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Abstract

Building on a categorical approach of G. Janelidze and W. Tholen to descent theory for modules, we
show how this theory can be presented at the level of enriched categories. Specializing to the monoidal
category of bimodules over a separable algebra this gives a criterion for comonadicity of the extension-of-
scalars functor associated to an extension of (not necessarily commutative) rings. As an application of this
criterion, some known results on the comonadicity of such functors are obtained.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Grothendieck’s faithfully flat descent theorem gives us, for any faithfully flat extension
i :A → B of commutative rings, a very pleasant description of A-modules in terms of B-modules
together with some additional structure, called descent data. To be more specific, recall that a de-
scent datum on a B-module M is a B ⊗A B-module morphism θM :M⊗AB → B⊗AM for which

M⊗AB
θM

τM,B

B⊗AM

αM

B⊗AM
αM

M
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and

M⊗AB ⊗AB

θM⊗ABM⊗AσB,B

M⊗AB ⊗AB

θM⊗AB

B⊗A M⊗AB

B⊗AθM

B⊗A M⊗AB
B⊗AσM,B

B⊗AB ⊗AM

commute, where σ with two subscripts denotes the symmetry isomorphism on the tensor product
of the subscripts. Write Des(i) for the category whose objects are pairs (M, θM), where M is
a B-module and θM is a descent datum on M , and write K : AMod → Des(i) for the functor
that takes N ∈AMod to the pair (B⊗AN,B⊗AσN,B). i :A → B is called an effective descent
morphism for modules if the functor K is an equivalence of categories. Grothendieck’s theorem
asserts that faithfully flat extensions of commutative rings are effective.

Grothendieck’s theorem has various extensions and generalizations. For instance, a complete
characterization of effective descent morphisms of commutative rings was given by A. Joyal
and M. Tierney (unpublished, but see [13]). M. Cipolla [8] made a first step in extending
Grothendieck’s result to noncommutative rings. This was further investigated in [15]. In [3]
T. Brzeziński pointed out that the category of noncommutative descent data in the sense of
Cipolla is (isomorphic) to the category of comodules over the Sweedler canonical coring asso-
ciated to the ring extension i :A → B . This idea was further developed in [6,7]. A more general
situation, where the ring extension i :A → B is replaced by an A–B-bimodule M with MB fi-
nitely generated and projective, was extensively studied in [9], wherein a generalized faithfully
flat descent theorem for modules is proved. This theory was generalized in [7].

In [10], G. Janelidze and W. Tholen showed how the theory of comonads provides a purely
categorical approach to descent theory for modules. It should be pointed out that their approach
is quite different from the one taken by all the authors above and that [10] is the only paper that
explains exactly how comonadicity is used in descent theory for modules. An important contribu-
tion of [10] is also the fact that it separates purely categorical arguments from module-theoretical
ones. The approach of G. Janelidze and W. Tholen is based on the translation of descent data into
coalgebras w.r.t. the comonad associated to a ring extension (note that the comonadic approach
to descent is also used in [12]). According to this translation (which is a special case of a much
more general result due to J. Bénabou and J. Roubaud [2], and Beck (unpublished), that asserts
that when the so-called Beck–Chevalley condition is satisfied, descent reduces to monadicity),
i :A → B is an effective descent morphism for modules iff the corresponding extension-of-
scalars functor B ⊗A − : AMod → BMod is comonadic. In particular, Grothendieck’s theorem
is a very special case of (the dual of) Beck’s theorem on monadic functors [1]. Thus, comonadic-
ity of extension-of-scalars functors plays an important role in descent theory for modules. In
view of this fact, it becomes even more sensible to have manageable tests for comonadicity of
the extension-of-scalars functors. Although there are several results obtained along these lines
(see [4–10,12,15]) the question of comonadicity of such functors is not fully answered yet. The
purpose of this note is to give such a test. Our contribution to this matter is to give a necessary and
sufficient condition—based on our attempt to repeat Janelidze–Tholen’s comonadic approach to
descent theory for modules, but now at the level of enriched categories—for comonadicity of the
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extension-of-scalars functors associated to certain extensions of noncommutative rings i :A → B

with A a separable algebra over a commutative ring.
For the basic definitions of category theory, see [11].

2. Preliminaries

A monoidal category V = (V0,⊗, I ) is called biclosed if for all X ∈ Ob(V0), the functors

− ⊗ X,X ⊗ − :V0 → V0

have (chosen) right adjoints, denoted [X,−] and {X,−}, respectively. In other words, a biclosed
monoidal category consists of a monoidal category V = (V0,⊗, I ), equipped with two functors

[−,−], {−,−} :Vop
0 × V0 → V0,

for which there are natural isomorphisms

V0
(
X, [Y,Z]) � V0(X ⊗ Y,Z) � V0

(
Y, {X,Z}). (2.1)

Recall that the adjunctions X ⊗− � {X,−} and −⊗X � [X,−] are internal, in the sense that
one has natural isomorphisms

{X ⊗ Y,Z} � {
Y, {X,Z}} (2.2)

and

[X ⊗ Y,Z] � [
X, [Y,Z]]. (2.3)

Let us recall that a morphism in a category A is a regular monomorphism if it is an equalizer of
some pair of morphisms. Recall also that a regular injective object in A is an object X ∈A which
has the extension property with respect to regular monomorphisms; that is, if every extension
problem

A

f

m
B

f̄

X

with m a regular monomorphism has a solution f̄ :B → X extending f along m, i.e., satisfying
f̄ m = f . (The dual notions are the regular epimorphism and the projective object.)

Let V = (V0,⊗, I ) be a monoidal category and let f :X → Y be a morphism in V0. We say
that f is right (respectively left) pure if, for any Z ∈ Ob(V0), the morphism

f ⊗ Z :X ⊗ Z → Y ⊗ Z

(respectively Z ⊗ f :Z ⊗ X → Z ⊗ Y)

is a regular monomorphism.
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Henceforth, we suppose without explicit mention that V is a finitely complete and finitely
cocomplete monoidal biclosed category whose unit I for the tensor product is projective.

Theorem 2.1. Let Q be an object of V0 for which the functor

{−,Q} :Vop
0 → V0

is conservative (that is, isomorphism-reflecting) and preserves regular epimorphisms. Then the
following properties of a morphism f :X → Y of V0 are equivalent:

(i) The morphism f is right pure.
(ii) The morphism f ⊗ {X,Q} :X ⊗ {X,Q} → Y ⊗ {X,Q} is a regular monomorphism.

(iii) The morphism {f,Q} : {Y,Q} → {X,Q} is a split epimorphism.

Proof. (i) implies (ii) trivially. To see that (ii) implies (iii), let us assume that the morphism

f ⊗ {X,Q} :X ⊗ {X,Q} → Y ⊗ {X,Q}

is a regular monomorphism. Since the functor {−,Q} :Vop
0 → V0 preserves regular epimor-

phisms by hypothesis, the morphism

{{X,Q}, {f,Q}} :
{{X,Q}, {Y,Q}} → {{X,Q}, {X,Q}},

which is isomorphic by (2.2) to the morphism

{
f ⊗ {X,Q},Q}

:
{
Y ⊗ {X,Q},Q} → {

X ⊗ {X,Q},Q}
,

is a regular epimorphism in V0. Since I is assumed to be projective in V0, the functor

V0(I,−) :V0 → Set

takes regular epimorphisms to surjections. It follows that the map

V0
({X,Q}, {f,Q})

of sets, which (using (2.1)) is isomorphic to the map

V0
(
I,

{{X,Q}, {f,Q}})

is surjective. But this means that every morphism

{X,Q} → {X,Q}

factors through {f,Q}, that is to say, that {f,Q} is a split epimorphism, as is seen from the
special case of the identity morphism 1{X,Q}.

It remains to show that (iii) implies (i). If the morphism

{f,Q} : {Y,Q} → {X,Q}
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is a split epimorphism, then so is

{
Z, {f,Q}} :

{
Z, {Y,Q}} → {

Z, {X,Q}}

too, for all Z ∈ Ob(V0). Identifying the morphism {Z, {f,Q}} (via the isomorphism (2.2)) with
{f ⊗ Z,Q}, we see that the morphism

{f ⊗ Z,Q} : {Y ⊗ Z,Q} → {X ⊗ Z,Q}

is also a split epimorphism. We now observe that, since the functor {−,Q} :Vop
0 → V0 admits

as a left adjoint the functor [−,Q] :V0 → Vop
0 , as can be seen from the following sequence of

natural isomorphisms:

V0
(
X, {Y,Q}) � V0(Y ⊗ X,Q) � V0

(
Y, [X,Q]) � Vop

0

([X,Q], Y )
,

to say that {−,Q} is conservative and preserves regular epimorphisms is to say that it preserves
and reflects regular epimorphisms. And since any split epimorphism is regular, it follows that the
morphism f ⊗ Z :X ⊗ Z → Y ⊗ Z is a regular monomorphism for all Z ∈ Ob(V0). Thus (iii)
implies (i). The proof of the theorem is now complete. �

There is of course a dual result:

Theorem 2.2. Let Q be an object of V0 such that the functor

[−,Q] :Vop
0 → V0

is conservative and preserves regular epimorphisms. Then the following properties of a mor-
phism f :X → Y of V0 are equivalent:

(i) The morphism f is left pure.
(ii) The morphism [X,Q] ⊗ f : [X,Q] ⊗ X → [X,Q] ⊗ Y is a regular monomorphism.

(iii) The morphism [f,Q] : [Y,Q] → [X,Q] is a split epimorphism.

An object Q of a monoidal biclosed category

V = (
V0,⊗, I, [−,−], {−,−})

is said to be cyclic if the functors {−,Q} and [−,Q] are naturally isomorphic. If Q is such an
object, we shall denote by �−,Q� the functor [−,Q] � {−,Q}.

Combining Theorems 2.1 and 2.2, we get:

Theorem 2.3. Let Q be a cyclic object of V0 for which the functor

�−,Q� :Vop
0 → V0

is conservative and preserves regular epimorphisms (equivalently, preserves and reflects regular
epimorphisms). Then the following properties of a morphism f :X → Y of V0 are equivalent:
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(i) The morphism f is left pure.
(ii) The morphism f is right pure.

(iii) The morphism �X,Q�⊗ f : �X,Q�⊗ X → �X,Q�⊗ Y is a regular monomorphism.
(iv) The morphism f ⊗ �X,Q� :X ⊗ �X,Q�→ Y ⊗ �X,Q� is a regular monomorphism.
(v) The morphism �f,Q� : �Y,Q�→ �X,Q� is a split epimorphism.

3. A criterion for comonadicity of extension-of-scalars functors

In this section we present our main result.
Let us fix a commutative ring K with unit (K = Z, the ring of integers, inclusive). All rings un-

der consideration are associative unital K-algebras. A right or left module means a unital module.
All bimodules are assumed to be K-symmetric. The K-categories of left and right modules over
a ring A are denoted by AMod and ModA, respectively; while the category of (A,B)-bimodules
is AModB . We will use the notation BMA to indicate that M is a left B , right A-module.

It is a well-known fact that, for a fixed ring A, the category AModA is a monoidal category
with tensor product of two (A,A)-bimodules being their usual tensor product over A and the
unit for this tensor product being the (A,A)-bimodule A. Moreover, this monoidal category is
biclosed: If M and N are two (A,A)-bimodules, then [M,N ] = ModA(M,N) and {M,N} =
AMod(M,N).

For any (A,A)-bimodule M , the character (A,A)-bimodule of M is defined to be M+ =
Ab(M,Q/Z) (where Ab is the category of abelian groups and Q/Z is the rational circle abelian
group). This is an (A,A)-bimodule via the actions (af a′)(m) = f (a′ma).

Lemma 3.1. The character bimodule A+ of the (A,A)-bimodule A is a cyclic object of the
monoidal biclosed category AModA of (A,A)-bimodules.

Proof. The following string of natural isomorphisms

{−,A+} = {−,Ab(A,Q/Z)
} = AMod

(−,Ab(A,Q/Z)
)

� Ab(A ⊗A −,Q/Z) � Ab(−,Q/Z) � Ab(− ⊗A A,Q/Z)

� ModA

(−,Ab(A,Q/Z)
) = [−,A+]

shows that the functors

{−,A+}
,
[−,A+]

: (AModA)op → AModA

are naturally equivalent. �
Since the functor �−,A+� is naturally equivalent to Ab(−,Q/Z) and since Q/Z is an injec-

tive cogenerator in Ab, we have that

Lemma 3.2. The functor

[[−,A+]]
: (AModA)op → AModA

is exact and conservative.
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Before we prove our main result we state the following slight improvement of Lemma 5.2
in [10]:

Theorem 3.3. Let i :A → B be a homomorphism of rings. If the induced morphism i+ :B+ →
A+ is a split epimorphism of (A,A)-bimodules, then the functors

− ⊗A B : ModA → ModB

and

B ⊗A − : AMod → BMod

are both comonadic.1

Recall (for example, from [14]) that a morphism f :M → N of right A-modules is called
pure if f ⊗A 1L :M ⊗A L → N ⊗A L is injective for every left A-module L. Pure morphisms in
the category of left A-modules are defined analogously.

The main result of this note is contained in the following:

Theorem 3.4. Let i :A → B be a homomorphism of rings. If A is a separable K-algebra, then
the following are equivalent:

(i) i is a pure morphism of left A-modules.
(ii) i is a pure morphism of right A-modules.

(iii) i+ :B+ → A+ is a split epimorphism of (A,A)-bimodules.
(iv) The functor − ⊗A B : ModA → ModB is comonadic.
(v) The functor B ⊗A − : AMod → BMod is comonadic.

Proof. We remark first that, by left–right symmetry, it suffices to prove the equivalence of (i),
(iii) and (v).

Suppose that i :A → B is a pure morphism of left A-modules. Then, for any X ∈ AModA, the
morphism X⊗A i :X⊗A A → X⊗A B is a monomorphism in Ab; and since the forgetful functor
AModA → Ab reflects monomorphisms, the morphism X⊗A i, seen as a morphism in AModA, is
a monomorphism. Thus, if i is a pure morphism of left A-modules, then it is left pure in AModA.
And since assuming A be K-separable is, just by definition, the same as assuming A be projective
in AModA, it follows from Theorem 2.3 that the morphism �i,A+� � i+ is a split epimorphism
of (A,A)-bimodules, provided that i is a pure morphism of left A-modules. Thus (i) implies (iii).

(iii) implies (v) by Theorem 3.3.
It is well known that the functor

− ⊗A B : ModA → ModB

admits as a right adjoint the functor

ModB(B,−) : ModB → ModA

1 As is shown in [12], the conditions that the functors − ⊗A B and B ⊗A − are both conservative can be omitted.
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and that the unit η of this adjunction has components

ηX :X ⊗A i :X � X ⊗A A → X ⊗A B, X ∈ ModA.

Thus i is a pure morphism of left A-modules precisely when η is componentwise a monomor-
phism. According to Theorem 9 of Section 2.3 of [1], this is, in particular, the case when the
functor − ⊗A B is comonadic. So (v) implies (i). This completes the proof of the theorem. �

Note that, since any algebra of matrices over K is separable, Theorem 3.4 immediately applies
to any ring extension having for its domain an algebra of matrices over K .

4. Some particular cases

In this section we state some consequences of our main theorem. To state the first one, we
need a definition. Let A, B be rings. Recall [7] that an (A,B)-bimodule M is said to be totally
faithful as a left A-module if the morphism

X → ModB(M,X ⊗A M), m → x ⊗A m,

is injective for every X ∈ ModA, or equivalently, if the unit of the adjunction

− ⊗A M � ModB(M,−) : ModB → ModA

is pointwise a monomorphism.

Theorem 4.1. Let A and B be rings, M an (A,B)-bimodule with MB finitely generated and
projective, EM = ModB(M,M) the right endomorphism ring of MB and

iM :A → EM, a → [m → am]

the corresponding ring homomorphism. If A is K-separable, then the following are equivalent:

(i) The bimodule AMB is totally faithful as a left A-module.
(ii) The bimodule BM∗

A is totally faithful as a right A-module. (Here we denote by M∗ the dual
ModB(M,B) of MB which is a (B,A)-bimodule in a canonical way.)

(iii) The morphism (iM)+ : (EM)+ → A+ is a split epimorphism of (A,A)-bimodules.
(iv) The functor − ⊗A M : ModA → ModB is comonadic.
(iv) The functor M∗ ⊗A − : AMod → BMod is comonadic.

Proof. Immediate from Theorem 3.4 using that:

• AMB (respectively BM∗
A) is totally faithful as a left (respectively a right) A-module if and

only if iM :A → EM is a pure morphism of left (respectively right) A-modules (see [7,
Lemma 2.2] or [12, Proposition 7.3]);

• the functor − ⊗A M : ModA → ModB (respectively M∗ ⊗A − : AMod → BMod) is co-
monadic if and only if the functor − ⊗A EM : ModA → ModEM

(respectively EM ⊗A − :
AMod → EM

Mod) is so (see [12, Theorem 7.5]). �
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As a special case of Theorem 4.1 one can take A = K . Then, since obviously K is K-sepa-
rable, we recover a result by Caenepeel, De Groot and Vercruysse [7].

Theorem 4.2. (Caenepeel, De Groot and Vercruysse [7]) Let A be a ring and let M be a (K,A)-
bimodule with MA finitely generated and projective. Then the following are equivalent:

(i) The morphism iM :K → EM = ModA(M,M) is a pure morphism of left K-modules.
(ii) The morphism iM :K → EM = ModA(M,M) is a pure morphism of right K-modules.

(iii) The bimodule KMA is totally faithful as a left K-module.
(iv) The bimodule AM∗

K is totally faithful as a right K-module.
(v) The functor − ⊗K M : ModK → ModA is comonadic.

(vi) The functor M∗⊗K − : KMod → AMod is comonadic.

For the special case in which M = A, we recapture easily the following result of Joyal and
Tierney (unpublished, but see [13]). Recall (for example, from [10]) that a homomorphism
i :K → A of commutative rings is said to be effective for descent if the extension-of-scalars
functor

A ⊗K − : ModK → ModA

is comonadic.

Theorem 4.3. (Joyal and Tierney) A homomorphism i :K → A of commutative rings is effective
for descent if and only if it is a pure morphism of (say left) K-modules.
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