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Abstract. We study basic and conditional utility maximization problem in in-

complete markets for utility functions defined on the whole real line and establish

relations between optimal strategies of these problems.
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1. Introduction

We consider an incomplete financial market model, where the dynamics
of asset prices is described by the continuous semimartingale S defined on
the filtered probability space (Ω,F , F = (Ft)t∈[0,T ], P ) satisfying the usual
conditions, where F = FT and T < ∞.

Denote by Me (resp. Ma) the set of probability measures Q equivalent
(resp. absolutely continuous with respect) to P such that S is a local
martingale under Q. We assume that Me ̸= ∅.

Let U = U(x) : R → R be a utility function taking finite values at all
points of real line R such that U is differentiable, strictly increasing, strictly
concave and satisfies the Inada conditions (see [4] for details).

The predictable, S−integrable process π we call admissible if the stochas-
tic integral (

∫ t

0
πudSu, t ∈ [0, T ]) is uniformly bounded from below.

We consider the utility maximization problem of terminal wealth and
the value function V associated to the problem is defined by

V (x) = sup
π∈Π

E

[
U

(
x+

∫ T

0

πu dSu

)]
, (1)

where Π is the class of admissible strategies.
Let τ be a stopping time valued in [0, T ].
Denote by Πτ the class of admissible processes, such that π = π1[τ,T ].

Define Zτ,y = {Y : Y = y ρT
ρτ
, ρT = dQ

dP
, Q ∈ Me(S)}.

The dynamic value functions of primal and dual problems are defined as

V (τ, x) = ess sup
π∈Πτ

E

[
U

(
x+

∫ T

τ

πu dSu

)∣∣∣∣Ft

]
, (2)

Ṽ (τ, y) = ess inf
Y ∈Zτ,y

E
[
Ũ(Y ) | Ft

]
, y > 0, (3)
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where Ũ = supx(U(x)− xy). For V (0, x) and Ṽ (0, y) we use the notations

V (x) and Ṽ (y) respectively. Following [5] we make

Assumption 1. For each y > 0 the dual value function Ṽ (y) is finite
and the minimizer Q∗(y) ∈ Me (called the minimax martingale measure)
exists. Let Πx be the class of predictable S integrable processes π such that
U(x+(π ·S)T ) ∈ L1(P ) and π ·S is a supermartingale under each Q ∈ Ma

with finite Ũ -expectation EŨ(dQ
dP

), where the notation π · S stands for the
stochastic integral.

Denote Q(x) = Q∗(y) = Q∗(V ′(x)).
It was proved in [4] that optimal strategy π(x) ∈ Πx of problem (1) ex-

ists, is unique and V (x) = EU(XT (x)), where the optimal wealth XT (x) =

x+
∫ T

0
πu(x) dSu is a uniformly integrable Q(x)-martingale.

Besides, the following duality relations hold true almost surely (see [5]
for the dynamic version)

U
′
(XT (x)) = ZT (y), y = V

′
(x), (4)

V
′
(
t, x+

∫ t

0

πu(x) dSu

)
= Zt(y), t ∈ [0, T ]. (5)

Our aim is to investigate whether Assumption 1 implies an existence of
an optimal strategy to the conditional maximization problem (2) and how
is this strategy related to the optimal strategy of the basic problem (1).

It was shown in [5] that if we start at time τ with the optimal wealth
Xτ (x) then the optimal value in (2) is attained by π(τ, x) = π(0, x)I]τ,T ],
i.e.,

E[U(XT (x))|Fτ ] ≥ E[U(Xτ (x) +

∫ T

τ

πudSu) | Fτ ], π ∈ Πτ ,

which is well understood from the Bellman Principle.
We shall show that if we start at time τ with the wealth equal to arbitrary

amount x, then the optimal strategy π(τ, x) of (2) is expressed in terms
of the optimal strategy π(x) = π(0, x) and the optimal wealth Xτ (x) =
Xτ (0, x) of (1) at time τ by the equality

π(τ, x) = π(X−1
τ (x)), µ⟨S⟩ − a.e.

To this end we first give some definitions and auxiliary assertions.
We shall say that an adapted stochastic process (Xt, t ∈ [τ, T ]) is a

generalized martingale (resp. supermartingale) if
1) E(|Xt|/Fτ ) < ∞, for any t ∈ [τ, T ]
2) E(Xt/Ft′) = Xt′ (resp. ≤ Xt′) for any t′ ≤ t, where t′, t ∈ [τ, T ]
( see the definition of generalized conditional expectations and of gener-

alized supermartingales for discrete time in [7])
Definition. A predictable S integrable process π is in Πx,τ , if E(U(x+∫ T

τ
πudSu)/Fτ ) is finite and ((π ·S)t, t ≥ τ) is a generalized supermartingale

under each Q ∈ Ma with finite Ũ -expectation EŨ(dQ
dP

).
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We shall also need two complementary assumptions
Assumption 2. The filtration F is continuous and lim inf

y→∞
ZT (y)/y > 0

for the process ZT (y) = y dQ∗(y)
dP

= yρ∗T (y).
Assumption 3. The utility function U is two times differentiable and

there are constants c1 > 0 and c2 > 0 such that

c1 < R(x) = −U
′′
(x)

U ′(x)
< c2, x ∈ R. (6)

The last condition is similar to the condition on relative risk-aversion intro-
duced in [1] for utility functions defined on the positive real line.

The proof of the following assertion follows from Theorem 4.1 and Propo-
sition 3.1 of [3].

Proposition 1. Let Assumptions 1-3 are satisfied.
Then for any t ∈ [0, T ] there exists a modification of the optimal wealth

process (Xt(x), x ∈ R) (resp. of Zt(y)) almost all paths of which are strictly
increasing and absolutely continuous with respect to dx (resp. dy). Besides

X ′
t(x) > 0, EQ(x)(X ′

T (x))
2 ≤ C, (7)

lim
x→∞

Xt(x) = ∞, lim
x→−∞

Xt(x) = −∞ (8)

P -a.s. for any t ∈ [0, T ] and the adapted inverse X−1
t (x) (resp. Z−1

t (y)) of
the optimal wealth process exists.

We shall need also the continuity properties of the square characteristics
⟨X(x)−X(y)⟩ which can be deduced from Proposition 1.

Lemma 1. Let conditions of Proposition 1 be satisfied. Then, for any
t ∈ [0, T ] the random field (⟨X(x) −X(y)⟩t, x, y ∈ R) admits a continuous
modification.

Proof. It follows from Proposition 1 that Xt(b) −Xt(a) =
∫ b

a
X ′

t(x)dx
and ∫ b

a

EQ(x)⟨X ′(x)⟩Tdx =

∫ b

a

EQ(x)X ′
T (x)

2dx < ∞

and by the Fubini theorem
∫ b

a
U ′(XT (x))

V ′(x)
⟨X ′(x)⟩Tdx < ∞, P − a.s. Thus by

continuity of V ′(x)
U ′(XT (x))

we obtain∫ b

a

⟨X ′(x)⟩Tdx ≤ max
x∈[a,b]

V ′(x)

U ′(XT (x))

∫ b

a

U ′(XT (x))

V ′(x)
⟨X ′(x)⟩Tdx < ∞, P −a.s.

Therefore, using the Kunita-Watanabe and Hölder’s inequalities we have

⟨X(b)−X(a)⟩t =
∫ b

a

∫ b

a

⟨X ′(x), X ′(y)⟩tdxdy

≤
∫ b

a

∫ b

a

⟨X ′(x)⟩1/2t ⟨X ′(y)⟩1/2t dxdy =

(∫ b

a

⟨X ′(x)⟩1/2t dx

)2

≤ (b− a)

∫ b

a

⟨X ′(x)⟩tdx < ∞, P − a.s.
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and it follows from inequality

⟨X(b′)−X(a′)⟩t − ⟨X(b) +X(a)⟩t
≤ ⟨X(b′)−X(b)⟩1/2t ⟨X(b′)−X(a′) +X(b)−X(a)⟩1/2t

+⟨X(a′)−X(a)⟩1/2t ⟨X(b′)−X(a′) +X(b)−X(a)⟩1/2t

that ⟨X(bn)−X(an)⟩t → ⟨X(b)−X(a)⟩t, P − a.s. when bn → b, an → a.
Thus the stochastic field defined by

⟨X(x)−X(y)⟩∗t =
{

limr→a,r′→b⟨X(r)−X(r′)⟩t, r, r′ are rational,
0, if the limit does not exists

is continuous and stochastically equivalent to ⟨X(x)−X(y)⟩t.
Theorem 1. Let Assumptions 1-3 be satisfied. Then there exist the

maximizer of (2) and the minimizer of (3) in the classes Πτ,x and Zτ,y

respectively and equalities

XT (τ, x) = XT (X
−1
τ (x)), πt(τ, x) = πt(X

−1
τ (x)), t ≥ τ, (9)

Y (τ, y) = ZT (Z
−1
τ (y)), ρQ∗

T (τ, y) = ρ∗τ (y)
ZT (Z

−1
τ (y))

y
(10)

are satisfied.
Moreover P -a.s.

V (τ, x) = E

[
U

(
x+

∫ T

τ

πu(X
−1
τ (x))dSu

)
| Fτ

]
, (11)

Ṽ (τ, y) = E
[
Ũ(ZT (Z

−1
τ (y))) | Fτ

]
,

the following duality relation holds

U ′
(
x+

∫ T

τ

πu(X
−1
τ (x))dSu

)
= ZT (Z

−1
τ (y)), y = V ′(τ, x) (12)

and the process

Zt(Z
−1
τ (y))Xt(Xτ (x)

−1(x)), t ∈ [τ, T ], where y = V ′(τ, x), (13)

is a generalized martingale.
Proof. By the optimality principle (see, e.g. [2]) V (t,Xt(x)) is a mar-

tingale and since V (T, x) = U(x) we have that for any x ∈ R

V (τ,Xτ (x)) = E
(
U(XT (x))/Fτ

)
P − a.s. (14)

Since for any τ the functions V (τ, x) and Xτ (x) are continuous for almost
all ω ∈ Ω, the equality (14) holds P -a.s. for all x ∈ R and substituting
X−1

τ (x) in this equality we obtain that

V (τ, x) = E
(
U(XT (X

−1
τ (x)))/Fτ

)
P − a.s.,
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which means the maximality of XT (X
−1
τ (x)). Let us show that XT (X

−1
τ (x))

is equal to the stochastic integral

XT (X
−1
τ (x)) = x+

∫ T

τ

πu(X
−1
τ (x))dSu (15)

and that π(X−1
τ (x)) belongs to the class Πτ,x

In order to show equality (15) it is enough to show that
∫ T

τ
πu(x)dSu

∣∣
x=ξ

=∫ T

τ
πu(ξ)dSu, for ξ = X−1

τ (x).
Let us consider the sequence of simple random variables ξn =

∑∞
k=−∞ ck1Ak

,

where Ak = ( k
n
≤ ξ < k+1

n
), ck =

k
n
. We have ξn → ξ uniformly and∫ T

τ

πu(ξn)dSu =
∞∑

k=−∞

∫ T

τ

πu(ck)1Ak
dSu

=
∞∑

k=−∞

1Ak

∫ T

τ

πu(ck)dSu =

∫ T

τ

πu(x)dSu

∣∣
x=ξn

.

On the other hand∫ T

τ

πu(x)dSu

∣∣
x=ξn

−
∫ T

τ

πu(x)dSu

∣∣
x=ξ

= XT (ξn)−Xτ (ξn)− (XT (ξ)−Xτ (ξ)) → 0,

as n → ∞, since Xt(x) is continuous and∫ T

τ

(πu(ξn)− πu(ξ))
2d⟨S⟩u =

= ⟨X(x)−X(y)⟩T − ⟨X(x)−X(y)⟩τ |x=ξn,y=ξ → 0, P − a.s.

as n → ∞, by continuity of ⟨X(x) − X(y)⟩t. Hence
∫ T

τ
πu(ξn)dSu →∫ T

τ
πu(ξ)dSu in probability and

∫ T

τ
πu(x)dSu

∣∣
x=ξ

=
∫ T

τ
πu(ξ)dSu − P.a.s..

Since E|U(XT (x))| < ∞ and EQ|Xt(x)| < ∞, t ∈ [0, T ] for any Q ∈ Ma

and X−1
τ (x) is Fτ -measurable we have that

E[|U(XT (X
−1
τ (x)))| | Fτ ] < ∞, EQ(|Xt(X

−1
τ (x))|/Fτ ) < ∞ P−a.s., t ≥ τ

On the other hand, since for any t ∈ [0, T ] the function (Xt(x), x ∈ R) is
continuous and increasing, the supermartingale inequality EQ(Xt(x)/Ft′) ≤
Xt′(x), t′ ≤ t ≤ T implies that

EQ(Xt(X
−1
τ (x))/Ft′) ≤ Xt′(X

−1
τ (x)), τ ≤ t′ ≤ t ≤ T

for any Q ∈ Ma, hence π(τ, x) = π(X−1
τ (x) belongs to the class Πτ,x and the

equality (11) holds. Similarly one can show the minimality of ZT (Z
−1
τ (y)),
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so conditional density of the minimax martingale measure to the problem

(2) is ZT (Z−1
τ (y))
y

.

Since for any t ∈ [0, T ] the functions V ′(t, x), x ∈ R and Zt(y), y > 0 are
continuous and the inverse of Zt(y) exists, from (5) we have that P -a.s.

Z−1
τ (V ′(τ, x)) = V ′(X−1

τ (x)) (16)

which, together with (4) implies the conditional duality relation (12).
Note also that since Zt(y)Xt(x) is a martingale (see Theorem 1 from [5]),

by continuity ofX(x) and Z(y) the process (Zt(V
′(X−1

τ ))Xt(X
−1
τ (x)), t ≥ τ)

will be a generalized martingale and by equality (16) this is equivalent to
(13). �

Now we make additional
Assumption 4. Each Ft is countably generated and there exists a

regular, conditional probability measure Qτ,ω of each measure Q given Fτ ,
where ω ∈ ΩQ for some ΩQ ∈ Fτ with Q(ΩQ) = 1 . From Theorem 1.2.10
of [6] we have that Xt(x), t ∈ [0, T ] is a Q−martingale if and only if
Xt∧τ (x), t ∈ [0, T ] is a Q−martingale and Xt(x) − Xt∧τ (x), t ∈ [0, T ] is
Qτ,ω−martingale.

Let us introduce classes

Π1
τ,ω,x ={π : π is predictable, S − integrable, Eτ,ω

(
U(x+

∫ T

τ

πudSu

)
< ∞

and Zt(V
′(X−1

τ (x)))

∫ t

τ

πudSu, t ≥ τ is a P τ,ω −martingale}.

Π2
τ,ω,x ={π : π is predictable, S − integrable, Eτ,ω(U(x+

∫ T

τ

πudSu) < ∞

and
ρQt

ρQτ

∫ t

τ

πudSu, t ≥ τ is a P τ,ω − supermartingale, Q ∈ Ma}.

It is evident that

V (τ, x, ω) = ess sup
π∈Π1

τ,ω,x

Eτ,ωU

(
x+

∫ T

τ

πu dSu

)
, ω ∈ ΩP . (17)

Since
ρQT
ρQτ

= dQτ,ω

dP τ,ω for Q ∈ Me(S), with ρQT = dQ
dP

, we can define

Zτ,ω,y = {Y : Y = y
dQτ,ω

dP τ,ω
, Q ∈ Me(S)}.

Similarly we have
Ṽ (τ, y, ω) = ess inf

Y ∈Zτ,ω,y

Eτ,ωŨ(Y ). (18)

Hence we obtain
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Theorem 1′. Let Assumptions 1-4 are satisfied. Then equalities (9),
(10) are valid and

sup
π∈Πτ,ω,x

Eτ,ω

[
U

(
x+

∫ T

τ

πu dSu

)]
= Eτ,ω

[
U

(
XT (X

−1
τ (x))

)]
,

inf
Q∈Me

Eτ,ω
[
Ũ

(
V ′(τ, x)

ρQT
ρQτ

)]
= Eτ,ω

[
Ũ(ZT (Z

−1
τ (V ′(τ, x))))

]
.
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