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Abstract

Interpreting entwining structures as special instances of J. Beck’s distributive law, the concept of en-
twining module can be generalized for the setting of arbitrary monoidal category. In this paper, we use the
distributive law formalism to extend in this setting basic properties of entwining modules.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The important notion of entwining structures has been introduced by T. Brzeziniski and S. Ma-
jid in [5]. An entwining structure (over a commutative ring K) consists of a K-algebra A,
a K-coalgebra C and a certain K-homomorphism A:C ®x A — A ®k C satisfying some ax-
ioms. Associated to X there is the category ./\/lg()\) of entwining modules whose objects are at
the same time A-modules and C-comodules, with compatibility relation given by A.

The algebra A can be identified with the monad T = — ®x A:Modg — Modg whose
Eilenberg—Moore category of algebras, (Modg)”, is (isomorphic to) the category of right A-
modules. Similarly, C can be identified with the comonad G = — ®x C : Modx — Modg, and

the corresponding Eilenberg—Moore category of coalgebras with the category of C-comodules.
It turns out that to give an entwining structure C ®x A — A Qg C is to give a mixed distrib-
utive law TG — GT from the monad T to the comonad G in the sense of J. Beck [2], which
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are in bijective correspondence with liftings (or extensions) G of the comonad G to the category
(Modg)T; or, equivalently, liftings T of the monad T to the category (Modg ). Moreover, the
categories MS(A), ((Modg)T) and ((Modg)g)T are isomorphic. Thus, the (mixed) distribu-
tive law formalism can be used to study entwining structures and the corresponding category of
modules. In this article—based on this formalism—we extend in the context of monoidal cate-
gories some of basic results on entwining structures that appear in the literature (see, for example,
[6,7,13]).

The paper is organized as follows. After recalling the notion of Beck’s mixed distributive
law and the basic facts about it, we define in Section 3 an entwining structure in any monoidal
category. In Section 4, we prove some categorical results that are needed in the next section, but
may also be of independent interest. Finally, in the last section we present our main results.

We refer to M. Barr and C. Wells [1], S. MacLane [10] and F. Borceux [3] for terminology and
general results on (co)monads, and to T. Brzezifiski and R. Wisbauer [6] for coring and comodule
theory.

2. Mixed distributive laws

Let T = (T, n, u) be a monad and G = (G, ¢, §) a comonad on a category A. A mixed dis-
tributive law from T = (T, n, u) to G = (G, &, §) is a natural transformation

1 TG — GT

for which the diagrams

N N

GT—>T

TS rAG Th AT

TG TG? GTG and T2G TGT GTT

Al le uGi \LGM

GT GGT TG GT
8T A

commute.

Given a monad T = (T, n, u) on A, write AT for the Eilenberg—Moore category of T-
algebras, and write FT 4 UT: AT — A for the corresponding forgetful-free adjunction. Dually,
if G = (G, ¢, §) is a comonad on 4, then write Ag for the category of G-coalgebras, and write
Fg 1Ug : Ag — A for the corresponding forgetful-cofree adjunction.

2.1. Theorem. (See [14].) Let T = (T, n, ) be a monad and G = (G, ¢,8) a comonad on a
category A. Then the following structures are in bijective correspondences:

o mixed distri_butive_ laws_ L: TG — GT; _
° comonac_ls G=(G,&,d8)on AT that extend G in the sense that UTG = GUT, UTe =eUT
and UT§ =8UT;
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o monads T = (T, 70, it) on Ag that extend T in the sense that UsT =TUg, Ugn=nUg and
Ugp=pUg.
These correspondences are constructed as follows:

o Given a mixed distributive law

1: TG — GT,

Z‘Z’le‘l’l G(a, &) = (G(a), GEa) - Ma), é(a,é‘a) = &a» S(a,éu) = 084, for any (a,§&,) € -AT; and
T(a,vy) =T @), a-TWa)) Na,v,) = Na» K(a,v,) = Ma for any (a,vq) € Ag.

° If(_} = ((_?, g, 5) is a comonad on AT extending the comonad G = (G, ¢, §), then the corre-
sponding distributive law

A TG — GT
is given by

TG - UTeTGFT _
TG — = 1G6T =UTFTGUTF" = yrpryrgrr —220 o yrgpr

=GU'F" =GT,
where €V : FTUT — 1 is the counit of the adjunction FT 4 UT .

o If T=(T,7,{t) is a monad on Ag extending T = (T, n, ), then the corresponding mixed
distributive law is given by

UgneT Fg

TG=TUgFg = U(;Y_"FG UGFGUGTFG

=UgFcTUgFc = GTG e, GT,
where ng : 1 — FgUg is the unit of the adjunction Ug - Fg.
It follows from this theorem that if
A: TG — GT

is a mixed distributive law, then (.A(;)T = (AT)(;. We write (Ag)()») for this category. An object
of this category is a three-tuple (a, &,, v,), where (a, &,) € AT (a,v,) € Ag, for which G-

g+ T (vg) =vq-&;. Amorphism f:(a,&,,vs) — (a’, &), v)) in (.Ar(r;)()n) is a morphism f :a —
a’ in Asuchthat§), -T(f)=f-&and v, - f =G(f) - v,.

3. Entwining structures in monoidal categories
Let V = (V,®, I) be a monoidal category with coequalizers such that the tensor product

preserves the coequalizer in both variables. Then for all algebras A = (A, e4q,my4) and B =
(B,ep,mp) and all M € V4, N € 4Vp and P € gV, the tensor product M ®4 N exists and the
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canonical morphism (M @4 N)Q@p P - M @4 (M ®p P) is an isomorphism. Using MacLane’s
coherence theorem (see, [10, XI.5]), we may assume without loss of generality that V is strict.
It is well known that every algebra A = (A, e4,m4) in V defines a monad Ty on V by

e THh(X)=XQ®A,
e (N )x=X®es: X —>XQA,
o (UT)x=XR®ms: XQRARA— XQA,

and that VT4 is (isomorphic to) the category V, of right A-modules.
Dually, if C = (C, ec, 8¢, ) is a coalgebra (= comonoid) in V, then one defines a comonad
Gc onV by
e Gc(X)=X®C,
o (Ge)x=XQec: X®C— X,
o Boe)x=X®c: X®C—>XRCRC,

and Vg is (isomorphic to) the category VC of right C-comodules.
Quite obviously, if A is a mixed distributive law from T to G¢, then the morphism

MN=A:CRA—>ARC

makes the following diagrams commutative:

C CR®A
e T
C®eq N
CRA— AQRC, AQRC —— A,
A A®ec

Sc®A ceN
CRA—CRCRA—CRARQC

A'/ i l A,®C

AR®C ARCR®C,
A®Sc

VA AQN
CRARA — AQRCRA —AQRARC

C®””Ai J/mA®C

C®A - A®C.

Conversely, if ':C ® A — A ® C is a morphism for which the above diagrams commute, then
the natural transformation

— QN TaGe(m-) =—®CRA—- —QAR®C=GcTa(-)
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is a mixed distributive law from the monad Ty to the comonad Gg. It is easy to see that A/ =
(—®2/);. When [ is a regular generator in )V and the tensor product preserves all colimits in both
variables, it is not hard to show that A >~ — ® A;. When this is the case, then the correspondences
A — A;and M — — ® A/ are inverses of each other.

3.1. Definition. An entwining structure (C, A, 1) consists of an algebra A = (A, e4,my4) and
a coalgebra C = (C, ec,8¢) in V and a morphism L:C ® A — A ® C such that the natural
transformation

—Q@A:TAGC(—)=—QRQCRA—->—-—QRARC =GcTa(—)
is a mixed distributive law from the monad T4 to the comonad G¢.
Let be (C, A, 1) be an entwining structure and let G= (G, &,8) be the comonad on V, that
extends G = G¢. Then we know that, for any (V, &y) € Va,
= Ve Ey®C
G(V,6v)=(VO®C,VRCRA —=VR®ARC — V®C().
In particular, since (A, m4) € Vs, A ® C is aright A-module with right action
AQA ma®C
EAec  AQCR®A —— AQARC —— ARC.
3.2. Lemma. View A @ C as a left A-module through Esgoc =ma ® C. Then (A ® C, Exgc,
Eagc) is an A—A-bimodule.
Proof. Clearly (A ® C,£xqc) € V. Moreover, since (A®A) - (ma @ C R A) = (ms @ A®
C) - (A® A® L), it follows from the associativity of m 4 that the diagram
ARADA
ARARCRA — AQARARC
maQCRA l l ARmARC
ARCR®A ARAR®C

A®kl lmA®C

ARARC —————— AR C
ma®C

is commutative, which just means that (A ® C, £ A®Cs EAgc) 1S an A—A-bimodule. O

Since &4 m,): G(A,ma) — (A, ma) and 84 m,): G(A, ma) — G*(A, m4) are morphisms

of right A-modules, and since Up (g(a,m,)) = (6Gc)a=(A® C A®ec, A) and UA(S(A,,,,A)) =

Be)a=(A®C 225, A® C®0), it follows that A® C 22 A and A® € 225 A g

C ® C are both morphisms of right A-modules. Clearly they are also morphisms of left A-
modules with the obvious left A-module structures arising from the multiplication m4:A ®
A — A, and hence morphisms of A—A-bimodules. Since C = (C, ec, 8¢) is a coalgebra in V, it

follows that the triple (A ® C)) = (A® C, £(axC),» (ARC), )> Where agc), = AR C A‘gﬂ) A
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and §(agc), =A®C A®de, AQ®C®C,isan A-coring. Since, forany V € Vi, VR4 (AQC) =~
V ® C, the comonad G is isomorphic to the comonad G A®C),- Thus, any entwining structure
(C, A, )) defines a right A-module structure £45¢c on A ® C such that (A ® C, §A®C =ms®
C,§4ec) is an A-A-bimodule and the triple (A ® C); = (A ® C, £40),» $(4g0),) is an A-

coring. Moreover, when this is the case, the comonad Gagc), on Va extends the comonad G¢.

It follows that VA2 = V€3,

Conversely, let A = (A, eq,m4) be an algebra and C = (C, ¢, d¢) a coalgebra in V, and
suppose that A @ C has the structure £4¢c of a right A-module such that the triple

AQec ARSc
ARC=((A®C,my®C.ésgc) A®C —= A, AQC ——= A®C®C) 1)

is an A-coring. Then it is easy to see that the comonad G pgc on Vy extends the comonad G¢
on V), and thus defines an entwining structure Aygc:C ® A > A® C.
Summarizing, we have

3.3. Theorem. Let A = (A, eq,mp) be an algebra and C = (C, ec, 8¢) a coalgebra in V. Then
there exists a bijection between right A-module structures £ pgc making (AQ C,ma ® C, Eagc)
an A-bimodule for which the triple (1) is an A-coring and entwining structures (C, A, 1), given
by:

eAQCRA

;
froc — (lagc:C®A ARC®A —% AR C)

with inverse given by

AR maQC
A —— (5aec:A®CO®A —> AQARC A®C).
Under this equivalence VAM)A = Vg ).

4. Some categorical results

Let G = (G, ¢, §) be a comonad on a category A, a_nd let Ug : Ag — A be the forgetful func-
tor. Fix a functor F : B — A, and consider a functor F : 5 — Ag making the diagram

F Ac
\ / ?
F Ug
A

commutative. Then F (b) = (F (D), arp)) for some ap@y : F(b) — GF(b). Consider the natural
transformation

B

ap:F— GF, 3)

whose b-component is o ).



2502 B. Mesablishvili / Journal of Algebra 319 (2008) 2496-2517

We shall need the following result, which is an immediate consequence of Propositions II.1.1
and II.1.4 in [8]:

4.1. Theorem. Suppose that F has a right adjoint U : A — BB with unit n: 1 — FU and counit
&: FU — 1. Then the composite

@.U
t7:FU -~ GFU % .G

is a morphism from the comonad G' = (FU, ¢, FnU) generated by the adjunction n,¢: F —
U : B — A to the comonad G. Moreover, the assignment

F—tp

yields a one to one correspondence between functors F : B — Ag making the diagram (2) com-
mutative and morphisms of comonads t;:G' — G.

. ) nu Ut
Write By for the composite U UFU UG.

4.2. Proposition. Consider the following diagram

UUgnec
UUg —= UGUg=UUgFgUg,
BuUg

where 1 :1 — FgUg is the unit of the adjunction Ug - Fg. If the equalizer U of this pair of
parallel natural transformations exists, then it is right adjoint to F.

Proof. See the proof of Theorem A.1in [§]. O

Let F: B — Ag be a functor making (2) commutative and let 7 G — G be the correspond-
ing morphism of comonads. Consider the following composition

KG’ At,}

B Ag/ Ag,

where
e K¢ :B— Ay, K¢ (b) = (F(b), F(np)) is the Eilenberg—Moore comparison functor for the

comonad G’.
e Ay; is the functor

((a,0a) € Ag) = ((a, t7)a - 64) € Ag)

induced by the morphism of comonads ¢z : G’ — G.
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4.3. Lemma. The diagram

Kgr
B —— AG/

S @
F

Ag
is commutative.

Proof. Let b € B. Then Kg (b) = (F(b), F(np)) and A,F(F(b), F(np)) = (F(), t5)Fp) -
F(p)). Since (tz) Fp) is the composite

(@F)UF®)

Gé‘[:(h)
FUF(b) ——— = GFUF(b) —= GF(b),

and since by naturality of &, the diagram

(@)p
F(b) —— GF(b)
F(m,)i lGF(ﬂb)
FUF() —— GFUF ()

(@uF®)
commutes, we have
) Fwy - Fp) =G(erw)) - @F)urp) - F(mp) = GEerw)) - GF(np) - (@p)p = (@Fp)p = aF@p)-
Thus
(A - Ke)(b) = Ay, (K (0) = Ar, (F(b), F (b))
=(F), tp)rw) - Fmw) = (Fb),arw),
which just means that A, - K¢ = F. O
We are now ready to prove the following

4.4. Theorem. Let G be a comonad on a category A, n,e: F AU :B — A an adjunction and
F:B— Ag afunctor with Ug - F = F. Then the following are equivalent:

(i) The functor F is an equivalence.
(i1) The functor F is comonadic (i.e. the functor Kg' is an equivalence of categories) and the
morphism of comonads

t7:G' =(FU,e, FnU) — G

is an isomorphism.
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(iii)) The morphism of comonads
17:G ' =(FU,&, FnU) — G

is an isomorphism, the functor F is conservative and for any (X, x) € Ag, it preserves the
equalizer of the pair of parallel morphisms

U(x)

et 5
UX) o= UG (X) — o= UG(X).

7)x)

Proof. Suppose that F is an equivalence of categories. Then F is isomorphic to the comonadic
functor Ug and thus is comonadic. Hence the comparison functor K¢/ : B — Ag is an equiva-
lence and it follows from the commutative diagram (4) that A,F is also an equivalence, and since
the diagram

is commutative, ¢ is an isomorphism of comonads. So (i) = (ii).
Suppose now that 77 : G’ — G is an isomorphism of comonads and F is comonadic. Then

e K¢ is an equivalence, since F is comonadic.
° .Atﬁ is an equivalence, since ¢ is an isomorphism.

And it now follows from the commutative diagram (4) that F is also an equivalence. Thus
(i1) = (@).

When ¢ is an isomorphism of comonads, to say that F preserves the equalizer of the pair of
morphisms (5) is to say that F' preserves the equalizer of the pair of morphisms

NU(X)
UX) —/——= UG'(X),
UzhHx)-U )

which we can rewrite as

Nu(x)
UX) —= UG'X)=UFUX). (6)
Uz xx)

Since tz is an isomorphism of comonads, A, is an equivalence of categories, and thus each
object (X, x") € Ag is isomorphic to the G'-coalgebra (X, (t;l)x - x), where (X,x) € Ag. It
follows that when ¢ is an isomorphism of comonads, to say that F preserves the equalizer of (5)
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for each (X, x) € Ag is to say that F preserves the equalizer of (6) for each (X, x’) € Ag . Thus,
when 7 is an isomorphism of comonads, F is an equivalence of categories iff F is conservative
and preserves the equalizer of (6) for each (X, x") € Ag/, which according to (the dual of) Beck’s
theorem (see [10, VIL. 2. Theorem 1, p. 147]), is to say that the functor F is comonadic. Hence
(ii) and (iii) are equivalent. This completes the proof of the theorem. 0O

4.5. Remark. A different proof of the fact that (ii) and (iii) are equivalent was already given by
J. Gomez-Torrecillas (see Theorem 2.7 in [9]).

5. Some applications

Let (C, A, 1) be an entwining structure in a monoidal category V = (V,®, I),andlet g: [ —
C be a group-like element of C. (Recall that a morphism g:/ — C is said to be a group-like
element of C if the following diagrams

g g
I ——C | ——C
\1) @
ec &C
§®g
I, cC®C

are commutative.)

5.1. Proposition. If C has a group-like element g : I — C, then A is a right C-comodule through
the morphism

gRA A
gAA——=CQA—— AQC.

Proof. Consider the diagram

8®A Py
A CRA ARC

\ lw lAm

The triangle is commutative by (1) of the definition of g and the square is commutative by the
definition of A (see the second commutative diagram in the definition of entwining structures).
Now, we have to show that the following diagram

§®A A
A——CRA——ARC
CRA ARSc

|

ARC —=CQRAQC — AQCR®C
gRARC A®C
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is also commutative, which it is since
(ARI)IA=(AQC)C RN (5c ®A)

by the definition of A and since the diagram (2) of definition of group-like elements is commuta-
tive. O

Suppose now that V admits equalizers. For any (M, opy) € V€, write (M, apg)C, ipr) for the
equalizer of the morphisms

imM am
M,0y))* — M —=Z MQ®C.
Mg

5.2. Proposition. AC = (A, g)C is an algebrainV and i 5 : A© — A is an algebra morphism.

Proof. Consider the diagram

—
A g®A A . 7N
eAC /
€A

gR—:ly=I1Q——>CQ—

Since

is a natural transformation, the diagram

is commutative. Similarly, since eq ® —: 1y =1 ® — — C ® — is a natural transformation, the
following diagram is also commutative:

1
|
c

€A

|

A

im

— AR®C.
eA®C

Now we have:
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AMg® A)esg = A(C ® eq)g = by the definition of A
=(Aa®C)g=(A®gea.

Thus there exists a unique morphism ey : I — A€ for which i A€ C =e4.
Since

e the diagram

SRARA
ARA—=CRAR®A

mAl lC®mA

A—CQ®A
gRA

is commutative by naturality of g ® —;
e AM(CR®ma)=(ma R C)(ARA)(AL® A) by the definition of A;
e Mg® A)ig =(A® g)ia,sinceiy is an equalizer of A(g ® A) and A ® g;
e the diagram

ARA®Y
ARA —= ARARC

mAl lmA®C

A—AQC
A®g

is commutative by naturality of m4 ® —,

we have

Mg A)mA(iAa®ia) =MCROMU)(ERARA)ia®in)
=mAaQ@C)ARLNARA(ERARA)(ia®ia)
=(mAa@C)ARMNAB®E®A)iA®ia)
=(ma®C)ARA®L(IA®IiA)
=(A®gmalia®ia).

Thus the morphism m 4 - (i4 ® i4) equalizes the morphisms A - (g ® A) and A ® g, and hence
there is a unique morphism

mac: A€ @ AT — AT
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such that the diagram

®)

commutes. It is now straightforward to show that the triple (A€, e AC, M 4c) is an algebra in V;
moreover, the triangle of the diagram (7) and the diagram (8) show that i4 is an algebra mor-

phism. O

5.3. Proposition. (A, m4, g4) € Vf&c(k).

Proof. Since (A,ma) € Vj and (A, ga) € VC, it only remains to show that the following dia-

gram is commutative:

8A®A A®M
ARA —= AQRCRA —ARARC

ml

A

8A

By the definition of g4, we can rewrite it as

\Lm,q@C

ARC.

E®A®A r®A AR\
ARA —CQRQARA — AQCRA —ARARXC

mAl C®ma
\
A

g®A cea A

But this diagram is commutative, since

o the left square commutes because of naturality of g ® —;
o the right square commutes because of the definition of A.

O

imA®C

AR®C.

(€))

The algebra morphism i4: A® — A makes A an AC~AC-bimodule and thus induces the

extension-of-scalars functor

Fiy:Vac — Va,

(X, px) > (X Q¢ A, X Q@ cmp),

and the forgetful functor
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UiA:VA%VAC,
(YVQY) g (Y7QY(Y®1A))7

which is right adjoint to F;,. The corresponding comonad on V4 makes A ® ,c A into an A-
coring with the following counit and comultiplication:

q ma
EIAQuA — AQA——= A
(where g is the canonical morphism) and

A®,cia®, cA

8:A®uc A= A®,c AC®,c A AQ ucA® c A
=(A®,c A)a ® (AQ c A).
We write A ® 4¢ A for this A-coring.
5.4. Lemma. For any X € Vc, the triple
(X ®uc A, X Qqcma, X Qyc ga)

is an object of the category Vg A).

Proof. Clearly (X ®c A, X® cmy) € Vpyand (X Q@4c A, X @yc84) € V€. Moreover, by (9),
the following diagram

X®Ach®A X®AcA®)\

XQuARA —— > XQuucAQCRA XQ®uAQRARC
X®Ac'nA\L \LX(@A(C”’A@C
X®uc A X®ucARQC

X®A(CgA

is commutative. Thus, (X ® 4c A, X @ qc m4, X @ 4c 84) € Vfg()»). O
The lemma shows that the assignment
X—>(X®uc A, XQucma, X @pc 84)

yields a functor

= A
F:Vy— Ve = yag9
i 2 (ARC)). . .
It is clear that Uiagc), - F = Fi,, where Uage), : Vy — Vy is the underlying functor. It

now follows from Theorem 4.1 that the composite

A®ga

ma®C
A®yc A ARA®C —————= AQC
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is a morphism of A-corings A ® ,.c A — (A ® C),. We write can for this morphism. We say that
A is (C, g)-Galois if can is an isomorphism of A-corings.
Applying Theorem 4.4 to the commutative diagram

Vye — = 1, (48O

Uag0),
Fi,=—®,cA

Va
we get:

5.5. Theorem. Let (C, A, 1) be an entwining structure, and let g : I — C be a group-like element
of C. Then the functor

F: Ve = Vi)
is an equivalence if and only if A is (C, g)-Galois and the functor F is comonadic.

Let A= (A,es,my) and B = (B, ep,mp) be algebras in V and let M € V. We call 4M
(respectively Mp)

o flat, if the functor — ® 4 M : V4 — Vp (respectively M @ p —: gV — 4V) preserves equal-
izers;

e faithfully flat, if the functor — ® 4 M : V4 — Vp (respectively M®@p —: gV — 4V) is con-
servative and flat (equivalently, preserves and reflects equalizers);

5.6. Theorem. Let (C, A, L) be an entwining structure, and let g : I — C be a group-like element
of C. If C is flat, then the following are equivalent

(i) The functor
F:VAC — ng()u) = VA(M)A

is an equivalence of categories.
(ii) A is (C, g)-Galois and ,c A is faithfully flat.

Proof. Since any left adjoint functor that is conservative and preserves equalizers is comonadic
by a simple and well-known application (of the dual of) Beck’s theorem, one direction is clear
from Theorem 5.5; so suppose that F is an equivalence of categories. Then, by Theorem 5.5, A
is (C, g)-Galois and the functor F;, is comonadic. Since any comonadic functor is conservative,
F;, is also conservative. Thus, it only remains to show that 4c A is flat.

Since C is flat by our assumption, 4 (A ® C) is also flat. It follows that the underlying functor
of the comonad G(agc), on V4 preserves equalizers. It is well known (see, for example, Propo-
sition 4.3.2 in [3]) that if G = (G, &g, 8¢) is a comonad on a category 4, and if A has some
type of limits preserved by G, then the category A has the same type of limits and these are
preserved by the underlying functor Ug : Ag — A. Thus the functor U agc), : Va ‘A8 — Vy
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preserves equalizers, and since F is an equivalence of categories, the functor F; A =—Quc A
also preserves equalizers, which just means that 4c A is flat. This completes the proof. O

Note that, for entwining structures between ordinary algebras and coalgebras, this result is
proved by T. Brzezinski (see Theorem 5.6 in [4]).

6. The case of braided monoidal categories

Throughout of this paper, we shall assume that our V is a strict braided monoidal category
with braiding ox y : X ® Y — Y ® X. Then the tensor product of two (co)algebras in V is again
a (co)algebra; the multiplication m sgp and the unit esgp of the tensor product of two algebras
A= (A,eq,my) and B = (B, eg, mp) are given through

magp =(mas ®mp)(A®oaB&®B)

and

eARB = €A Qep.

A bialgebra H = (H=(H,eg,mp), H=(H,ey,8y))in Vis an algebra H=(H, eq,mpy)
and a coalgebra H = (H, ey, 8y ), where e and ég are algebra morphisms, or, equivalently, ey
and m g are coalgebra morphisms.

A Hopf algebra H = (I:I =(H,eg,mpyg), H=(H,eg,8r),S) in V is a bialgebra H with a
morphism S: H — H, called the antipode of H, such that

my(H® S$)oyg =my(SQ® H)dy =ey - ¢H.

Recall that for any bialgebra H, the category VX is monoidal: The tensor product (X, 8x) ®
(Y, 8y) of two right H-comodules (X, §x) and (Y, dy) is their tensor product X ® Y in VV with
the coaction

Sx ®dy X®ox y®Y XQYQ@mpy
Sxgy X QY —— > XQHQRQY®H —= XQYQRHRIH —= XQY Q H.

The unit object for this tensor product is / with trivial H-comodule structure ey : I — H.

6.1. Proposition. Ler H = (H = (H,ey,my), H= (H,ey,8y)) be a bialgebra in V. For any
algebra A = (A, eq, my) in 'V, the following conditions are equivalent:

o A= (A, es,mp) is an algebra in the monoidal category VI,

o A= (A,eq,my) is an H-comodule algebra; that is, A is a right H-comodule and the H -
comodule coaction ag: A — A ® H is a morphism of algebras in' V from the algebra A =
(A,es,my) to the algebra A ® H=(A® H,es ey, MAQH)-

Suppose now that A = (A, e4, m4) is aright H-comodule algebra with H-coaction oy : A —
A ® H. By the previous proposition, A is an algebra in the monoidal category VI, and thus
defines a monad T;‘I = (Té‘, 17;_‘1, ,ug) on VI as follows:
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o TH(X,8x)=(X,8x) ® (A, aa);

° (n]l‘}l)(x’gx) =X Qey;

o (W) (x.5p) =X ®ma.
It is easy to see that the monad T?} extends the monad T#; and it follows from Theorem 2.1 that
there exists a distributive law Ay : T -Gy — Gp - T from the monad T* to the comonad G,

and hence an entwining structure (H, A, A4, ¢,)), Where A4, o) = (Aa)1-
Therefore we have:

6.2. Theorem. Every right H-comodule algebra A = ((A,ap),ma, es) defines an entwining
structure (H, A, (a0 H®A— A® H).

6.3. Proposition. Let A = ((A, ap), ma, ea) be a right H-comodule algebra. Then the entwining
structure Ap o, H ® A— A ® H is given by the composite:

HQ®uay o, AQH A®@mpy
HRA—HQRAQH —= AQHQH — AQH.
Proof. Since (A, a4), (H,8y) € VE, the pair (A ® H, SogH), where 4gy is the composite

SH®aA HQopy aQH HQRARmpy
HRA—HQRHRAQH ——— HRQAQH®H — HR®AQ®H,

is also an object of VL, and it follows from Theorem 2.1 that A(4 ) is the composite

SAoH eHQAQH
HRA—HQRAQH A®H.
Consider now the following diagram
Sy®ARH H®oy a®QH HQAQmp

HRAQH ————————> HRHQARH ——————> HQAQRHQ®H ———> HRAQH

H®ay e QHRARH cH®AQHRH EHQRARH
H®A HRIAQH ———————> AQHQH ————> AQH.
o AQH AQmpy

Since in this diagram

e the triangle commutes because € is the counit for §;
o the left square commutes by naturality of ¢;
o the right square commutes because — ® — is a bifunctor,
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it follows that

AMAa) =(AQ@my)(opa @ H)(H Qaa). O

Note that the morphism ey :I — H is a group-like element for the coalgebra H =
(H,en,dH).

6.4. Proposition. Let H = (H=(H,ep, mpy), H= (H,ey,8n)) be a bialgebra in V, and let

A= ((A,anq),es,mp) be aright H-comodule algebra. Then the right H -comodule structure on
A corresponding to the group-like element ey : I — H as in Proposition 4.1 coincides with o 4.

Proof. We have to show that
(AQ@mpy)(oga @ H)(HQay)(ep ® A) =a4.
But since
o clearly (H@aa)(leg @A) =(en QAR H) -aa;
o (CHA®H) (e ®A®H)=A®eny ® H by naturality of o;
e (AQmE) - (A®eng ® H) =14y since ey is the identity for m g,
we have that
(A@mpy)(op,a @ H)(HQ®as)(eyg @ A)
=(AQmpu)(ou A ®@ H)en ® AQ H)aa
=(AQmpy)(A®ey ® H)ay

=lagH -0a =04. O
It now follows from Proposition 5.3 that

6.5. Proposition. Let H= (H = (H, ey, my), H = (H, ey, 81)) be a bialgebra in V, and let
A= ((A,an),es,mp) be a right H-comodule algebra. Then

A= (A ea,mp) €VEO.A4,)-

Recall that for any (X, ay) € VE, the algebra X = (X, ax)%L is the equalizer of the mor-
phisms

ax
X —< XQ®H.
X®en

Applying Theorem 5.5 we get
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6.6. Theorem. Ler H = (I:I = (H,eyg,mpy),H = (H,ey,8n)) be a bialgebra in V, let A =
((A,ap),ea,mp) be a right H-comodule algebra, and let A(p,q,):H ® A — A ® H be the
corresponding entwining structure. Then the functor

F:Vn — VAQ()»(A@A)),

(X,vx) > (X Quu A, X @pump, X Quu ap)
is an equivalence of categories iff the extension-of-scalars functor

F;, V= Va,
(X, vx) > (X Qpu A, X Q1 my)
is comonadic and A is H-Galois (in the sense that the canonical morphism
can:AQunA—>A®H
is an isomorphism).
Now applying Theorem 5.6 we get

6.7. Theorem. Let H = (H = (H, ey, mp), H = (H, e, 81)) be a bialgebra in V), let A =

((A,aa),ea,my) be a right H-comodule algebra, and let Aa,q,):H ® A — A® H be the
corresponding entwining structure. Suppose that H is flat. Then the following are equivalent:

(i) The functor

= H
F:Vn — VA*()L(AVQA)),

X,vx) > (X Quu A, X Q@uump, X Quu an)

is an equivalence of categories.
(ii) A is H-Galois and yu A is faithfully flat.

LetH=(H = (H, ey, my), H=(H,ey,81)) be abialgebrain V,andlet A = ((A, xa), €4,
m4) be a right H-comodule algebra. A right (A, H)-module is a right A-module which is a right
H-comodule such that the H-comodule structure morphism is a morphism of right A-modules.
Morphisms of right (A, H)-modules are right A-module right H-comodule morphisms. We write
VE for this category. Note that the category VE is the category (V) of right A-modules in the
monoidal category V&, and it follows from Theorem 2.1 that

6.8. Proposition. In the situation of the previous theorem, VE = VAE()»( Aap))-

The following is an immediate consequence of Theorem 6.6.
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6.9. Theorem. Let H = (H = (H, ey, my), H = (H, em, 8m)) be a bialgebra in V, and let A =
((A,a4),ea,mp) be a right H-comodule algebra. Then the functor

F:Vun— Vi

is an equivalence of categories iff the extension-of-scalars functor
Fiy: V= V4

is comonadic and A is H-Galois.

LetH=(H = (H,ey,mp), H=(H,ey,8y), S) be a Hopf algebra in V. Then clearly H =
(H,eq,mpg) is a right H-comodule algebra.

6.10. Proposition. In the above situation, the composite

H®dy myQ@H
xXHQH — HQHQH — HQH
is an isomorphism.

Proof. We will show that the composite

H®8y HRSQ®H my@H
VHIH — HQHQRH — HQHQRH — HQRH
is the inverse for x. Indeed, consider the diagram

H®dy myQH
H®H HRHQH H®H

M (@)
H®8p HRH®3y H®8H

HQsyQH mpQHRQH
HIH®QH ——— HQQHQH®H ——— HQHQRH

3
HRH®S®H HRS®H

mgQHR®H
HIHRQHQRH ——— HQHH

4)
H®my®H myQH

H®HQH H®H.
mygQH
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We have:

Square (1) commutes because of coassociativity of §x;
Square (2) commutes because of naturality of mpg ® —;
Square (3) commutes because — ® — is a bifunctor;
Square (4) commutes because of associativity of m .

Then
yx=mygQH)(HQSQH)(HQy)my Q@ H)(H Q)
=mpQH)(HOImgQH)(HRIHRS® H)Y(HR®Sy ® H)(H ®8y),
but since
my(H® S)dy =ep - €y,
yx=(myg® H)(HQ®egey ® H)Y(H ® 5x)

=myp@H)H®ey @H)(HQ®ey Q@ H)(H Q8n)

=luon ® lugn =lugn.
Thus yx = 1. The equality xy = 1 can be shown in a similar way. O
6.11. Proposition. In the situation of the previous proposition, there is an isomorphism
(H,8m)2 =~ (I, ep).
Proof. We will first show that the diagram

H®ey
H—/———<=HQ®H

eg®@H
K
Sy
H_————<H®H
egQH

is serially commutative. Indeed, we have:

x(H®ey)=(myg Q@ H)Y(HQ®Jy)(H ® eyy) = since § is an algebra morphism
=(my Q@ H)(H®ey ®ey) =since ey is the unit for my
=HQen;

x(eg @ H)=(myg® H)(H ®y)(eg ® H) =since ey is a coalgebra morphism
=mpy @ H)(eg ® H)0y =1pdp =64.



B. Mesablishvili / Journal of Algebra 319 (2008) 2496-2517 2517

Thus, (H, éy, eH)i is isomorphic to the equalizer of the pair (H ® ey,ey ® H). But since
ep : I — H is a split monomorphism in V, the diagram

ey H®ey
I —H

H®H

eg®@H
is an equalizer diagram. Hence (H, §y, e~ (I, ey). O

The following result can be seen as an extension of the structure theorem on ordinary Hopf
modules over a k-Hopf algebra, k being a field, (see [12, p. 84]) to braided monoidal categories.

6.12. Theorem. Let H= (H = (H, ey, mp), H=(H,ey,8y),S) beaHopfalgebrain)V. Then
the functor

V- Vi,

V>VRH
is an equivalence of categories.

Proof. It follows from Propositions 6.10 and 6.11 that H is H-Galois, and according to Theo-
rem 6.6, the functor V — VHI% is an equivalence iff the functor — ® H :V — Vy is comonadic.
But since the morphism ey : I — H is a split monomorphism in ), the unit of the adjunction
Fe, 4 U,y is a split monomorphism, and since any category admitting equalizers is Cauchy
complete, it follows from 3.16 of [11] that F,,, is comonadic. This completes the proof. O
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