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Abstract

The purpose of this paper is to exhibit the main results of A. Masuoka [A. Masuoka, Corings and in-
vertible bimodules, Tsukuba J. Math. 13 (1989) 353–362] and of L. El Kaoutit and J. Gómez-Torrecillas
[L. El Kaoutit, J. Gómez-Torrecillas, Comatrix corings and invertible bimodules, Ann. Univ. Ferrara Ser.
VII 51 (2005) 263–280] as special cases of a more general result.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let i :B → S be an extension of non-commutative rings, let InvR(S) denote the group of
invertible B-subbimodules of S, and AutS-cor(S ⊗B S) the group of S-coring automorphisms of
the Sweedler’s canonical S-coring S ⊗B S. In [6], Masuoka defined a group homomorphism
Γ : InvB(S) → AutS-cor(S ⊗B S) and showed that if either (a) S is faithfully flat as a right or left
B-module, or (b) B is a direct summand of S as a B-bimodule, then Γ is an isomorphism of
groups.

This has been further generalized by L. El Kaoutit and J. Gómez-Torrecillas [3], considering
extensions of non-commutative rings of the form B → S = EndA(M), where M is a B–A-
bimodule with MA finitely generated and projective. They defined a homomorphism
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Γ0 : InvB(S) → AutA-cor(Σ)

of groups, where Σ = M∗ ⊗B M is the so-called comatrix coring corresponding to the B–A-
bimodule M (for the notion of comatrix coring, see [4]). This homomorphism extends Γ in the
sense that there is a homomorphism of groups

(̂−) : AutA-cor(Σ) → AutS-cor(S ⊗B S)

for which the diagram

InvB(S)

Γ

Γ0
AutA-cor(Σ)

(̂−)

AutS-cor(S ⊗B S)

commutes. It is then shown in [3] that if (i) BM is faithfully flat, or (ii) M∗
B is faithfully flat, or

(iii) BMA is a separable bimodule, then Γ0 is an isomorphism of groups.
Examining the proofs of the above results, one observes that they are depend on a descent type

argument. For example, it is not hard to show that under any of the conditions (i)–(iii), at least
one of the extension-of-scalars functors associated to the ring extension B → S = EndA(M) is
comonadic. To see this, first note that by a result of [7], the functor − ⊗B M : ModB → ModA

(respectively M∗ ⊗B − : BMod → AMod) is comonadic iff the functor − ⊗B S : BMod → SMod
(respectively S ⊗B − : ModB → ModS ) is so. Next, if BM (respectively M∗

B ) is faithfully flat,
then the functor −⊗B M , or equivalently, the functor −⊗B S (respectively the functor M∗ ⊗B −,
or equivalently, the functor S ⊗B −) is comonadic by a simple and well-known application of
the (dual of the) Beck theorem. Finally, if BMA is a separable bimodule, then the ring extension
i :B → S splits (see, for example, [8]), i.e. B is a direct summand of S as a B-bimodule, and
thus we can apply Corollary 4.2 of [5] to conclude that both −⊗B S and S ⊗B − are comonadic.
It follows that each of the conditions (i)–(iii) guarantees that (at least) one of the extension-of-
scalars functors associated to the ring extension B → S = EndA(M) is comonadic.

This observation suggests to consider the following question:

Is it certainly the case that Γ0 : InvB(S) → AutA-cor(Σ) is an isomorphism of groups when
one of the extension-of-scalars functors associated to the ring extension B → EndA(M) is
comonadic?

The aim of the present paper is to give a positive answer to this question.
We refer to [1] for terminology and general results on (co)monads, and to [2] for a compre-

hensive introduction to the theory of corings and comodules.

2. Preliminaries

We begin by recalling that a comonad G on a given category B is an endofunctor G :B → B
equipped with natural transformations ε :G → 1 and δ :G → G2 such that the diagrams
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G
δ

δ

G2

δG

and G G2
εG Gε

G

G2
Gδ

G3 G

δ

are commutative. If G = (G, δ, ε) is a comonad on B, then a G-coalgebra is a pair (b, θb) with
b ∈ B and θb :b → G(b) a morphism in B for which εb · θb = 1 and δb · θb = G(θb) · θb. If
(b, θb) and (b′, θb′) are G-coalgebras, then their morphism f : (b, θb) → (b′, θb′) is a morphism
f :b → b′ of B for which θb′ · f = G(f ) · θb.

The G-coalgebras and their morphisms form a category BG, the category of G-coalgebras (or
the Eilenberg–Moore category associated to G). There are functors FG :BG → B and UG :B →
BG, given on objects by FG(b, θb) = b and UG(b) = (G(b), δb). Moreover, FG is left adjoint
to UG.

Recall also that if η, ε :F � U :B → A is an adjunction (so that F :A → B is a left adjoint
of U :B → A with unit η : 1 → UF and counit ε :FU → 1), then G = (G, ε, δ) is a comonad
on B, where G = FU , ε : G = FU → 1 and δ = FηU :G = FU → FUFU = G2, and one has
the comparison functor KG in

A

KG

F

B

U

UG

BG,
FG

where KG(a) = (F (a),F (ηa)) and KG(f ) = F(f ). Moreover, FG · KG � F and KG · U � UG.
One says that the functor F is precomonadic if KG is full and faithful, and it is comonadic if KG
is an equivalence of categories.

Theorem 2.1. (Beck, see [1].) Let η, ε :F � U :B → A be an adjunction, and let G =
(FU, ε,FηU) be the corresponding comonad on B. Then:

1. The comparison functor KG :A → BG has a right adjoint RG :BG → A iff for each (b, θb) ∈
BG, the pair of morphisms (U(θb), ηU(b)) has an equalizer in A—one then finds RG(b, θb)

as the equalizer

RG(b, θb)
e(b,θb)

U(b)
U(θb)

ηU(b)

UFU(b). (2.1)

2. Assuming the existence of RG, KG is an equivalence of categories (in other words, F is
comonadic) iff the functor F is conservative (= isomorphism-reflecting) and preserves (or
equivalently, preserves and reflects) the equalizer (2.1) for each (b, θb) ∈ BG.
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Let i :B → S be an arbitrary extension of (non-commutative) rings, A be the category BMod
of left B-modules, B be the category SMod of left S-modules,

FS = S ⊗B − : BMod → SMod

and

US : SMod → BMod

be the restriction-of-scalars functor. It is well known that FS is left adjoint to US and that the unit
η of this adjunction is given by

ηX :X → S ⊗B X, ηX(x) = 1 ⊗B x.

It is also well known that the Eilenberg–Moore category (SMod)G of G-coalgebras, G being
the comonad on SMod associated to the adjunction FS � US , is isomorphic to, and thus may
be identified with, the category S⊗BS( SMod) of left comodules over the Sweedler canonical
B-coring S ⊗B S corresponding to the ring extension i. Moreover, module this identification,
the comparison functor KG : BMod → (SMod)G corresponds to the functor

KS : BMod −→ S⊗BS( SMod), KS(X) = (S ⊗B X, θS⊗BX),

where θS⊗BX = S ⊗B ηX for all X ∈B Mod. (Note that a left S ⊗B S-comodule is a pair (Y, θY )

with Y ∈ SMod and θY :Y → S ⊗B Y a left A-module morphism for which the diagrams

Y
θY

S ⊗B Y

αY

and Y

θY

θY
S ⊗B Y

S⊗BηY

Y S ⊗B Y
S⊗BθY

S ⊗B S ⊗B Y,

where αY denotes the left S-module structure on Y , are commutative.) So, to say that the functor
FS = S ⊗B − is comonadic is to say that the functor KS is an equivalence of categories. Applying
Beck’s theorem and using that BMod has all equalizers, we get:

Theorem 2.2. The functor FS = S ⊗B − : BMod → SMod is comonadic if and only if

(i) the functor FS is conservative, or equivalently, the ring extension i :B → S is a pure mor-
phism of right B-modules;

(ii) for any (Y, θY ) ∈ S⊗BS( SMod), FS preserves the equalizer

RS(Y, θY )
e(Y,θY )

Y
ηY

θY

S ⊗B Y, (2.2)

where RS : S⊗BS( SMod) → BMod is the right adjoint of the comparison functor KS :
BMod → S⊗BS(SMod).



B. Mesablishvili / Journal of Algebra 313 (2007) 761–772 765
Let A be a ring and Σ be an A-coring. Let us write EndA-cor(Σ) (respectively AutA-cor(Σ))
for the monoid (respectively group) of A-coring endomorphisms (respectively automorphisms)
of Σ . Recall that any g ∈ EndA-cor(Σ) induces functors:

g(−) : Σ(AMod) → Σ(AMod),

defined by g(Y, θY ) = (Y, (g ⊗A 1) ◦ θY ), and

(−)g : (ModA)Σ → (ModA)Σ

defined by (Y ′, θY ′)g = (Y ′, (1 ⊗A g) ◦ θY ′).
It is easy to see that the left S-module S is a left (S ⊗B S)-comodule with left coaction

Sθ :S → S ⊗B S, s → s ⊗B 1,

and that g(S, Sθ) = (S, g ◦S θ). Symmetrically, the right S-module S is a right S ⊗B S-comodule
with the right action

θS :S → S ⊗B S, s → 1 ⊗B s,

and that (S, θS)g = (S, g ◦ θS).
For a given injective homomorphism i :B → S of rings, let

• IB(S) denote the monoid of all B-subbimodules of S, the multiplication being given by

IJ =
{∑

k∈K

ik · jk, I, J ∈ IB(S), ik ∈ I, jk ∈ J, and K is a finite set

}
;

• I l
B(S) (respectively I r

B(S)) denote the submonoid of IB(S) consisting of those I ∈ IB(S) for
which the map

ml
I :S ⊗B I → S, s ⊗B i → si,(

respectively mr
I : I ⊗B S → S, i ⊗B s → is

)
is an isomorphism;

• J (g) = {s ∈ S | g(s ⊗B 1) = 1 ⊗B s} for g ∈ EndB-cor(S ⊗B S) and let ig :J (g) → S be the
inclusion map;

• J ′(g) = {s ∈ S | s ⊗B 1 = g(1 ⊗B s)} for g ∈ EndB-cor(S ⊗B S) and let i′g :J ′(g) → S be the
inclusion map.

It is clear that J (g), J ′(g) ∈ IB(S) for all g ∈ EndB-cor(S ⊗B S).
The following result is verified directly:

Proposition 2.3. For any g ∈ EndB-cor(S ⊗B S), RS(g(S, Sθ)) � J (g).
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3. Main results

In this section we present our main results.

We begin with

Proposition 3.1. For any g ∈ EndB-cor(S ⊗B S), the following conditions are equivalent:

(i) J (g) ∈ I l
B(S);

(ii) the g(S, Sθ)-component of the counit ε :KSRS → 1 of the adjunction KS � RS is an iso-
morphism;

(iii) the functor S ⊗B − : BMod → SMod preserves the equalizer

J (g)
ig

S
ηS

g◦Sθ

S ⊗B S; (3.1)

(iv) the morphism S ⊗B ig :S ⊗B J (g) → S ⊗B S is a monomorphism.

Proof. We know by the general theory of (co)monads (see, for example, [1]) that, for any
(Y, θY ) ∈ S⊗BS( SMod), the diagram

Y
θY

S ⊗B Y
S⊗BθY

S⊗BηY

S ⊗B S ⊗B Y

is an equalizer and that the (Y, θY )-component ε(Y,θY ) of ε appears as the unique factorization of
the morphism S ⊗B e(Y,θY ) through the morphism θY :

S ⊗B RS(Y, θY )
S⊗Be(Y,θY )

ε(Y,θY )

Y
θY

S ⊗B Y
S⊗BθY

S⊗BηY

S ⊗B S ⊗B Y.

(3.2)

Since αY · θY = 1, ε(Y,θY ) = αY · (S ⊗B e(Y,θY )). In particular, when (Y, θY ) = g(S,S θ) we get
that ε

g(S,Sθ) = ml
J (g). So (i) and (ii) are equivalent.

Since the row of the diagram (3.2) is an equalizer, it follows that the morphism S ⊗B e(Y,θY )

is an equalizer of the pair of morphisms (S ⊗B θY ,S ⊗B ηY ) iff ε(Y,θY ) is an isomorphism. In
other words, the functor S ⊗B − preserves the equalizer (2.2) iff ε(Y,θY ) is an isomorphism. As a
special case we then have that (ii) is equivalent to (iii).

Finally, since the category BMod is abelian (and hence coexact in the sense of Barr [1]),
and since ig is the equalizer of the (S ⊗B −)-split pair of morphisms (Sθ, ηS), it follows from
the proof of Duskin’s theorem (see, for example, [1]) that the functor S ⊗B − preserves the
equalizer (3.1) iff the morphism S ⊗B ig is a monomorphism. So (iii) and (iv) are also equivalent.
This completes the proof. �
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It is shown in [3] that assigning to each I ∈ I l
B(S) (respectively I ∈ I r

B(S)) the composite
Γ (I) = (1 ⊗B mr

I ) ◦ ((ml
I )

−1 ⊗B 1) (respectively Γ ′(I ) = (ml
I ⊗B 1) ◦ (1 ⊗B (mr

I )
−1)) yields

an (anti-)homomorphism of monoids Γ : I l
B(S) → EndB-cor(S ⊗B S) (respectively Γ ′ : I l

B(S) →
EndB-cor(S ⊗B S)).

We shall need the following easy consequence of Lemma 2.7 of [6]:

Proposition 3.2. Assume that i :B → S is such that any embedding I ↪→ J of B-subbimodules
of S is an isomorphism whenever its image under the functor S ⊗B − is such. Then Γ : I l

B(S) →
EndB-cor(S ⊗B S) is an isomorphism of monoids whose inverse is the map g → J (g), provided
that J (g) ∈ I l

B(S) for all g ∈ EndB-cor(S ⊗B S).

Putting Propositions 3.1 and 3.2 together, we get:

Theorem 3.3. Let i :B → S be as in Proposition 3.2. Then Γ : I l
B(S) → EndB-cor(S ⊗B S) is an

isomorphism of monoids if and only if, for any g ∈ EndB-cor(S ⊗B S), the equivalent conditions
of Proposition 3.1 hold.

Proposition 3.4. If the functor S ⊗B − : BMod → SMod is comonadic, then J (g) ∈ IlB(S) for all
g ∈ EndB-cor(S ⊗B S).

Proof. Consider the left (S ⊗B S)-comodule (S, Sθ). According to Proposition 2.3 and Theo-
rem 2.1, the pair (J (g), ig :J (g) → S) appears as the equalizer

J (g)
ig

S
ηS

g◦Sθ

S ⊗B S,

and since the functor S ⊗B − is assumed to be comonadic, it preserves the equalizer (2.2) for all
(Y, θY ) ∈ S⊗BS( SMod) and in particular considering (S, Sθ) ∈ S⊗BS( SMod), we see that

S ⊗B J (g)
S⊗Big

S ⊗B S
S⊗BηS

S⊗B(g◦Sθ)

S ⊗B S ⊗B S

is an equalizer diagram. It now follows from Proposition 3.1 that J (g) ∈ I l
B(S). �

Recalling that any comonadic functor is conservative, and putting Theorem 3.3 and Proposi-
tion 3.4 together, we obtain:

Theorem 3.5. If the functor S ⊗B − : BMod → SMod is comonadic, then Γ : I l
B(S) →

EndB-cor(S ⊗B S) is an isomorphism of monoids.

There is of course a dual result.

Theorem 3.6. If the functor − ⊗B S : ModB → ModS is comonadic, then Γ ′ : I r
B(S) →

EndB-cor(S ⊗B S) is an anti-isomorphism of monoids.
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It is known (see [6]) that the monoid morphism

Γ : IlB(S) → EndB-cor(S ⊗B S)

restricts to a group morphism

InvB(S) → AutB-cor(S ⊗B S),

which is still denoted by Γ . Similarly, the monoid anti-morphism

Γ ′ : I r
B(S) → EndB-cor(S ⊗B S)

is restricted to the group anti-morphism

InvB(S) → AutB-cor(S ⊗B S),

which is called Γ ′, too.

Theorem 3.7. If either

(i) the functor S ⊗B − : BMod → SMod, or
(ii) the functor − ⊗B S : ModB → ModS

is comonadic, then Γ : InvB(S) → AutB-cor(S ⊗B S) is an isomorphism of groups.

Proof. The same argument as in [3] shows that if either Γ : I l
B(S) → EndB-cor(S ⊗B S) is an

isomorphism of monoids, or Γ ′ : I r
B(S) → EndB-cor(S ⊗B S) is an anti-isomorphism of monoids,

then the group homomorphism Γ is an isomorphism. Theorems 3.5 and 3.6 now complete the
proof. �

As a special case of this theorem, we obtain the following result of Masuoka (see [6]):

Theorem 3.8. If either

(i) BS is faithfully flat, or
(ii) B is a direct summand of S as a B-bimodule,

then Γ : I l
B(S) → EndB-cor(S ⊗B S) is an isomorphism of monoids.

Proof. In both cases, the functor S⊗B − : BMod → SMod is comonadic, as we have seen already
in the introduction. �

Dually we have:

Theorem 3.9. If either

(i) SB is faithfully flat, or
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(ii) B is a direct summand of S as a B-bimodule,

then Γ ′ : I r
B(S) → EndB-cor(S ⊗B S) is an anti-isomorphism of monoids.

Theorem 3.10.

(i) BS or SB is faithfully flat, or
(ii) B is a direct summand of S as a B-bimodule,

then Γ : InvB(S) → AutB-cor(S ⊗B S) is an isomorphism of groups.

Proof. The argument here is the same as in the proof of Theorem 3.7. �
We now consider the following situation: Let A and B be rings, M a (B,A)-bimodule with

MA finitely generated and projective, S = EndA(M) the ring of right A-endomorphisms of MA,
and Σ = M∗ ⊗B M the comatrix A-coring corresponding to BMA. When BMA is faithful, in the
sense that the canonical morphism

i :B → S, s → [m → sm]

is injective, one has a map

Γ0 : I l
B(S) → EndA-cor(Σ)

of sets defining Γ l
0 (I ), I ∈ I l

B(S), to be the endomorphism

m∗ ⊗B m →
∑

i

m∗xi ⊗B yim,

where (ml
I )

−1(1) = ∑
i xi ⊗B yi ∈ I l

B(S).

Theorem 3.11. Suppose that BMA is such that the functor

S ⊗B − : BMod → SMod

is comonadic. Then the map

Γ0 : I l
B(S) → EndA-cor(Σ)

is in fact an isomorphism of monoids.

Proof. First of all, the morphism i :B → S is injective (or equivalently, the bimodule BMA is
faithful), since the functor S ⊗B − is assumed to be comonadic. Next, it is proved in [3] that the
assignment

g → ĝ = (ξ ⊗B ξ) ◦ (M ⊗A g ⊗A M∗) ◦ (
ξ−1 ⊗B ξ−1),
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where ξ :M ⊗A M∗ → S = EndA(M) is the canonical isomorphism, yields an injective mor-
phism of monoids

(̂−) : EndA-cor(Σ) → EndB-cor(S ⊗B S).

And the same argument as in the proof of Proposition 2.6 of [3] shows that the following diagram
of sets

I l
B(S)

Γ

Γ0
EndA-cor(Σ)

(̂−)

EndB-cor(S ⊗B S)

is commutative. Now, since the functor S ⊗B − is assumed to be comonadic, it follows from
Theorem 3.5 that Γ is an isomorphism of monoids and hence the monoid morphism (̂−), be-
ing injective, is also an isomorphism. Commutativity of the diagram then gives that Γ0 is an
isomorphism of monoids. �

Dually, one can define a map

Γ ′
0 : I r

B(S) → EndA-cor(Σ)

that sends I ∈ I r
B(S) to the endomorphism

m∗ ⊗B m →
∑

i

m∗yi ⊗B xim

of the A-coring EndA-cor(Σ), where (mr
I )

−1(1) = ∑
i yi ⊗b xi ∈ I ⊗B S.

Theorem 3.12. Suppose that BMA is such that the functor

− ⊗B S : ModB → ModS

is comonadic. Then

Γ ′
0 : I r

B(S) → EndA-cor(Σ)

is an anti-isomorphism of monoids.

It is not hard to check that the map

Γ0 : I l
B(S) → EndA-cor(Σ)

of sets restricts to a map

InvB(S) → AutA-cor(Σ)

which we still call Γ0. As in [3], it follows from Theorems 3.11 and 3.12 that
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Theorem 3.13. If either

(i) the functor S ⊗B −, or
(ii) the functor − ⊗B S

is comonadic, then the map

Γ0 : InvB(S) → AutA-cor(Σ)

is actually an isomorphism of groups.

It is shown in [7] that the functor −⊗B M : ModB → ModA (respectively M∗ ⊗B − : BMod →
AMod) is comonadic iff the functor − ⊗B S : BMod →S Mod (respectively S ⊗B − : ModB →
ModS ) is. So we have:

Theorem 3.14. If either

(i) the functor − ⊗B M , or
(ii) the functor M∗ ⊗B −

is comonadic, then the map

Γ0 : InvB(S) → AutA-cor(Σ)

is an isomorphism of groups.

From the last theorem one obtains the following result of L. El Kaoutit and J. Gómez-
Torrecillas (see Theorem 2.5 in [3]):

Theorem 3.15. If

(i) BM is faithfully flat, or
(ii) M∗

B is faithfully flat, or
(iii) BMA is a separable bimodule,

then

Γ0 : InvB(S) → AutA-cor(Σ)

is an isomorphism of groups.

Proof. We have seen in the introduction that under any of the conditions (i)–(iii), at least
one of the extension-of-scalars functor associated to the ring extension B → S = EndA(M) is
comonadic, and applying Theorem 3.13 gives the desired result. �
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