HHξ(a)
H(ιξa)

HH(a)
ma

Hξ(a)
ιξa

H(a)

commute and we calculate (recall (5.4))

K(εKω(a)) = qξa · ιξa ·K(εKω(a)) = qξa ·ma ·H(ιξa) · ιξHξ(a) = qξa ·ma · (ιξιξ)a.

This completes the proof. �
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HHξH

HιξH

HιξH
H3

(2)
HeH2

HδH

mH
H2 δH

H3

(3)

Hm
H2

H4(1)

mH2

H2m

HδH2

H4

H2m

ωH2
H4

(4)

HmH

H2m

H3

Hm

H5 (7)

H3m

H2mH

H3

(8)

ωH

(9)

H3 (5)

Hm

H3

(10)

(6)

mH

HδH
H4

H2m

ωH2
H4

H2m

HmH
H3

Hm

H2

δH

Fig. 1.

By symmetry, we also have:

5.13. Proposition. Let H = (H, H, τ) be a weak braided bimonad on A and suppose the 
functor Kω : A → A

H
H (ω) admits a left adjoint K : AH

H (ω) → A. Then H ξ = (Hξ, δξ, εξ)
is the comonad generated by the adjunction K � Kω and qξ : H → H ξ is a comonad 
morphism.

According to Section 1.7, the monad morphism ιξ : Hξ → H equips H with an 
Hξ-bimodule structure, where the left and right actions are the composites, respectively,

ρl : HξH
ιξH−−−→ HH

m−→ H, ρr : HHξ Hιξ−−−→ HH
m−→ H.

5.14. Proposition. For a weak braided bimonad H = (H, H, τ) on A, σ = Hm · δH co-
equalises the pair (ρrH, Hρl), i.e.,

σ · ρrH = σ ·Hρl.

Proof. Since (5.5) is an equaliser diagram and since in Fig. 1

• diagram (1) commutes since e is the unit of the monad T;
• diagrams (2) and (10) commute by Proposition 5.5;
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• diagrams (3), (7) and (9) commute by associativity of m;
• diagrams (4), (5), (6) and (8) commute by naturality,

one sees that σ · ρrH = Hm · δH ·Hm ·HιξH = σ ·Hρl. �
Suppose now that the tensor product H⊗HξH exists, i.e., there is a coequaliser diagram

HHξH
ρrH

Hρl

HH
�

H⊗HξH , (5.7)

where � = canH,H

Hξ
. Note that, by Proposition 1.9, H⊗HξH has a right H-module structure 

such that � is a morphism of right H-modules. Moreover, since σ coequalises ρrH and 
Hρl, the composite p · σ : HH → G (see (4.6)) also coequalises them, and since diagram 
(5.7) is a coequaliser, there exists a unique natural transformation γ : H⊗Hξ H → G

making the diagram

HHξH
ρrH

Hρl

HH

p ·σ

�
H⊗HξH

∃!γ

G

(5.8)

commute. It follows – since UHtφH = p · σ by Proposition 4.8 – that the diagram

HH

UHtφH

σ

�

HH

p

H⊗HξH γ
G

(5.9)

commutes. Precomposing this square with He and using σ ·He = δ (e.g. [23, 5.2]), we get

p · δ = γ · � ·He. (5.10)

5.15. H as Hξ-bicomodule. The comonad morphism qξ : H → Hξ equips H with an 
Hξ-bicomodule structure, where the left and right coactions are the composites, respec-
tively,

θl : H δ−→ HH
qξH−−−→ HξH, θl : H δ−→ HH

Hqξ−−−→ HHξ.

Moreover, there is a unique natural transformation γ′ : T → H⊗Hξ H making the 
triangle in the diagram
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H⊗HξH
can

HH
θrH

Hθl

HHξH

T

∃!γ′

σ ·i ′

(5.11)

commute. Here i ′ and T are as defined in the diagrams (4.6).

5.16. Proposition. Let H = (H, H, τ) be a weak braided bimonad on A. Viewing H as a 

right H ξ-module by the structure map HHξ Hιξ−−−→ HH
m−→ H, then qξ : H → Hξ is a 

morphism of right H ξ-modules.

Proof. For this, we have to show commutativity of the diagram

HHξ
qξHξ

Hιξ

HξHξ

mξ

HH
m

H
qξ

Hξ,

and since mξ = qξ ·m · (ιξιξ), this can be rewritten as

HHξ
ξHξ

Hιξ

HHξ Hιξ

HH

m

HH

m

ξH

H

qξ

H
qξ

Hξ.

In this diagram, the triangle commutes by naturality of composition, and the trapezoid 
commutes, since ιξ is a (split) monomorphism and ξ ·m ·ξH = ξ ·m by Proposition 5.4(2). 
This completes the proof. �

Consider now the diagram

HHξH

qξHξH

ρrH

Hρl

HH

qξH

�
H⊗HξH

q̃

HξHξH
mξH

Hξρl

HξH
ρl

ιξH
HH

m
H

(5.12)
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in which qξH · ρrH = mξH · qξHξH, since qξ is a morphism of right Hξ-modules by 
Proposition 5.16, qξH ·Hρl = Hξρl · qξHξH because of naturality of composition, and 
the bottom row is a split coequaliser, since the pair (H, ρl) is a left Hξ-module (see 
Remark 1.17 (1)). It then follows

5.17. Proposition. Let H = (H, H, τ) be a weak braided bimonad on A. In the situation 
described above, there is a unique morphism q̃ : H⊗HξH → H making the trapezoid in 
the diagram (5.12) commutative and this is a morphism of right H-modules.

Proof. According to Section 1.7, the morphisms qξH, ιξH and m are morphisms of right 
H-modules. Then the composite m · ιξH · qξH = ρl · qξH (and hence also q̃ · �) is a 
morphism of right H-modules, implying – since � and �H are both epimorphisms of right 
H-modules – that q̃ is also a morphism of right H-modules. �
5.18. Proposition. Suppose γ : H⊗H ξ H → G in (5.8) is an epimorphism. If the mor-
phisms f, g : H → H are such that f ∗ 1 = g ∗ 1, then f ∗ ξ = g ∗ ξ.

Proof. If f, g : H → H are morphisms such that f ∗ 1 = g ∗ 1, then

m · fH · δ = m · gH · δ

and since σ ·He = δ, we have

m · fH · σ ·He = m · gH · σ ·He.

According to Section 1.7, fH and gH can be seen as morphisms of the right H-module 
(HH, Hm) to itself, while m is a morphism from the right H-module (HH, Hm) to 
the H-module (H, m). Moreover, σ is also a morphism of right H-modules (e.g. [23, 
Section 5.1]). Thus the composites m · fH ·σ and m · gH ·σ both are morphisms of right 
H-modules. It then follows from the right hand version of [23, Lemma 3.2] that

m · fH · σ = m · gH · σ.

Next, since σ = κ · σ = i · p · σ and p · σ = γ · � (by (5.9)), we have

m · fH · i · γ · � = m · gH · i · γ · �,

and l and γ being epimorphisms we get m · fH · i = m · gH · i, thus

m · fH · κ = m · gH · κ.

Recalling that κ ·He = ω · eH and ω · eH = Hξ · δ (see (4.4), (4.2)(ii)), we get

m · fH · κ ·He = m · fH · ω · eH = m · fH ·Hξ · δ = f ∗ ξ,

and similarly, one derives m · gH · κ ·He = g ∗ ξ. Thus, f ∗ ξ = g ∗ ξ. �
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Since κ is (clearly) a morphism of right H-modules, Proposition 1.4 yields

5.19. Proposition. The composite GH
iH−−→ HHH

Hm−−−→ HH
p−→ G makes G into a 

right H-module such that p : HH → G and i : G → HH both are morphisms of right 
H-modules.

5.20. Corollary. γ : H⊗H ξH → G is a morphism of right H-modules.

Proof. Since, in diagram (5.9), the morphisms σ, p and � are all morphisms of right 
H-modules (see [23, 5.1] and Proposition 5.19), and since � and �H are both epimor-
phisms, it follows that γ is also a morphism of right H-modules. �
6. Weak braided Hopf monads

In this section, we define an antipode for weak braided bimonads H = (H, H, τ) and 
formulate various forms of the Fundamental Theorem. The definition corresponds to 
that in [10,2] and in other papers on (generalisations of) weak Hopf algebras. For the 
notations we refer to the preceding section.

6.1. Definition. Given a weak braided bimonad H, a natural transformation S : H → H

is called an antipode if

1 ∗ S = ξ, S ∗ 1 = ξ, S ∗ 1 ∗ S = S.

Since ξ ∗ 1 = 1 = 1 ∗ ξ (see (4.4), (4.11)), we also get 1 ∗ S ∗ 1 = 1.
A weak braided bimonad H with an antipode is called a weak braided Hopf monad or 

a weak τ -Hopf monad.

6.2. Proposition. Let H = (H, H, τ) be a weak braided Hopf monad on a Cauchy complete 
category A. Then the functor Kω : A → A

H
H (ω) admits a right adjoint K : AH

H (ω) → A.

Proof. Suppose that H has an antipode S. By Proposition 4.10, we have to show that for 
any (a, h, θ) ∈ A

H
H (ω), the pair (4.7) has an equaliser. We claim that the pair is cosplit 

by the composite d : H(a) Sa−−→ H(a) h−→ a. Indeed, in the proof of [2, Proposition 3.5 (ii)]
it is shown that

H(h) · δa · ea · d · θ = θ · d · θ.

It remains to prove that

d ·H(h) · δa · ea = 1.

For this, consider the diagram
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a

ea

ea
H(a)

ξa

δa
HH(a)

SH(a)

H(h)
H(a)

Sa

HH(a)
H(h)

ma

H(a)

h

H(a)
h

a,

in which

• the left triangle commutes by Proposition 5.4 (1);
• the right triangle commutes because S is an antipode;
• the top square commutes by naturality of S;
• the bottom square commutes since (a, h) ∈ AH.

So the whole diagram commutes and since h · ea = 1, the outer paths show that the 
desired equality holds.

Thus the composite d · θ : a θ−→ H(a) Sa−−→ H(a) h−→ a is an idempotent and if 
a 

qa−−→ a
ιa−→ a is a splitting of this idempotent, then the diagram

a
ιa

a

θ

ea
H(a)

δa
HH(a)

H(h)
H(a)

is a (split) equaliser in A. Thus, K exists and for any (a, h, θ) ∈ A
H
H (ω), K(a, h, θ) = a. �

Dual to Proposition 6.2, we observe:

6.3. Proposition. Let H = (H, H, τ) be a weak braided Hopf monad on a Cauchy complete 
category A. Then the functor Kω : A → A

H
H (ω) admits a left adjoint K : AH

H (ω) → A

that takes (a, h, θ) ∈ A
H
H (ω) to the object a which splits the idempotent a θ−→ H(a) Sa−−→

H(a) h−→ a. Moreover, the diagram

H(a)

h

H(θ)
HH(a)

ma
H(a)

εa
a

qa
a

is a (split) coequaliser.
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6.4. Proposition. Let H = (H, H, τ) be a weak braided Hopf monad on a Cauchy complete 
category A. Then, for any (a, h, θ) ∈ A

H
H (ω), the diagram

a
θ

H(a)

H(βa)

a H(a) ,
h

with the idempotent βa : a θ−→ H(a) Sa−−→ H(a) h−→ a (see proof of Proposition 6.2) is 
commutative.

Proof. We compute

h ·H(βa) · θ = h ·H(h) ·H(Sa) ·H(θ) · θ

= h ·ma ·H(Sa) · δ · θ

= h · εH(a) · ωa · eH(a) · θ

= εa ·H(h) · ωa ·H(θ) · ea

= εa · θ · h · ea = 1.

The second and sixth equations hold since (a, h) ∈ AH and (a, θ) ∈ A
H, the third one 

holds by the definition of an antipode, the forth one by naturality of e and ε, and the 
fifth one by the fact that (a, h, θ) ∈ A

H
H (ω). �

6.5. Proposition. Let H = (H, H, τ) be a weak braided Hopf monad on a Cauchy complete 
category A. Then

(1) Kω : A → A
H
H (ω) admits both a left and a right adjoint K, K : AH

H (ω) → A;
(2) the unit η : 1 → KK of K � K is a split monomorphism, while the counit ε :

KK → 1 of K � K is a split epimorphism.

Proof. According to Propositions 6.2 and 6.3, Kω : A → A
H
H (ω) admits both left and 

right adjoints K, K. For any object (a, h, θ) ∈ A
H
H (ω), βa : a θ−→ H(a) Sa−−→ H(a) h−→ a is 

idempotent (see proof of Proposition 6.2) with a splitting a 
qa−−→ a

ιa−→ a and

K(a, h, θ) = K(a, h, θ) = a.

Moreover,
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H(a)

h

H(θ)
HH(a)

ma
H(a)

εa
a

qa
a

is the defining coequaliser diagram for K(a, h, θ), while

a
ιa

a

θ

ea
H(a)

δa
HH(a)

H(h)
H(a)

is the defining equaliser diagram for K(a, h, θ).
It is easy to verify directly, using (1.4) and (1.5), that

η (a, h, θ) = H(qa) · θ and ε(a, h, θ) = h ·H(ιa).

Now, in view of Proposition 6.4, we compute

ε(a, h, θ) · η (a, h, θ) = h ·H(ιa) ·H(qa) · θ = h ·H(βa) · θ = 1.

Thus ε((a, h), θ) is a split epimorphism, while η ((a, h), θ) is a split monomorphism. �
We are now ready to state and prove our main result. It subsumes the original version 

of the Fundamental Theorem proved for weak Hopf algebras over fields in [10, Theo-
rem 3.9] as well as various generalisations, for example, for algebras over commutative 
rings in [32, Theorem 5.12], [13, Theorem 36.16], for Hopf algebroids in [6, Theorem 4.14], 
and for weak braided Hopf algebras on monoidal categories [2, Proposition 3.6].

6.6. Fundamental Theorem. Let H = (H, H, τ) be a weak braided bimonad on a Cauchy 
complete category A, and T and G the monad and comonad induced on AH and on AH, 
respectively. Then the following are equivalent:

(a) H is a weak braided Hopf monad;
(b) the functor Kω : A → A

H
H (ω) admits both left and right adjoints, and the right 

adjoint is monadic;
(c) the functor Kω : A → A

H
H (ω) admits both left and right adjoints, and the left adjoint 

is comonadic;
(d) the induced natural transformation γ : H⊗H ξH → G is an isomorphism;
(e) the induced natural transformation γ ′ : T → H⊗H ξH is an isomorphism.

Moreover, if the (equivalent) conditions above hold, then there is an equivalence of 
categories AH ξ 	 A

H
H (ω).
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Proof. (a) ⇒ (b). If H is a weak braided Hopf monad, then, by Propositions 6.2 and 6.3, 
the functor Kω : A → A

H
H (ω) admits a right adjoint K and a left adjoint K. So it 

remains to prove that K is monadic. By Proposition 6.5, the counit of the adjunction 
K � K is a split epimorphism. Moreover, since A is assumed to be Cauchy complete, so 
is AH

H (ω) by Proposition 1.4. Applying now the dual of [21, Proposition 3.16] gives that 
K is monadic.

(b) ⇒ (d). Hξ is separable Frobenius by Proposition 5.11, and hence, by Propo-
sition 2.2, the change-of-base functor (ιξ)! : AHξ → AH exists. It then follows from 
Proposition 3.6 that the comparison functor KHξ : (AH)G → AHξ admits a left adjoint 
LHξ : AHξ → (AH)G such that UGLHξ = (ιξ)!. The situation is illustrated by the diagram

A

φ
Hξ

K

φH

AHξ

(ιξ)!

L
Hξ

U
Hξ

(AH)G

K

UG

K
Hξ

AH .

(6.1)

Next, from the proof of Proposition 2.2 we know that the defining coequaliser of (ιξ)!,

φHH
ξUHξ = φHUHξφHξUHξ

φH U
Hξ ε

Hξ

�U
Hξ

φHUHξ

q
(ιξ)! , (6.2)

where ρ is the composite φHH
ξ φH ιξ−−−→ φHH = φHUHφH

εH φH−−−→ φH, is absolute (i.e., is 
preserved by any functor). It then follows from Remark 1.17 (2) that the tensor product 
H⊗HξH is just the functor UH(ιξ)!(ιξ)∗φH. Moreover, � = UH q(ιξ)∗φH.

Since UH ξ (ιξ)∗ = UH, it follows from Proposition 3.7 and Equation (3.8) that the 
diagram

φHUH ξ (ιξ)∗ = φHUH

tK

q(ιξ)∗
(ιξ)!(ιξ)∗

tL
H ξ

˜G

commutes, and since UH ˜G = G, GφH = G, and (6.2) is absolute, the diagram
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HH

UH tKφH

�
H⊗HξH

UH tL
H ξ

φH

G

commutes. Since � is an epimorphism and (5.9) is also commutative, it follows that 
γ = UH tL

H ξ
φH.

Now, since K is assumed to be monadic, the comparison functor KHξ : (AH)G → AHξ

is an equivalence, and hence its left adjoint LHξ : AHξ → (AH)G is also an equivalence. 
Applying Theorem 3.2 to the right commutative triangle in diagram (6.1) gives that tL

Hξ

is an isomorphism. Quite obviously, γ = UHtL
Hξ
φH is then also an isomorphism.

(d) ⇒ (a). Suppose that the natural transformation γ : H⊗HξH → G is an isomor-
phism. Then we claim that the composite

S : H He−−→ HH
p−→ G

γ−1

−−−→ H⊗HξH
q̃−→ H

is an antipode for H. Note first that by Propositions 5.17, 5.19, and Corollary 5.20, the 
composite

q̃1 : HH
p−→ G

γ−1

−−−→ H⊗HξH
q̃−→ H

is a morphism of right H-modules. To show that S ∗ 1 = ξ, consider the diagram

H
δ

He

HH
HeH

HHH

Hm

pH
GH

γ−1H
(H⊗Hξ H)H

q̃H
HH

m

HH
(1)

�

HH
p

G
γ−1

H⊗Hξ H
q̃

H

in which

• the rectangle commutes since the q̃1 is a morphism of right H-modules;
• the triangle commutes since e is the unit of the monad H;
• part (1) commutes since p · δ = γ · � ·He by (5.10), and therefore γ−1 · p · δ = � ·He.

So the whole diagram commutes and we have S ∗ 1 = q̃ · � ·He.
Commutativity of the trapezoid in (5.12) shows q̃·� = m ·ξH, and since ξH ·He = He ·ξ

by naturality of composition, we get
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S ∗ 1 = q̃ · � ·He = m · ξH ·He = m ·He · ξ = ξ,

and from (4.11) we conclude 1 ∗ S ∗ 1 = 1 ∗ ξ = 1.
In the diagram

H
δ

He

HH

Hξ

HeH
HHH

HHξ

q̃1H
HH

Hξ

(1) HH
HeH

HHH

Hm

q̃1H
HH

m

HH
κ

HH
q̃1

H

• part (1) commutes by (4.2)(ii) and (4.4),
• the top squares commute by naturality of composition,
• the bottom square commutes since q̃1 is a morphism of right H-modules, and
• the triangle commutes since e is the unit of the monad H.

Now, commutativity of the diagram and the equation p · κ = p · i · p = p imply

S ∗ ξ = m ·Hξ · q̃1H ·HeH · δ = q̃1 · κ ·He

= q̃ · γ−1 · p · κ ·He = q̃ · γ−1 · p ·He = S.

Recalling 1 ∗ ξ = 1 = ξ ∗ 1 (from (4.11), (4.4)) yields

1 ∗ S ∗ 1 = 1 ∗ ξ = 1 = ξ ∗ 1,

and applying Lemma 5.18 shows 1 ∗ S = 1 ∗ S ∗ ξ = ξ ∗ ξ = ξ and, eventually,

S ∗ 1 ∗ S = S ∗ ξ = S, ξ ∗ S = S ∗ 1 ∗ S = S.

Thus, S is an antipode and hence H is a weak braided Hopf monad, as asserted.
The implications (a)⇒(c)⇒(e)⇒(a) hold by symmetry and the final assertion follows 

from the proof of the implication (b)⇒(d). �
6.7. Remark. When a weak braided bimonad H has an antipode S, it can be shown that 
the composite

G
i−→ HH

δH−−→ HHH
HSH−−−−→ HHH

Hm−−−→ HH
�−→ H⊗HξH

is the two-sided inverse of γ : H⊗ ξH → G, while the composite
H
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H⊗H ξH
can−−→ HH

Hδ−−→ HHH
HSH−−−−→ HHH

mH−−−→ HH
p ′

−−→ T

is the two-sided inverse of γ′ : T → H⊗H ξH.

6.8. Theorem. Let H = (H, H, τ) be a weak braided bimonad on a Cauchy complete cate-
gory A, and T and G the monad and comonad it induces on AH and AH, respectively.

(1) If H preserves existing coequalisers, the following are equivalent:
(a) H is a weak braided Hopf monad;
(b) the functor Kω : A → A

H
H (ω) admits a monadic right adjoint;

(c) the induced natural transformation γ : H⊗H ξH → G is an isomorphism.
(2) If H preserves existing equalisers, the following are equivalent:

(a) H is a weak braided Hopf monad;
(b) the functor Kω : A → A

H
H (ω) admits a comonadic left adjoint;

(c) the induced natural transformation γ′ : T → H⊗H ξH is an isomorphism.

Moreover, if the (equivalent) conditions above hold, then there is an equivalence of 
categories AH ξ 	 A

H
H (ω).

Proof. By symmetry, it suffices to prove (1). Then, in the light of Proposition 6.6, we 
need only to show that (b) implies (c). So suppose the functor Kω : A → A

H
H (ω) admits 

a monadic right adjoint K. Then the comparison functor KHξ : (AH)G → AHξ is an 
equivalence and hence has a left adjoint (inverse) LHξ : AHξ → (AH)G. It then follows 
from Proposition 3.6 that UGLHξ = (ιξ)!.

Since H is assumed to preserve existing coequalisers, the forgetful functor UT :
AT → A also preserves existing coequalisers (e.g. [11, Proposition 4.3.2]). Since col-
imits in functor categories are calculated componentwise, this implies that the image 
of the coequaliser (6.2) under the functor [AH ξ , UH] : [AH ξ , AH] → [AH ξ , A] is again a 
coequaliser. Then γ = UH tL

Hξ
φH by exactly the same argument used in the proof of the 

implication (b)⇒(d) of Proposition 6.6.
Now, since LHξ is an equivalence of categories and UGLHξ = (ιξ)!, it follows by 

Theorem 3.2 that tL
Hξ

(and hence also γ) is an isomorphism. Thus (b) implies (c), 
as required. �
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