

Available online at www.sciencedirect.com

journal of Algebra

Journal of Algebra 313 (2007) 761-772

www.elsevier.com/locate/jalgebra

Comonadicity and invertible bimodules $\stackrel{\text{\tiny{theteroptical}}}{\to}$

Bachuki Mesablishvili

Razmadze Mathematical Institute, Tbilisi 0193, Georgia Received 24 May 2006 Available online 28 March 2007 Communicated by Michel Van den Bergh

Abstract

The purpose of this paper is to exhibit the main results of A. Masuoka [A. Masuoka, Corings and invertible bimodules, Tsukuba J. Math. 13 (1989) 353–362] and of L. El Kaoutit and J. Gómez-Torrecillas [L. El Kaoutit, J. Gómez-Torrecillas, Comatrix corings and invertible bimodules, Ann. Univ. Ferrara Ser. VII 51 (2005) 263–280] as special cases of a more general result. © 2007 Elsevier Inc. All rights reserved.

Keywords: Comonadic functor; Coring; Invertible bimodule

1. Introduction

Let $i: B \to S$ be an extension of non-commutative rings, let $\operatorname{Inv}_R(S)$ denote the group of invertible *B*-subbimodules of *S*, and $\operatorname{Aut}_{S\text{-cor}}(S \otimes_B S)$ the group of *S*-coring automorphisms of the Sweedler's canonical *S*-coring $S \otimes_B S$. In [6], Masuoka defined a group homomorphism $\Gamma : \operatorname{Inv}_B(S) \to \operatorname{Aut}_{S\text{-cor}}(S \otimes_B S)$ and showed that if either (a) *S* is faithfully flat as a right or left *B*-module, or (b) *B* is a direct summand of *S* as a *B*-bimodule, then Γ is an isomorphism of groups.

This has been further generalized by L. El Kaoutit and J. Gómez-Torrecillas [3], considering extensions of non-commutative rings of the form $B \rightarrow S = \text{End}_A(M)$, where M is a B-A-bimodule with M_A finitely generated and projective. They defined a homomorphism

E-mail address: bachi@rmi.acnet.ge.

0021-8693/\$ – see front matter © 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2007.03.025

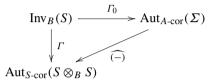
^{*} Supported by the research project "Algebraic and Topological Structures in Homotopical and Categorical Algebra, K-theory and Cyclic Homology," with financial support of the grant GNSF/ST06/3-004.

 $\Gamma_0: \operatorname{Inv}_B(S) \to \operatorname{Aut}_{A\operatorname{-cor}}(\Sigma)$

of groups, where $\Sigma = M^* \otimes_B M$ is the so-called comatrix coring corresponding to the *B*-*A*-bimodule *M* (for the notion of comatrix coring, see [4]). This homomorphism extends Γ in the sense that there is a homomorphism of groups

$$\widehat{(-)}: \operatorname{Aut}_{A\operatorname{-cor}}(\Sigma) \to \operatorname{Aut}_{S\operatorname{-cor}}(S \otimes_B S)$$

for which the diagram



commutes. It is then shown in [3] that if (i) $_BM$ is faithfully flat, or (ii) M_B^* is faithfully flat, or (iii) $_BM_A$ is a separable bimodule, then Γ_0 is an isomorphism of groups.

Examining the proofs of the above results, one observes that they are depend on a descent type argument. For example, it is not hard to show that under any of the conditions (i)–(iii), at least one of the extension-of-scalars functors associated to the ring extension $B \rightarrow S = \text{End}_A(M)$ is comonadic. To see this, first note that by a result of [7], the functor $-\bigotimes_B M : \text{Mod}_B \rightarrow \text{Mod}_A$ (respectively $M^* \bigotimes_B - :_B \text{Mod} \rightarrow _A \text{Mod}$) is comonadic iff the functor $-\bigotimes_B S : _B \text{Mod} \rightarrow _S \text{Mod}$ (respectively $S \otimes_B - : M \text{od}_B \rightarrow \text{Mod}_S$) is so. Next, if $_B M$ (respectively M_B^*) is faithfully flat, then the functor $-\bigotimes_B M$, or equivalently, the functor $-\bigotimes_B S$ (respectively the functor $M^* \otimes_B -$, or equivalently, the functor $S \otimes_B -$) is comonadic by a simple and well-known application of the (dual of the) Beck theorem. Finally, if $_B M_A$ is a separable bimodule, then the ring extension $i: B \rightarrow S$ splits (see, for example, [8]), i.e. B is a direct summand of S as a B-bimodule, and thus we can apply Corollary 4.2 of [5] to conclude that both $-\bigotimes_B S$ and $S \otimes_B -$ are comonadic. It follows that each of the conditions (i)–(iii) guarantees that (at least) one of the extension-of-scalars functors associated to the ring extension $B \rightarrow S = \text{End}_A(M)$ is comonadic.

This observation suggests to consider the following question:

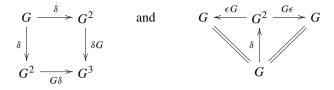
Is it certainly the case that $\Gamma_0: \operatorname{Inv}_B(S) \to \operatorname{Aut}_{A\operatorname{-cor}}(\Sigma)$ is an isomorphism of groups when one of the extension-of-scalars functors associated to the ring extension $B \to \operatorname{End}_A(M)$ is comonadic?

The aim of the present paper is to give a positive answer to this question.

We refer to [1] for terminology and general results on (co)monads, and to [2] for a comprehensive introduction to the theory of corings and comodules.

2. Preliminaries

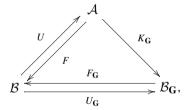
We begin by recalling that a comonad **G** on a given category \mathcal{B} is an endofunctor $G: \mathcal{B} \to \mathcal{B}$ equipped with natural transformations $\epsilon: G \to 1$ and $\delta: G \to G^2$ such that the diagrams



are commutative. If $\mathbf{G} = (G, \delta, \epsilon)$ is a comonad on \mathcal{B} , then a \mathbf{G} -coalgebra is a pair (b, θ_b) with $b \in \mathcal{B}$ and $\theta_b : b \to G(b)$ a morphism in \mathcal{B} for which $\epsilon_b \cdot \theta_b = 1$ and $\delta_b \cdot \theta_b = G(\theta_b) \cdot \theta_b$. If (b, θ_b) and $(b', \theta_{b'})$ are \mathbf{G} -coalgebras, then their morphism $f : (b, \theta_b) \to (b', \theta_{b'})$ is a morphism $f : b \to b'$ of \mathcal{B} for which $\theta_{b'} \cdot f = G(f) \cdot \theta_b$.

The **G**-coalgebras and their morphisms form a category $\mathcal{B}_{\mathbf{G}}$, the category of **G**-coalgebras (or the *Eilenberg–Moore* category associated to **G**). There are functors $F_{\mathbf{G}} : \mathcal{B}_{\mathbf{G}} \to \mathcal{B}$ and $U_{\mathbf{G}} : \mathcal{B} \to \mathcal{B}_{\mathbf{G}}$, given on objects by $F_{\mathbf{G}}(b, \theta_b) = b$ and $U_{\mathbf{G}}(b) = (G(b), \delta_b)$. Moreover, $F_{\mathbf{G}}$ is left adjoint to $U_{\mathbf{G}}$.

Recall also that if $\eta, \epsilon : F \to U : \mathcal{B} \to \mathcal{A}$ is an adjunction (so that $F : \mathcal{A} \to \mathcal{B}$ is a left adjoint of $U : \mathcal{B} \to \mathcal{A}$ with unit $\eta : 1 \to UF$ and counit $\epsilon : FU \to 1$), then $\mathbf{G} = (G, \epsilon, \delta)$ is a comonad on \mathcal{B} , where G = FU, $\epsilon : G = FU \to 1$ and $\delta = F\eta U : G = FU \to FUFU = G^2$, and one has the comparison functor $K_{\mathbf{G}}$ in



where $K_{\mathbf{G}}(a) = (F(a), F(\eta_a))$ and $K_{\mathbf{G}}(f) = F(f)$. Moreover, $F_{\mathbf{G}} \cdot K_{\mathbf{G}} \simeq F$ and $K_{\mathbf{G}} \cdot U \simeq U_{\mathbf{G}}$. One says that the functor *F* is *precomonadic* if $K_{\mathbf{G}}$ is full and faithful, and it is *comonadic* if $K_{\mathbf{G}}$ is an equivalence of categories.

Theorem 2.1. (Beck, see [1].) Let $\eta, \epsilon : F \dashv U : \mathcal{B} \to \mathcal{A}$ be an adjunction, and let $\mathbf{G} = (FU, \epsilon, F\eta U)$ be the corresponding comonad on \mathcal{B} . Then:

1. The comparison functor $K_{\mathbf{G}} : \mathcal{A} \to \mathcal{B}_{\mathbf{G}}$ has a right adjoint $R_{\mathbf{G}} : \mathcal{B}_{\mathbf{G}} \to \mathcal{A}$ iff for each $(b, \theta_b) \in \mathcal{B}_{\mathbf{G}}$, the pair of morphisms $(U(\theta_b), \eta_{U(b)})$ has an equalizer in \mathcal{A} —one then finds $R_{\mathbf{G}}(b, \theta_b)$ as the equalizer

$$R_{\mathbf{G}}(b,\theta_b) \xrightarrow{e_{(b,\theta_b)}} U(b) \xrightarrow{U(\theta_b)} UFU(b).$$
(2.1)

2. Assuming the existence of R_G , K_G is an equivalence of categories (in other words, F is comonadic) iff the functor F is conservative (= isomorphism-reflecting) and preserves (or equivalently, preserves and reflects) the equalizer (2.1) for each $(b, \theta_b) \in \mathcal{B}_G$.

Let $i: B \to S$ be an arbitrary extension of (non-commutative) rings, \mathcal{A} be the category $_B$ Mod of left *B*-modules, \mathcal{B} be the category $_S$ Mod of left *S*-modules,

$$F_S = S \otimes_B - :_B \operatorname{Mod} \to S \operatorname{Mod}$$

and

$$U_S : {}_SMod \rightarrow {}_BMod$$

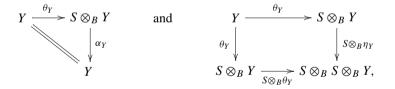
be the restriction-of-scalars functor. It is well known that F_S is left adjoint to U_S and that the unit η of this adjunction is given by

$$\eta_X: X \to S \otimes_B X, \quad \eta_X(x) = 1 \otimes_B x.$$

It is also well known that the Eilenberg–Moore category $(_SMod)_G$ of G-coalgebras, G being the comonad on $_SMod$ associated to the adjunction $F_S \dashv U_S$, is isomorphic to, and thus may be identified with, the category ${}^{S\otimes_B S}(_SMod)$ of left comodules over the Sweedler canonical *B*-coring $S \otimes_B S$ corresponding to the ring extension *i*. Moreover, module this identification, the comparison functor $K_G : _BMod \rightarrow (_SMod)_G$ corresponds to the functor

$$K_S : {}_BMod \longrightarrow {}^{S \otimes_B S}({}_SMod), \qquad K_S(X) = (S \otimes_B X, \theta_{S \otimes_B X}),$$

where $\theta_{S \otimes_B X} = S \otimes_B \eta_X$ for all $X \in_B$ Mod. (Note that a left $S \otimes_B S$ -comodule is a pair (Y, θ_Y) with $Y \in {}_S$ Mod and $\theta_Y : Y \to S \otimes_B Y$ a left *A*-module morphism for which the diagrams



where α_Y denotes the left *S*-module structure on *Y*, are commutative.) So, to say that the functor $F_S = S \otimes_B -$ is comonadic is to say that the functor K_S is an equivalence of categories. Applying Beck's theorem and using that _BMod has all equalizers, we get:

Theorem 2.2. The functor $F_S = S \otimes_B - :_B \text{Mod} \rightarrow {}_S \text{Mod}$ is comonadic if and only if

- (i) the functor F_S is conservative, or equivalently, the ring extension $i: B \to S$ is a pure morphism of right B-modules;
- (ii) for any $(Y, \theta_Y) \in {}^{S \otimes_B S}({}_S Mod)$, F_S preserves the equalizer

$$R_{S}(Y,\theta_{Y}) \xrightarrow{e_{(Y,\theta_{Y})}} Y \xrightarrow{\eta_{Y}} S \otimes_{B} Y, \qquad (2.2)$$

where $R_S: {}^{S \otimes_B S}({}_S \text{Mod}) \to {}_B \text{Mod}$ is the right adjoint of the comparison functor $K_S: {}_B \text{Mod} \to {}^{S \otimes_B S}({}_S \text{Mod}).$

Let *A* be a ring and Σ be an *A*-coring. Let us write $\text{End}_{A\text{-cor}}(\Sigma)$ (respectively $\text{Aut}_{A\text{-cor}}(\Sigma)$) for the monoid (respectively group) of *A*-coring endomorphisms (respectively automorphisms) of Σ . Recall that any $g \in \text{End}_{A\text{-cor}}(\Sigma)$ induces functors:

$$_{g}(-)$$
: $^{\Sigma}(_{A}\mathrm{Mod}) \rightarrow ^{\Sigma}(_{A}\mathrm{Mod}),$

defined by $_{g}(Y, \theta_{Y}) = (Y, (g \otimes_{A} 1) \circ \theta_{Y})$, and

$$(-)_g : (\operatorname{Mod}_A)^{\Sigma} \to (\operatorname{Mod}_A)^{\Sigma}$$

defined by $(Y', \theta_{Y'})_g = (Y', (1 \otimes_A g) \circ \theta_{Y'}).$

It is easy to see that the left S-module S is a left $(S \otimes_B S)$ -comodule with left coaction

$$_{S}\theta: S \to S \otimes_{B} S, \quad s \to s \otimes_{B} 1,$$

and that $_g(S, _S\theta) = (S, g \circ_S \theta)$. Symmetrically, the right *S*-module *S* is a right $S \otimes_B S$ -comodule with the right action

$$\theta_S: S \to S \otimes_B S, \quad s \to 1 \otimes_B s,$$

and that $(S, \theta_S)_g = (S, g \circ \theta_S)$.

For a given injective homomorphism $i: B \rightarrow S$ of rings, let

• $I_B(S)$ denote the monoid of all B-subbimodules of S, the multiplication being given by

$$IJ = \left\{ \sum_{k \in K} i_k \cdot j_k, \ I, J \in I_B(S), \ i_k \in I, \ j_k \in J, \text{ and } K \text{ is a finite set} \right\};$$

• $I_B^l(S)$ (respectively $I_B^r(S)$) denote the submonoid of $I_B(S)$ consisting of those $I \in I_B(S)$ for which the map

$$\mathbf{m}_{I}^{l}: S \otimes_{B} I \to S, \quad s \otimes_{B} i \to si,$$
(respectively $\mathbf{m}_{I}^{r}: I \otimes_{B} S \to S, \quad i \otimes_{B} s \to is$)

is an isomorphism;

- $J(g) = \{s \in S \mid g(s \otimes_B 1) = 1 \otimes_B s\}$ for $g \in \text{End}_{B\text{-cor}}(S \otimes_B S)$ and let $i_g : J(g) \to S$ be the inclusion map;
- $J'(g) = \{s \in S \mid s \otimes_B 1 = g(1 \otimes_B s)\}$ for $g \in \text{End}_{B\text{-cor}}(S \otimes_B S)$ and let $i'_g : J'(g) \to S$ be the inclusion map.

It is clear that $J(g), J'(g) \in I_B(S)$ for all $g \in \text{End}_{B\text{-cor}}(S \otimes_B S)$. The following result is verified directly:

Proposition 2.3. For any $g \in \text{End}_{B\text{-cor}}(S \otimes_B S)$, $R_S(g(S, S\theta)) \simeq J(g)$.

3. Main results

In this section we present our main results.

We begin with

Proposition 3.1. For any $g \in \text{End}_{B\text{-cor}}(S \otimes_B S)$, the following conditions are equivalent:

- (i) $J(g) \in I_R^l(S)$;
- (ii) the $_g(S, _{S}\theta)$ -component of the counit $\varepsilon : K_S R_S \to 1$ of the adjunction $K_S \dashv R_S$ is an isomorphism;
- (iii) the functor $S \otimes_B :_B Mod \rightarrow {}_S Mod$ preserves the equalizer

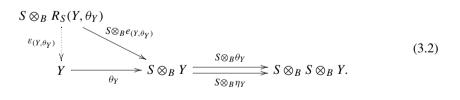
$$J(g) \xrightarrow{i_g} S \xrightarrow{\eta_S} S \otimes_B S; \tag{3.1}$$

(iv) the morphism $S \otimes_B i_g : S \otimes_B J(g) \to S \otimes_B S$ is a monomorphism.

Proof. We know by the general theory of (co)monads (see, for example, [1]) that, for any $(Y, \theta_Y) \in {}^{S \otimes_B S}({}_{S}Mod)$, the diagram

$$Y \xrightarrow{\theta_Y} S \otimes_B Y \xrightarrow{S \otimes_B \theta_Y} S \otimes_B S \otimes_B Y$$

is an equalizer and that the (Y, θ_Y) -component $\varepsilon_{(Y,\theta_Y)}$ of ε appears as the unique factorization of the morphism $S \otimes_B e_{(Y,\theta_Y)}$ through the morphism θ_Y :



Since $\alpha_Y \cdot \theta_Y = 1$, $\varepsilon_{(Y,\theta_Y)} = \alpha_Y \cdot (S \otimes_B e_{(Y,\theta_Y)})$. In particular, when $(Y,\theta_Y) = {}_g(S,{}_S\theta)$ we get that $\varepsilon_{g(S,S\theta)} = \mathbf{m}_{J(g)}^l$. So (i) and (ii) are equivalent.

Since the row of the diagram (3.2) is an equalizer, it follows that the morphism $S \otimes_B e_{(Y,\theta_Y)}$ is an equalizer of the pair of morphisms $(S \otimes_B \theta_Y, S \otimes_B \eta_Y)$ iff $\varepsilon_{(Y,\theta_Y)}$ is an isomorphism. In other words, the functor $S \otimes_B -$ preserves the equalizer (2.2) iff $\varepsilon_{(Y,\theta_Y)}$ is an isomorphism. As a special case we then have that (ii) is equivalent to (iii).

Finally, since the category $_B$ Mod is abelian (and hence coexact in the sense of Barr [1]), and since i_g is the equalizer of the $(S \otimes_B -)$ -split pair of morphisms $(_S\theta, \eta_S)$, it follows from the proof of Duskin's theorem (see, for example, [1]) that the functor $S \otimes_B -$ preserves the equalizer (3.1) iff the morphism $S \otimes_B i_g$ is a monomorphism. So (iii) and (iv) are also equivalent. This completes the proof. \Box

766

It is shown in [3] that assigning to each $I \in I_B^l(S)$ (respectively $I \in I_B^r(S)$) the composite $\Gamma(I) = (1 \otimes_B \mathbf{m}_I^r) \circ ((\mathbf{m}_I^l)^{-1} \otimes_B 1)$ (respectively $\Gamma'(I) = (\mathbf{m}_I^l \otimes_B 1) \circ (1 \otimes_B (\mathbf{m}_I^r)^{-1})$) yields an (anti-)homomorphism of monoids $\Gamma : I_B^l(S) \to \operatorname{End}_{B\operatorname{-cor}}(S \otimes_B S)$ (respectively $\Gamma' : I_B^l(S) \to \operatorname{End}_{B\operatorname{-cor}}(S \otimes_B S)$).

We shall need the following easy consequence of Lemma 2.7 of [6]:

Proposition 3.2. Assume that $i: B \to S$ is such that any embedding $I \hookrightarrow J$ of *B*-subbimodules of *S* is an isomorphism whenever its image under the functor $S \otimes_B - is$ such. Then $\Gamma: I_B^l(S) \to \text{End}_{B-\text{cor}}(S \otimes_B S)$ is an isomorphism of monoids whose inverse is the map $g \to J(g)$, provided that $J(g) \in I_B^l(S)$ for all $g \in \text{End}_{B-\text{cor}}(S \otimes_B S)$.

Putting Propositions 3.1 and 3.2 together, we get:

Theorem 3.3. Let $i : B \to S$ be as in Proposition 3.2. Then $\Gamma : I_B^l(S) \to \text{End}_{B\text{-cor}}(S \otimes_B S)$ is an isomorphism of monoids if and only if, for any $g \in \text{End}_{B\text{-cor}}(S \otimes_B S)$, the equivalent conditions of Proposition 3.1 hold.

Proposition 3.4. If the functor $S \otimes_B - : {}_BMod \to {}_SMod$ is comonadic, then $J(g) \in I_B^l(S)$ for all $g \in End_{B-cor}(S \otimes_B S)$.

Proof. Consider the left $(S \otimes_B S)$ -comodule $(S, _{S}\theta)$. According to Proposition 2.3 and Theorem 2.1, the pair $(J(g), i_g : J(g) \to S)$ appears as the equalizer

$$J(g) \xrightarrow{i_g} S \xrightarrow{\eta_S} S \otimes_B S,$$

and since the functor $S \otimes_B -$ is assumed to be comonadic, it preserves the equalizer (2.2) for all $(Y, \theta_Y) \in {}^{S \otimes_B S}({}_{S}Mod)$ and in particular considering $(S, {}_{S}\theta) \in {}^{S \otimes_B S}({}_{S}Mod)$, we see that

$$S \otimes_B J(g) \xrightarrow{S \otimes_B i_g} S \otimes_B S \xrightarrow{S \otimes_B \eta_S} S \otimes_B S \otimes_B S$$

is an equalizer diagram. It now follows from Proposition 3.1 that $J(g) \in I_B^l(S)$. \Box

Recalling that any comonadic functor is conservative, and putting Theorem 3.3 and Proposition 3.4 together, we obtain:

Theorem 3.5. If the functor $S \otimes_B -: {}_BMod \to {}_SMod$ is comonadic, then $\Gamma: I_B^l(S) \to End_{B-cor}(S \otimes_B S)$ is an isomorphism of monoids.

There is of course a dual result.

Theorem 3.6. If the functor $-\otimes_B S: \operatorname{Mod}_B \to \operatorname{Mod}_S$ is comonadic, then $\Gamma': I_B^r(S) \to \operatorname{End}_{B\operatorname{-cor}}(S \otimes_B S)$ is an anti-isomorphism of monoids.

It is known (see [6]) that the monoid morphism

$$\Gamma: \mathrm{I}^{l}_{B}(S) \to \mathrm{End}_{B\operatorname{-cor}}(S \otimes_{B} S)$$

restricts to a group morphism

$$\operatorname{Inv}_B(S) \to \operatorname{Aut}_{B\operatorname{-cor}}(S \otimes_B S),$$

which is still denoted by Γ . Similarly, the monoid anti-morphism

 $\Gamma': I_B^r(S) \to \operatorname{End}_{B\operatorname{-cor}}(S \otimes_B S)$

is restricted to the group anti-morphism

 $\operatorname{Inv}_B(S) \to \operatorname{Aut}_{B\operatorname{-cor}}(S \otimes_B S),$

which is called Γ' , too.

Theorem 3.7. If either

- (i) the functor $S \otimes_B : {}_B Mod \to {}_S Mod$, or
- (ii) the functor $-\otimes_B S : \operatorname{Mod}_B \to \operatorname{Mod}_S$

is comonadic, then Γ : Inv_B(S) \rightarrow Aut_{B-cor}(S \otimes_B S) is an isomorphism of groups.

Proof. The same argument as in [3] shows that if either $\Gamma: I_B^l(S) \to \operatorname{End}_{B\operatorname{-cor}}(S \otimes_B S)$ is an isomorphism of monoids, or $\Gamma': I_B^r(S) \to \operatorname{End}_{B\operatorname{-cor}}(S \otimes_B S)$ is an anti-isomorphism of monoids, then the group homomorphism Γ is an isomorphism. Theorems 3.5 and 3.6 now complete the proof. \Box

As a special case of this theorem, we obtain the following result of Masuoka (see [6]):

Theorem 3.8. If either

- (i) $_BS$ is faithfully flat, or
- (ii) B is a direct summand of S as a B-bimodule,

then $\Gamma: I_B^l(S) \to \operatorname{End}_{B\operatorname{-cor}}(S \otimes_B S)$ is an isomorphism of monoids.

Proof. In both cases, the functor $S \otimes_B - :_B Mod \to {}_S Mod$ is comonadic, as we have seen already in the introduction. \Box

Dually we have:

Theorem 3.9. If either

(i) S_B is faithfully flat, or

(ii) B is a direct summand of S as a B-bimodule,

then $\Gamma': I_B^r(S) \to \operatorname{End}_{B\operatorname{-cor}}(S \otimes_B S)$ is an anti-isomorphism of monoids.

Theorem 3.10.

- (i) $_BS$ or S_B is faithfully flat, or
- (ii) B is a direct summand of S as a B-bimodule,

then Γ : Inv_B(S) \rightarrow Aut_{B-cor}(S \otimes_B S) is an isomorphism of groups.

Proof. The argument here is the same as in the proof of Theorem 3.7. \Box

We now consider the following situation: Let A and B be rings, M a (B, A)-bimodule with M_A finitely generated and projective, $S = \text{End}_A(M)$ the ring of right A-endomorphisms of M_A , and $\Sigma = M^* \otimes_B M$ the comatrix A-coring corresponding to $_BM_A$. When $_BM_A$ is faithful, in the sense that the canonical morphism

$$i: B \to S, \quad s \to [m \to sm]$$

is injective, one has a map

$$\Gamma_0: I_B^l(S) \to \operatorname{End}_{A\operatorname{-cor}}(\Sigma)$$

of sets defining $\Gamma_0^l(I)$, $I \in I_B^l(S)$, to be the endomorphism

$$m^* \otimes_B m \to \sum_i m^* x_i \otimes_B y_i m_i$$

where $(\mathbf{m}_I^l)^{-1}(1) = \sum_i x_i \otimes_B y_i \in I_B^l(S)$.

Theorem 3.11. Suppose that ${}_BM_A$ is such that the functor

$$S \otimes_B - :_B \operatorname{Mod} \to {}_S \operatorname{Mod}$$

is comonadic. Then the map

$$\Gamma_0: I_B^l(S) \to \operatorname{End}_{A\operatorname{-cor}}(\Sigma)$$

is in fact an isomorphism of monoids.

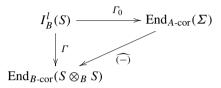
Proof. First of all, the morphism $i: B \to S$ is injective (or equivalently, the bimodule ${}_BM_A$ is faithful), since the functor $S \otimes_B -$ is assumed to be comonadic. Next, it is proved in [3] that the assignment

$$g \to \hat{g} = (\xi \otimes_B \xi) \circ (M \otimes_A g \otimes_A M^*) \circ (\xi^{-1} \otimes_B \xi^{-1}),$$

where $\xi: M \otimes_A M^* \to S = \text{End}_A(M)$ is the canonical isomorphism, yields an injective morphism of monoids

$$\widehat{(-)}$$
: End_{*A*-cor}(Σ) \rightarrow End_{*B*-cor}($S \otimes_B S$).

And the same argument as in the proof of Proposition 2.6 of [3] shows that the following diagram of *sets*



is commutative. Now, since the functor $S \otimes_B -$ is assumed to be comonadic, it follows from Theorem 3.5 that Γ is an isomorphism of monoids and hence the monoid morphism $\widehat{(-)}$, being injective, is also an isomorphism. Commutativity of the diagram then gives that Γ_0 is an isomorphism of monoids. \Box

Dually, one can define a map

$$\Gamma_0': I_B^r(S) \to \operatorname{End}_{A\operatorname{-cor}}(\Sigma)$$

that sends $I \in I_B^r(S)$ to the endomorphism

$$m^* \otimes_B m \to \sum_i m^* y_i \otimes_B x_i m$$

of the A-coring End_{A-cor}(Σ), where $(\mathbf{m}_I^r)^{-1}(1) = \sum_i y_i \otimes_b x_i \in I \otimes_B S$.

Theorem 3.12. Suppose that ${}_BM_A$ is such that the functor

$$-\otimes_B S: \operatorname{Mod}_B \to \operatorname{Mod}_S$$

is comonadic. Then

$$\Gamma_0': I_B^r(S) \to \operatorname{End}_{A\operatorname{-cor}}(\Sigma)$$

is an anti-isomorphism of monoids.

It is not hard to check that the map

$$\Gamma_0: I_B^l(S) \to \operatorname{End}_{A\operatorname{-cor}}(\Sigma)$$

of sets restricts to a map

$$\operatorname{Inv}_B(S) \to \operatorname{Aut}_{A\operatorname{-cor}}(\Sigma)$$

which we still call Γ_0 . As in [3], it follows from Theorems 3.11 and 3.12 that

Theorem 3.13. If either

- (i) the functor $S \otimes_B -$, or
- (ii) the functor $-\otimes_B S$

is comonadic, then the map

 $\Gamma_0: \operatorname{Inv}_B(S) \to \operatorname{Aut}_{A\operatorname{-cor}}(\Sigma)$

is actually an isomorphism of groups.

It is shown in [7] that the functor $-\otimes_B M : \operatorname{Mod}_B \to \operatorname{Mod}_A$ (respectively $M^* \otimes_B - : {}_B\operatorname{Mod} \to {}_A\operatorname{Mod}$) is comonadic iff the functor $-\otimes_B S : {}_B\operatorname{Mod} \to {}_S\operatorname{Mod}$ (respectively $S \otimes_B - :\operatorname{Mod}_B \to \operatorname{Mod}_S$) is. So we have:

Theorem 3.14. If either

- (i) the functor $-\otimes_B M$, or
- (ii) the functor $M^* \otimes_B -$

is comonadic, then the map

```
\Gamma_0: \operatorname{Inv}_B(S) \to \operatorname{Aut}_{A\operatorname{-cor}}(\Sigma)
```

is an isomorphism of groups.

From the last theorem one obtains the following result of L. El Kaoutit and J. Gómez-Torrecillas (see Theorem 2.5 in [3]):

Theorem 3.15. If

- (i) $_BM$ is faithfully flat, or
- (ii) M_B^* is faithfully flat, or
- (iii) $_BM_A$ is a separable bimodule,

then

$$\Gamma_0: \operatorname{Inv}_B(S) \to \operatorname{Aut}_{A\operatorname{-cor}}(\Sigma)$$

is an isomorphism of groups.

Proof. We have seen in the introduction that under any of the conditions (i)–(iii), at least one of the extension-of-scalars functor associated to the ring extension $B \rightarrow S = \text{End}_A(M)$ is comonadic, and applying Theorem 3.13 gives the desired result. \Box

References

- [1] M. Barr, C. Wells, Toposes, Triples, and Theories, Grundlehren Math. Wiss., vol. 278, Springer-Verlag, 1985.
- [2] T. Brzezinski, R. Wisbauer, Corings and Comodules, London Math. Soc. Lecture Note Ser., vol. 309, Cambridge University Press, Cambridge, 2003.
- [3] L. El Kaoutit, J. Gómez-Torrecillas, Comatrix corings and invertible bimodules, Ann. Univ. Ferrara Ser. VII 51 (2005) 263–280.
- [4] L. El Kaoutit, J. Gómez-Torrecillas, Comatrix corings: Galois corings, descent theory, and a structure theorem for cosemisimple corings, Math. Z. 244 (2003) 887–906.
- [5] G. Janelidze, W. Tholen, Facets of descent, III: Monadic descent for rings and algebras, Appl. Categ. Structures 12 (2004) 461–476.
- [6] A. Masuoka, Corings and invertible bimodules, Tsukuba J. Math. 13 (1989) 353-362.
- [7] B. Mesablishvili, Monads of effective descent type and comonadicity, Theory Appl. Categ. 16 (2006) 1-45.
- [8] K. Sugano, Note on separability of endomorphism rings, Hokkaido Math. J. 11 (1982) 111-115.