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Abstract

Interpreting entwining structures as special instances of J. Beck’s distributive law, the concept of en-
twining module can be generalized for the setting of arbitrary monoidal category. In this paper, we use the
distributive law formalism to extend in this setting basic properties of entwining modules.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The important notion of entwining structures has been introduced by T. Brzeziński and S. Ma-
jid in [5]. An entwining structure (over a commutative ring K) consists of a K-algebra A,
a K-coalgebra C and a certain K-homomorphism λ :C ⊗K A → A ⊗K C satisfying some ax-
ioms. Associated to λ there is the category MC

A(λ) of entwining modules whose objects are at
the same time A-modules and C-comodules, with compatibility relation given by λ.

The algebra A can be identified with the monad T = − ⊗K A : ModK → ModK whose
Eilenberg–Moore category of algebras, (ModK)T , is (isomorphic to) the category of right A-
modules. Similarly, C can be identified with the comonad G = − ⊗K C : ModK → ModK , and
the corresponding Eilenberg–Moore category of coalgebras with the category of C-comodules.
It turns out that to give an entwining structure C ⊗K A → A ⊗K C is to give a mixed distrib-
utive law T G → GT from the monad T to the comonad G in the sense of J. Beck [2], which
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are in bijective correspondence with liftings (or extensions) Ḡ of the comonad G to the category
(ModK)T ; or, equivalently, liftings T̄ of the monad T to the category (ModK)G. Moreover, the
categories MC

A(λ), ((ModK)T )G and ((ModK)G)T are isomorphic. Thus, the (mixed) distribu-
tive law formalism can be used to study entwining structures and the corresponding category of
modules. In this article—based on this formalism—we extend in the context of monoidal cate-
gories some of basic results on entwining structures that appear in the literature (see, for example,
[6,7,13]).

The paper is organized as follows. After recalling the notion of Beck’s mixed distributive
law and the basic facts about it, we define in Section 3 an entwining structure in any monoidal
category. In Section 4, we prove some categorical results that are needed in the next section, but
may also be of independent interest. Finally, in the last section we present our main results.

We refer to M. Barr and C. Wells [1], S. MacLane [10] and F. Borceux [3] for terminology and
general results on (co)monads, and to T. Brzeziński and R. Wisbauer [6] for coring and comodule
theory.

2. Mixed distributive laws

Let T = (T , η,μ) be a monad and G = (G, ε, δ) a comonad on a category A. A mixed dis-
tributive law from T = (T , η,μ) to G = (G, ε, δ) is a natural transformation

λ : TG → GT

for which the diagrams

G
ηG Gη

T G
λ

GT,

T G

λ T ε

GT
εT

T ,

T G

λ

T δ
T G2

λG
GT G

Gλ

GT
δT

GGT

and T 2G

μG

T λ
T GT

λT
GT T

Gμ

T G
λ

GT

commute.
Given a monad T = (T , η,μ) on A, write AT for the Eilenberg–Moore category of T-

algebras, and write F T � UT :AT → A for the corresponding forgetful-free adjunction. Dually,
if G = (G, ε, δ) is a comonad on A, then write AG for the category of G-coalgebras, and write
FG � UG :AG → A for the corresponding forgetful-cofree adjunction.

2.1. Theorem. (See [14].) Let T = (T , η,μ) be a monad and G = (G, ε, δ) a comonad on a
category A. Then the following structures are in bijective correspondences:

• mixed distributive laws λ : TG → GT;
• comonads Ḡ = (Ḡ, ε̄, δ̄) on AT that extend G in the sense that UT Ḡ = GUT , UT ε̄ = εUT

and UT δ̄ = δUT ;
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• monads T̄ = (T̄ , η̄, μ̄) on AG that extend T in the sense that UGT̄ = T UG, UGη̄ = ηUG and
UGμ̄ = μUG.

These correspondences are constructed as follows:

• Given a mixed distributive law

λ : TG → GT,

then Ḡ(a, ξa) = (G(a),G(ξa) · λa), ε̄(a,ξa) = εa , δ̄(a,ξa) = δa , for any (a, ξa) ∈ AT; and
T̄ (a, νa) = (T (a), λa · T (νa)), η̄(a,νa) = ηa , μ̄(a,νa) = μa for any (a, νa) ∈ AG.

• If Ḡ = (Ḡ, ε̄, δ̄) is a comonad on AT extending the comonad G = (G, ε, δ), then the corre-
sponding distributive law

λ : TG → GT

is given by

T G
T Gη

T GT = UT FT GUT FT = UT FT UT ḠFT
UT εT ḠFT

UT ḠFT

= GUT FT = GT,

where εT :FT UT → 1 is the counit of the adjunction FT � UT .
• If T̄ = (T̄ , η̄, μ̄) is a monad on AG extending T = (T , η,μ), then the corresponding mixed

distributive law is given by

T G = T UGFG = UGT̄ FG

UGηGT̄ FG

UGFGUGT̄ FG

= UGFGT UGFG = GT G
GT ε

GT,

where ηG : 1 → FGUG is the unit of the adjunction UG � FG.

It follows from this theorem that if

λ : TG → GT

is a mixed distributive law, then (AG)T̄ = (AT)Ḡ. We write (AT
G)(λ) for this category. An object

of this category is a three-tuple (a, ξa, νa), where (a, ξa) ∈ AT, (a, νa) ∈ AG, for which G(ξa) ·
λa ·T (νa) = νa · ξa . A morphism f : (a, ξa, νa) → (a′, ξ ′

a, ν
′
a) in (AT

G)(λ) is a morphism f :a →
a′ in A such that ξ ′

a · T (f ) = f · ξa and ν′
a · f = G(f ) · νa .

3. Entwining structures in monoidal categories

Let V = (V ,⊗, I ) be a monoidal category with coequalizers such that the tensor product
preserves the coequalizer in both variables. Then for all algebras A = (A, eA,mA) and B =
(B, eB,mB) and all M ∈ VA, N ∈ AVB and P ∈ BV , the tensor product M ⊗A N exists and the
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canonical morphism (M ⊗A N)⊗B P → M ⊗A (M ⊗B P ) is an isomorphism. Using MacLane’s
coherence theorem (see, [10, XI.5]), we may assume without loss of generality that V is strict.

It is well known that every algebra A = (A, eA,mA) in V defines a monad TA on V by

• TA(X) = X ⊗ A,
• (ηTA

)X = X ⊗ eA :X → X ⊗ A,
• (μTA

)X = X ⊗ mA :X ⊗ A ⊗ A → X ⊗ A,

and that VTA is (isomorphic to) the category VA of right A-modules.
Dually, if C = (C, εC, δC, ) is a coalgebra (= comonoid) in V , then one defines a comonad

GC on V by

• GC(X) = X ⊗ C,
• (εGC

)X = X ⊗ εC :X ⊗ C → X,

• (δGC
)X = X ⊗ δC :X ⊗ C → X ⊗ C ⊗ C,

and VGC
is (isomorphic to) the category VC of right C-comodules.

Quite obviously, if λ is a mixed distributive law from TA to GC, then the morphism

λ′ = λI :C ⊗ A → A ⊗ C

makes the following diagrams commutative:

C

C⊗eA

eA⊗C

C ⊗ A
λ′ A ⊗ C,

C ⊗ A

λ′ εC⊗A

A ⊗ C
A⊗εC

A,

C ⊗ A

λ′

δC⊗A
C ⊗ C ⊗ A

C⊗λ′
C ⊗ A ⊗ C

λ′⊗C

A ⊗ C
A⊗δC

A ⊗ C ⊗ C,

C ⊗ A ⊗ A

C⊗mA

λ′⊗A
A ⊗ C ⊗ A

A⊗λ′
A ⊗ A ⊗ C

mA⊗C

C ⊗ A
λ′ A ⊗ C.

Conversely, if λ′ :C ⊗ A → A ⊗ C is a morphism for which the above diagrams commute, then
the natural transformation

− ⊗ λ′ :TAGC(−) = − ⊗ C ⊗ A → − ⊗ A ⊗ C = GCTA(−)
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is a mixed distributive law from the monad TA to the comonad GC. It is easy to see that λ′ =
(−⊗λ′)I . When I is a regular generator in V and the tensor product preserves all colimits in both
variables, it is not hard to show that λ � −⊗λI . When this is the case, then the correspondences
λ → λI and λ′ → − ⊗ λ′ are inverses of each other.

3.1. Definition. An entwining structure (C,A, λ) consists of an algebra A = (A, eA,mA) and
a coalgebra C = (C, εC, δC) in V and a morphism λ :C ⊗ A → A ⊗ C such that the natural
transformation

− ⊗ λ :TAGC(−) = − ⊗ C ⊗ A → − ⊗ A ⊗ C = GCTA(−)

is a mixed distributive law from the monad TA to the comonad GC.

Let be (C,A, λ) be an entwining structure and let Ḡ = (Ḡ, ε̄, δ̄) be the comonad on VA that
extends G = GC. Then we know that, for any (V , ξV ) ∈ VA,

Ḡ(V, ξV ) = (
V ⊗ C,V ⊗ C ⊗ A

V ⊗λ
V ⊗ A ⊗ C

ξV ⊗C
V ⊗ C

)
.

In particular, since (A,mA) ∈ VA, A ⊗ C is a right A-module with right action

ξA⊗C :A ⊗ C ⊗ A
A⊗λ

A ⊗ A ⊗ C
ma⊗C

A ⊗ C.

3.2. Lemma. View A ⊗ C as a left A-module through ξ̄A⊗C = mA ⊗ C. Then (A ⊗ C, ξ̄A⊗C,

ξA⊗C) is an A–A-bimodule.

Proof. Clearly (A ⊗ C, ξ̄A⊗C) ∈ AV . Moreover, since (A ⊗ λ) · (mA ⊗ C ⊗ A) = (mA ⊗ A ⊗
C) · (A ⊗ A ⊗ λ), it follows from the associativity of mA that the diagram

A ⊗ A ⊗ C ⊗ A
A⊗A⊗λ

mA⊗C⊗A

A ⊗ A ⊗ A ⊗ C

A⊗mA⊗C

A ⊗ C ⊗ A

A⊗λ

A ⊗ A ⊗ C

mA⊗C

A ⊗ A ⊗ C
mA⊗C

A ⊗ C

is commutative, which just means that (A ⊗ C, ξ̄A⊗C, ξA⊗C) is an A–A-bimodule. �
Since ε̄(A,mA) : Ḡ(A,mA) → (A,mA) and δ̄(A,mA) : Ḡ(A,mA) → Ḡ2(A,mA) are morphisms

of right A-modules, and since UA(ε̄(A,mA)) = (εGC
)A = (A ⊗ C

A⊗εC−−−→ A) and UA(δ̄(A,mA)) =
(δGC

)A = (A ⊗ C
A⊗δC−−−→ A ⊗ C ⊗ C), it follows that A ⊗ C

A⊗εC−−−→ A and A ⊗ C
A⊗δC−−−→ A ⊗

C ⊗ C are both morphisms of right A-modules. Clearly they are also morphisms of left A-
modules with the obvious left A-module structures arising from the multiplication mA :A ⊗
A → A, and hence morphisms of A–A-bimodules. Since C = (C, εC, δC) is a coalgebra in V , it

follows that the triple (A ⊗ C)λ = (A⊗C,ε(A⊗C)λ, δ(A⊗C)λ), where ε(A⊗C)λ = A⊗C
A⊗εC−−−→ A
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and δ(A⊗C)λ = A⊗C
A⊗δC−−−→ A⊗C ⊗C, is an A-coring. Since, for any V ∈ VA, V ⊗A (A⊗C) �

V ⊗ C, the comonad Ḡ is isomorphic to the comonad G(A⊗C)λ . Thus, any entwining structure
(C,A, λ) defines a right A-module structure ξA⊗C on A ⊗ C such that (A ⊗ C, ξ̄A⊗C = mA ⊗
C,ξA⊗C) is an A–A-bimodule and the triple (A ⊗ C)λ = (A ⊗ C,ε(A⊗C)λ, δ(A⊗C)λ) is an A-
coring. Moreover, when this is the case, the comonad G(A⊗C)λ on VA extends the comonad GC.

It follows that V(A⊗C)λ
A

= VC

A
(λ).

Conversely, let A = (A, eA,mA) be an algebra and C = (C, εC, δC) a coalgebra in V , and
suppose that A ⊗ C has the structure ξA⊗C of a right A-module such that the triple

A ⊗ C = (
(A ⊗ C,mA ⊗ C,ξA⊗C),A ⊗ C

A⊗εC

A,A ⊗ C
A⊗δC

A ⊗ C ⊗ C
)

(1)

is an A-coring. Then it is easy to see that the comonad GA⊗C on VA extends the comonad GC

on V , and thus defines an entwining structure λA⊗C :C ⊗ A → A ⊗ C.
Summarizing, we have

3.3. Theorem. Let A = (A, eA,mA) be an algebra and C = (C, εC, δC) a coalgebra in V . Then
there exists a bijection between right A-module structures ξA⊗C making (A⊗C,mA ⊗C,ξA⊗C)

an A-bimodule for which the triple (1) is an A-coring and entwining structures (C,A, λ), given
by:

ξA⊗C

(
λA⊗C :C ⊗ A

eA⊗C⊗A
A ⊗ C ⊗ A

ξA⊗C

A ⊗ C
)

with inverse given by

λ
(
ξA⊗C :A ⊗ C ⊗ A

A⊗λ
A ⊗ A ⊗ C

mA⊗C
A ⊗ C

)
.

Under this equivalence V(A⊗C)λ
A

= VC

A
(λ).

4. Some categorical results

Let G = (G, ε, δ) be a comonad on a category A, and let UG :AG → A be the forgetful func-
tor. Fix a functor F :B →A, and consider a functor F̄ :B → AG making the diagram

B
F̄

F

AG

UG

A

(2)

commutative. Then F̄ (b) = (F (b),αF(b)) for some αF(b) :F(b) → GF(b). Consider the natural
transformation

ᾱF :F → GF, (3)

whose b-component is αF(b).
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We shall need the following result, which is an immediate consequence of Propositions II.1.1
and II.1.4 in [8]:

4.1. Theorem. Suppose that F has a right adjoint U :A → B with unit η : 1 → FU and counit
ε :FU → 1. Then the composite

tF̄ :FU
ᾱ

F
U

GFU
Gε

G

is a morphism from the comonad G′ = (FU, ε,FηU) generated by the adjunction η, ε :F �
U :B → A to the comonad G. Moreover, the assignment

F̄ → tF̄

yields a one to one correspondence between functors F̄ :B → AG making the diagram (2) com-
mutative and morphisms of comonads tF̄ : G′ → G.

Write βU for the composite U
ηU

UFU
UtF̄

UG.

4.2. Proposition. Consider the following diagram

UUG

UUGηG

βU UG

UGUG = UUGFGUG,

where ηG : 1 → FGUG is the unit of the adjunction UG � FG. If the equalizer Ū of this pair of
parallel natural transformations exists, then it is right adjoint to F̄ .

Proof. See the proof of Theorem A.1 in [8]. �
Let F̄ :B →AG be a functor making (2) commutative and let tF̄ : G′ → G be the correspond-

ing morphism of comonads. Consider the following composition

B
KG′

AG′
At

F̄ AG,

where

• KG′ :B → AG′ ,KG′(b) = (F (b),F (ηb)) is the Eilenberg–Moore comparison functor for the
comonad G′.

• AtF̄
is the functor

(
(a, θa) ∈ A′

G

) → ((
a, (tF̄ )a · θa

) ∈ AG
)

induced by the morphism of comonads tF̄ : G′ → G.
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4.3. Lemma. The diagram

B
KG′

F̄

AG′

At
F̄

AG

(4)

is commutative.

Proof. Let b ∈ B. Then KG′(b) = (F (b),F (ηb)) and AtF̄
(F (b),F (ηb)) = (F (b), (tF̄ )F (b) ·

F(ηb)). Since (tF̄ )F (b) is the composite

FUF(b)
(ᾱF )UF(b)

GFUF(b)
GεF(b)

GF(b),

and since by naturality of ᾱF , the diagram

F(b)
(ᾱ)b

F (ηb)

GF(b)

GF(ηb)

FUF(b)
(ᾱ)UF(b)

GFUF(b)

commutes, we have

(tF̄ )F (b) · F(ηb) = G(εF(b)) · (ᾱF )UF(b) · F(ηb) = G(εF(b)) · GF(ηb) · (ᾱF )b = (ᾱF )b = αF(b).

Thus

(AtF̄
· KG′)(b) = AtF̄

(
KG′(b)

) = AtF̄

(
F(b),F (ηb)

)

= (
F(b), (tF̄ )F (b) · F(ηb)

) = (
F(b),αF(b)

)
,

which just means that AtF̄
· KG′ = F̄ . �

We are now ready to prove the following

4.4. Theorem. Let G be a comonad on a category A, η, ε :F � U :B → A an adjunction and
F̄ :B → AG a functor with UG · F̄ = F . Then the following are equivalent:

(i) The functor F̄ is an equivalence.
(ii) The functor F is comonadic (i.e. the functor KG′ is an equivalence of categories) and the

morphism of comonads

tF̄ : G′ = (FU, ε,FηU) → G

is an isomorphism.
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(iii) The morphism of comonads

tF̄ : G′ = (FU, ε,FηU) → G

is an isomorphism, the functor F is conservative and for any (X,x) ∈ AG, it preserves the
equalizer of the pair of parallel morphisms

U(X)

U(x)

ηU(X)
UG′(X)

U((tF̄ )X)
UG(X).

(5)

Proof. Suppose that F̄ is an equivalence of categories. Then F is isomorphic to the comonadic
functor UG and thus is comonadic. Hence the comparison functor KG′ :B → AG′ is an equiva-
lence and it follows from the commutative diagram (4) that AtF̄

is also an equivalence, and since
the diagram

AG′
At

F̄

UG′

AG

UG

A

is commutative, tF̄ is an isomorphism of comonads. So (i) ⇒ (ii).
Suppose now that tF̄ : G′ → G is an isomorphism of comonads and F is comonadic. Then

• KG′ is an equivalence, since F is comonadic.
• AtF̄

is an equivalence, since tF̄ is an isomorphism.

And it now follows from the commutative diagram (4) that F̄ is also an equivalence. Thus
(ii) ⇒ (i).

When tF̄ is an isomorphism of comonads, to say that F preserves the equalizer of the pair of
morphisms (5) is to say that F preserves the equalizer of the pair of morphisms

U(X)

ηU(X)

U((t−1
F̄

)X)·U(x)

UG′(X),

which we can rewrite as

U(X)

ηU(X)

U((t−1
F̄

)X ·x)

UG′(X) = UFU(X). (6)

Since tF̄ is an isomorphism of comonads, AtF̄
is an equivalence of categories, and thus each

object (X,x′) ∈ AG′ is isomorphic to the G′-coalgebra (X, (t−1
F̄

)X · x), where (X,x) ∈ AG. It
follows that when tF̄ is an isomorphism of comonads, to say that F preserves the equalizer of (5)
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for each (X,x) ∈ AG is to say that F preserves the equalizer of (6) for each (X,x′) ∈AG′ . Thus,
when tF̄ is an isomorphism of comonads, F̄ is an equivalence of categories iff F is conservative
and preserves the equalizer of (6) for each (X,x′) ∈AG′ , which according to (the dual of) Beck’s
theorem (see [10, VII. 2. Theorem 1, p. 147]), is to say that the functor F is comonadic. Hence
(ii) and (iii) are equivalent. This completes the proof of the theorem. �
4.5. Remark. A different proof of the fact that (ii) and (iii) are equivalent was already given by
J. Gómez-Torrecillas (see Theorem 2.7 in [9]).

5. Some applications

Let (C,A, λ) be an entwining structure in a monoidal category V = (V ,⊗, I ), and let g : I →
C be a group-like element of C. (Recall that a morphism g : I → C is said to be a group-like
element of C if the following diagrams

I
g

(1)

C

εC

I,

I
g

g⊗g

(2)

C

δC

C ⊗ C

are commutative.)

5.1. Proposition. If C has a group-like element g : I → C, then A is a right C-comodule through
the morphism

gA :A
g⊗A

C ⊗ A
λ

A ⊗ C.

Proof. Consider the diagram

A
g⊗A

C ⊗ A
λ

εC⊗A

A ⊗ C

A⊗εC

A A.

The triangle is commutative by (1) of the definition of g and the square is commutative by the
definition of λ (see the second commutative diagram in the definition of entwining structures).

Now, we have to show that the following diagram

A

g⊗A

g⊗A
C ⊗ A

λ
A ⊗ C

A⊗δCC ⊗ A

λ

A ⊗ C
g⊗A⊗C

C ⊗ A ⊗ C
λ⊗C

A ⊗ C ⊗ C
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is also commutative, which it is since

(A ⊗ δC)λ = (λ ⊗ C)(C ⊗ λ)(δC ⊗ A)

by the definition of λ and since the diagram (2) of definition of group-like elements is commuta-
tive. �

Suppose now that V admits equalizers. For any (M,αM) ∈ VC, write ((M,αM)C, iM) for the
equalizer of the morphisms

(M,αM)C
iM

M
αM

Mg
M ⊗ C.

5.2. Proposition. AC = (A,gA)C is an algebra in V and iA :AC → A is an algebra morphism.

Proof. Consider the diagram

AC
iA

A

A⊗g

g⊗A
C ⊗ A

λ
A ⊗ C.

I

e
AC

eA

(7)

Since

g ⊗ − : 1V = I ⊗ − → C ⊗ −

is a natural transformation, the diagram

I

eA

g

C

C⊗eA

A
g⊗A

C ⊗ A

is commutative. Similarly, since eA ⊗ − : 1V = I ⊗ − → C ⊗ − is a natural transformation, the
following diagram is also commutative:

I
eA

g

A

A⊗g

C
eA⊗C

A ⊗ C.

Now we have:
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λ(g ⊗ A)eA = λ(C ⊗ eA)g = by the definition of λ

= (eA ⊗ C)g = (A ⊗ g)eA.

Thus there exists a unique morphism eA : I → AC for which iA · eAC = eA.
Since

• the diagram

A ⊗ A

mA

g⊗A⊗A
C ⊗ A ⊗ A

C⊗mA

A
g⊗A

C ⊗ A

is commutative by naturality of g ⊗ −;
• λ(C ⊗ mA) = (mA ⊗ C)(A ⊗ λ)(λ ⊗ A) by the definition of λ;
• λ(g ⊗ A)iA = (A ⊗ g)iA, since iA is an equalizer of λ(g ⊗ A) and A ⊗ g;
• the diagram

A ⊗ A

mA

A⊗A⊗g
A ⊗ A ⊗ C

mA⊗C

A
A⊗g

A ⊗ C

is commutative by naturality of mA ⊗ −,

we have

λ(g ⊗ A)mA(iA ⊗ iA) = λ(C ⊗ mA)(g ⊗ A ⊗ A)(iA ⊗ iA)

= (mA ⊗ C)(A ⊗ λ)(λ ⊗ A)(g ⊗ A ⊗ A)(iA ⊗ iA)

= (mA ⊗ C)(A ⊗ λ)(A ⊗ g ⊗ A)(iA ⊗ iA)

= (mA ⊗ C)(A ⊗ A ⊗ g)(iA ⊗ iA)

= (A ⊗ g)mA(iA ⊗ iA).

Thus the morphism mA · (iA ⊗ iA) equalizes the morphisms λ · (g ⊗ A) and A ⊗ g, and hence
there is a unique morphism

mAC :AC ⊗ AC → AC
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such that the diagram

AC ⊗ AC

m
AC

iA⊗iA
A ⊗ A

mA

AC

iA
A

(8)

commutes. It is now straightforward to show that the triple (AC, eAC ,mAC) is an algebra in V ;
moreover, the triangle of the diagram (7) and the diagram (8) show that iA is an algebra mor-
phism. �
5.3. Proposition. (A,mA,gA) ∈ VC

A
(λ).

Proof. Since (A,mA) ∈ VA and (A,gA) ∈ VC, it only remains to show that the following dia-
gram is commutative:

A ⊗ A
gA⊗A

mA

A ⊗ C ⊗ A
A⊗λ

A ⊗ A ⊗ C

mA⊗C

A
gA

A ⊗ C.

(9)

By the definition of gA, we can rewrite it as

A ⊗ A

mA

g⊗A⊗A
C ⊗ A ⊗ A

λ⊗A

C⊗mA

A ⊗ C ⊗ A
A⊗λ

A ⊗ A ⊗ C

mA⊗C

A
g⊗A

C ⊗ A
λ

A ⊗ C.

But this diagram is commutative, since

• the left square commutes because of naturality of g ⊗ −;
• the right square commutes because of the definition of λ. �

The algebra morphism iA :AC → A makes A an AC–AC-bimodule and thus induces the
extension-of-scalars functor

FiA :VAC → VA,

(X,ρX) → (X ⊗AC A,X ⊗AC mA),

and the forgetful functor
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UiA :VA → VAC ,

(Y,�Y ) → (
Y,�Y · (Y ⊗ iA)

)
,

which is right adjoint to FiA . The corresponding comonad on VA makes A ⊗AC A into an A-
coring with the following counit and comultiplication:

ε :A ⊗AC A
q

A ⊗ A
mA

A

(where q is the canonical morphism) and

δ :A ⊗AC A = A ⊗AC AC ⊗AC A
A⊗

AC iA⊗
ACA

A ⊗AC A ⊗AC A

= (A ⊗AC A)A ⊗ (A ⊗AC A).

We write A ⊗AC A for this A-coring.

5.4. Lemma. For any X ∈ VAC , the triple

(X ⊗AC A,X ⊗AC mA,X ⊗AC gA)

is an object of the category VC

A
(λ).

Proof. Clearly (X⊗AC A,X⊗AC mA) ∈ VA and (X⊗AC A,X⊗AC gA) ∈ VC. Moreover, by (9),
the following diagram

X ⊗AC A ⊗ A
X⊗

ACgA⊗A

X⊗
ACmA

X ⊗AC A ⊗ C ⊗ A
X⊗

ACA⊗λ

X ⊗AC A ⊗ A ⊗ C

X⊗
ACmA⊗C

X ⊗AC A
X⊗

ACgA

X ⊗AC A ⊗ C

is commutative. Thus, (X ⊗AC A,X ⊗AC mA,X ⊗AC gA) ∈ VC

A
(λ). �

The lemma shows that the assignment

X → (X ⊗AC A,X ⊗AC mA,X ⊗AC gA)

yields a functor

F̄ :VA → VC

A
(λ) = V(A⊗C)λ

A
.

It is clear that U(A⊗C)λ · F̄ = FiA , where U(A⊗C)λ :V(A⊗C)λ
A

→ VA is the underlying functor. It
now follows from Theorem 4.1 that the composite

A ⊗AC A
A⊗gA

A ⊗ A ⊗ C
mA⊗C

A ⊗ C
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is a morphism of A-corings A ⊗AC A → (A ⊗ C)λ. We write can for this morphism. We say that
A is (C, g)-Galois if can is an isomorphism of A-corings.

Applying Theorem 4.4 to the commutative diagram

VAC

F̄

FiA
=−⊗

ACA

VA
(A⊗C)λ

U(A⊗C)λ

VA

we get:

5.5. Theorem. Let (C,A, λ) be an entwining structure, and let g : I → C be a group-like element
of C. Then the functor

F̄ :VAC → VC

A
(λ)

is an equivalence if and only if A is (C, g)-Galois and the functor F is comonadic.

Let A = (A, eA,mA) and B = (B, eB,mB) be algebras in V and let M ∈ AVB. We call AM

(respectively MB )

• flat, if the functor − ⊗A M :VA → VB (respectively M ⊗B − : BV → AV) preserves equal-
izers;

• faithfully flat, if the functor − ⊗A M :VA → VB (respectively M⊗B − : BV → AV) is con-
servative and flat (equivalently, preserves and reflects equalizers);

5.6. Theorem. Let (C,A, λ) be an entwining structure, and let g : I → C be a group-like element
of C. If C is flat, then the following are equivalent

(i) The functor

F̄ :VAC → VC

A
(λ) = VA

(A⊗C)λ

is an equivalence of categories.
(ii) A is (C, g)-Galois and ACA is faithfully flat.

Proof. Since any left adjoint functor that is conservative and preserves equalizers is comonadic
by a simple and well-known application (of the dual of) Beck’s theorem, one direction is clear
from Theorem 5.5; so suppose that F̄ is an equivalence of categories. Then, by Theorem 5.5, A

is (C, g)-Galois and the functor FiA is comonadic. Since any comonadic functor is conservative,
FiA is also conservative. Thus, it only remains to show that ACA is flat.

Since C is flat by our assumption, A(A ⊗ C) is also flat. It follows that the underlying functor
of the comonad G(A⊗C)λ on VA preserves equalizers. It is well known (see, for example, Propo-
sition 4.3.2 in [3]) that if G = (G, εG, δG) is a comonad on a category A, and if A has some
type of limits preserved by G, then the category AG has the same type of limits and these are
preserved by the underlying functor UG :AG → A. Thus the functor U(A⊗C)λ :VA

(A⊗C)λ → VA
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preserves equalizers, and since F̄ is an equivalence of categories, the functor FiA = − ⊗AC A

also preserves equalizers, which just means that ACA is flat. This completes the proof. �
Note that, for entwining structures between ordinary algebras and coalgebras, this result is

proved by T. Brzezinski (see Theorem 5.6 in [4]).

6. The case of braided monoidal categories

Throughout of this paper, we shall assume that our V is a strict braided monoidal category
with braiding σX,Y :X ⊗ Y → Y ⊗ X. Then the tensor product of two (co)algebras in V is again
a (co)algebra; the multiplication mA⊗B and the unit eA⊗B of the tensor product of two algebras
A = (A, eA,mA) and B = (B, eB,mB) are given through

mA⊗B = (mA ⊗ mB)(A ⊗ σA,B ⊗ B)

and

eA⊗B = eA ⊗ eB.

A bialgebra H = (H̄ = (H, eH ,mH ),H = (H, εH , δH )) in V is an algebra H̄ = (H, eH ,mH )

and a coalgebra H = (H, εH , δH ), where εH and δH are algebra morphisms, or, equivalently, eH

and mH are coalgebra morphisms.
A Hopf algebra H = (H̄ = (H, eH ,mH ),H = (H, εH , δH ), S) in V is a bialgebra H with a

morphism S :H → H , called the antipode of H, such that

mH (H ⊗ S)δH = mH (S ⊗ H)δH = eH · εH .

Recall that for any bialgebra H, the category VH is monoidal: The tensor product (X, δX) ⊗
(Y, δY ) of two right H-comodules (X, δX) and (Y, δY ) is their tensor product X ⊗ Y in V with
the coaction

δX⊗Y :X ⊗ Y
δX⊗δY

X ⊗ H ⊗ Y ⊗ H
X⊗σX,Y ⊗Y

X ⊗ Y ⊗ H ⊗ H
X⊗Y⊗mH

X ⊗ Y ⊗ H.

The unit object for this tensor product is I with trivial H -comodule structure eH : I → H.

6.1. Proposition. Let H = (H̄ = (H, eH ,mH ),H = (H, εH , δH )) be a bialgebra in V . For any
algebra A = (A, eA,mA) in V , the following conditions are equivalent:

• A = (A, eA,mA) is an algebra in the monoidal category VH ;
• A = (A, eA,mA) is an H -comodule algebra; that is, A is a right H -comodule and the H -

comodule coaction αA :A → A ⊗ H is a morphism of algebras in V from the algebra A =
(A, eA,mA) to the algebra A ⊗ H̄ = (A ⊗ H,eA ⊗ eH ,mA⊗H ).

Suppose now that A = (A, eA,mA) is a right H -comodule algebra with H -coaction αA :A →
A ⊗ H . By the previous proposition, A is an algebra in the monoidal category VH , and thus
defines a monad TA = (T A,ηA ,μA ) on VH as follows:
H H H H
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• T A
H (X, δX) = (X, δX) ⊗ (A,αA);

• (ηA
H )

(X,δX)
= X ⊗ eA;

• (μA
H )

(X,δX)
= X ⊗ mA.

It is easy to see that the monad TA
H extends the monad TA; and it follows from Theorem 2.1 that

there exists a distributive law λα : TA · GH → GH · TA from the monad TA to the comonad GH ,
and hence an entwining structure (H,A, λ(A,αA)), where λ(A,αA) = (λα)I .

Therefore we have:

6.2. Theorem. Every right H-comodule algebra A = ((A,αA),mA, eA) defines an entwining
structure (H,A, λ(A,αA) :H ⊗ A → A ⊗ H).

6.3. Proposition. Let A = ((A,αA),mA, eA) be a right H-comodule algebra. Then the entwining
structure λA,αA

:H ⊗ A → A ⊗ H is given by the composite:

H ⊗ A
H⊗αA

H ⊗ A ⊗ H
σH,A⊗H

A ⊗ H ⊗ H
A⊗mH

A ⊗ H.

Proof. Since (A,αA), (H, δH ) ∈ VH , the pair (A ⊗ H,δA⊗H ), where δA⊗H is the composite

H ⊗ A
δH ⊗αA

H ⊗ H ⊗ A ⊗ H
H⊗σH,A⊗H

H ⊗ A ⊗ H ⊗ H
H⊗A⊗mH

H ⊗ A ⊗ H,

is also an object of VH , and it follows from Theorem 2.1 that λ(A,αA) is the composite

H ⊗ A
δA⊗H

H ⊗ A ⊗ H
εH ⊗A⊗H

A ⊗ H.

Consider now the following diagram

H ⊗ A ⊗ H
δH ⊗A⊗H

H ⊗ H⊗A ⊗ H
H⊗σH,A⊗H

εH ⊗H⊗A⊗H

H ⊗ A ⊗ H ⊗ H
H⊗A⊗mH

εH ⊗A⊗H⊗H

H ⊗ A ⊗ H

εH ⊗A⊗H

H ⊗ A

H⊗αA

H ⊗ A ⊗ H
σH,A⊗H

A ⊗ H ⊗ H
A⊗mH

A ⊗ H.

Since in this diagram

• the triangle commutes because εH is the counit for δH ;
• the left square commutes by naturality of σ ;
• the right square commutes because − ⊗ − is a bifunctor,
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it follows that

λ(A,αA) = (A ⊗ mH )(σH,A ⊗ H)(H ⊗ αA). �
Note that the morphism eH : I → H is a group-like element for the coalgebra H =

(H, εH , δH ).

6.4. Proposition. Let H = (H̄ = (H, eH ,mH ),H = (H, εH , δH )) be a bialgebra in V , and let
A = ((A,αA), eA,mA) be a right H-comodule algebra. Then the right H -comodule structure on
A corresponding to the group-like element eH : I → H as in Proposition 4.1 coincides with αA.

Proof. We have to show that

(A ⊗ mH )(σH,A ⊗ H)(H ⊗ αA)(eH ⊗ A) = αA.

But since

• clearly (H ⊗ αA)(eH ⊗ A) = (eH ⊗ A ⊗ H) · αA;
• (σH,A ⊗ H) · (eH ⊗ A ⊗ H) = A ⊗ eH ⊗ H by naturality of σ ;
• (A ⊗ mH ) · (A ⊗ eH ⊗ H) = 1A⊗H since eH is the identity for mH ,

we have that

(A ⊗ mH )(σH,A ⊗ H)(H ⊗ αA)(eH ⊗ A)

= (A ⊗ mH )(σH,A ⊗ H)(eH ⊗ A ⊗ H)αA

= (A ⊗ mH )(A ⊗ eH ⊗ H)αA

= 1A⊗H · αA = αA. �
It now follows from Proposition 5.3 that

6.5. Proposition. Let H = (H̄ = (H, eH ,mH ),H = (H, εH , δH )) be a bialgebra in V , and let
A = ((A,αA), eA,mA) be a right H-comodule algebra. Then

A = (A, eA,mA) ∈ VH

A
(λA,αA

).

Recall that for any (X,αX) ∈ VH , the algebra XH = (X,αX)H is the equalizer of the mor-
phisms

X
αX

X⊗eH

X ⊗ H.

Applying Theorem 5.5 we get
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6.6. Theorem. Let H = (H̄ = (H, eH ,mH ),H = (H, εH , δH )) be a bialgebra in V , let A =
((A,αA), eA,mA) be a right H-comodule algebra, and let λ(A,αA) :H ⊗ A → A ⊗ H be the
corresponding entwining structure. Then the functor

F̄ :VAH → VH

A
(λ(A,αA)),

(X, νX) → (X ⊗AH A,X ⊗AH mA,X ⊗AH αA)

is an equivalence of categories iff the extension-of-scalars functor

FiA :VAH → VA,

(X,νX) → (X ⊗AH A,X ⊗AH mA)

is comonadic and A is H -Galois (in the sense that the canonical morphism

can :A ⊗AH A → A ⊗ H

is an isomorphism).

Now applying Theorem 5.6 we get

6.7. Theorem. Let H = (H̄ = (H, eH ,mH ),H = (H, εH , δH )) be a bialgebra in V , let A =
((A,αA), eA,mA) be a right H-comodule algebra, and let λ(A,αA) :H ⊗ A → A ⊗ H be the
corresponding entwining structure. Suppose that H is flat. Then the following are equivalent:

(i) The functor

F̄ :VAH → VH

A
(λ(A,αA)),

(X, νX) → (X ⊗AH A,X ⊗AH mA,X ⊗AH αA)

is an equivalence of categories.
(ii) A is H -Galois and AH A is faithfully flat.

Let H = (H̄ = (H, eH ,mH ),H = (H, εH , δH )) be a bialgebra in V , and let A = ((A,αA), eA,

mA) be a right H-comodule algebra. A right (A,H)-module is a right A-module which is a right
H -comodule such that the H -comodule structure morphism is a morphism of right A-modules.
Morphisms of right (A,H)-modules are right A-module right H -comodule morphisms. We write
VH

A
for this category. Note that the category VH

A
is the category (VH )A of right A-modules in the

monoidal category VH , and it follows from Theorem 2.1 that

6.8. Proposition. In the situation of the previous theorem, VH

A
= VH

A
(λ(A,αA)).

The following is an immediate consequence of Theorem 6.6.
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6.9. Theorem. Let H = (H̄ = (H, eH,mH),H = (H, εH, δH)) be a bialgebra in V , and let A =
((A,αA), eA,mA) be a right H-comodule algebra. Then the functor

F̄ :VAH → VH

A

is an equivalence of categories iff the extension-of-scalars functor

FiA :VAH → VA

is comonadic and A is H -Galois.

Let H = (H̄ = (H, eH ,mH ),H = (H, εH , δH ), S) be a Hopf algebra in V . Then clearly H̄ =
(H, eH ,mH ) is a right H-comodule algebra.

6.10. Proposition. In the above situation, the composite

x :H ⊗ H
H⊗δH

H ⊗ H ⊗ H
mH ⊗H

H ⊗ H

is an isomorphism.

Proof. We will show that the composite

y :H ⊗ H
H⊗δH

H ⊗ H ⊗ H
H⊗S⊗H

H ⊗ H ⊗ H
mH ⊗H

H ⊗ H

is the inverse for x. Indeed, consider the diagram

H ⊗ H

(1)
H⊗δH

H⊗δH

H ⊗ H ⊗ H

(2)

mH ⊗H

H⊗H⊗δH

H ⊗ H

H⊗δH

H ⊗ H ⊗ H
H⊗δH ⊗H

H ⊗ H ⊗ H ⊗ H

(3)
H⊗H⊗S⊗H

mH ⊗H⊗H
H ⊗ H ⊗ H

H⊗S⊗H

H ⊗ H ⊗ H ⊗ H

(4)
H⊗mH ⊗H

mH ⊗H⊗H
H ⊗ H ⊗ H

mH ⊗H

H ⊗ H ⊗ H
mH ⊗H

H ⊗ H.
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We have:

• Square (1) commutes because of coassociativity of δH ;
• Square (2) commutes because of naturality of mH ⊗ −;
• Square (3) commutes because − ⊗ − is a bifunctor;
• Square (4) commutes because of associativity of mH .

Then

yx = (mH ⊗ H)(H ⊗ S ⊗ H)(H ⊗ δH )(mH ⊗ H)(H ⊗ δH )

= (mH ⊗ H)(H ⊗ mH ⊗ H)(H ⊗ H ⊗ S ⊗ H)(H ⊗ δH ⊗ H)(H ⊗ δH ),

but since

mH (H ⊗ S)δH = eH · εH ,

yx = (mH ⊗ H)(H ⊗ eH εH ⊗ H)(H ⊗ δH )

= (mH ⊗ H)(H ⊗ eH ⊗ H)(H ⊗ εH ⊗ H)(H ⊗ δH )

= 1H⊗H ⊗ 1H⊗H = 1H⊗H .

Thus yx = 1. The equality xy = 1 can be shown in a similar way. �
6.11. Proposition. In the situation of the previous proposition, there is an isomorphism

(H, δH )H � (I, eH ).

Proof. We will first show that the diagram

H
H⊗eH

eH ⊗H
H ⊗ H

x

H
δH

eH ⊗H
H ⊗ H

is serially commutative. Indeed, we have:

x(H ⊗ eH ) = (mH ⊗ H)(H ⊗ δH )(H ⊗ eH ) = since δH is an algebra morphism

= (mH ⊗ H)(H ⊗ eH ⊗ eH ) = since eH is the unit for mH

= H ⊗ eH ;
x(eH ⊗ H) = (mH ⊗ H)(H ⊗ δH )(eH ⊗ H) = since eH is a coalgebra morphism

= (mH ⊗ H)(eH ⊗ H)δH = 1H δH = δH .



B. Mesablishvili / Journal of Algebra 319 (2008) 2496–2517 2517
Thus, (H, δH , eH )H is isomorphic to the equalizer of the pair (H ⊗ eH , eH ⊗ H). But since
eH : I → H is a split monomorphism in V , the diagram

I
eH

H
H⊗eH

eH ⊗H
H ⊗ H

is an equalizer diagram. Hence (H, δH , eH )H � (I, eH ). �
The following result can be seen as an extension of the structure theorem on ordinary Hopf

modules over a k-Hopf algebra, k being a field, (see [12, p. 84]) to braided monoidal categories.

6.12. Theorem. Let H = (H̄ = (H, eH ,mH ),H = (H, εH , δH ), S) be a Hopf algebra in V . Then
the functor

V → VH

H
,

V → V ⊗ H

is an equivalence of categories.

Proof. It follows from Propositions 6.10 and 6.11 that H is H -Galois, and according to Theo-
rem 6.6, the functor V → VH

H
is an equivalence iff the functor − ⊗ H :V → VH̄ is comonadic.

But since the morphism eH : I → H is a split monomorphism in V , the unit of the adjunction
FeH

� UeH
is a split monomorphism, and since any category admitting equalizers is Cauchy

complete, it follows from 3.16 of [11] that FeH
is comonadic. This completes the proof. �
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