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Abstract

Connections between a system of Forward–Backward SDEs derived in Horst et al., (2014) and Backward Stochastic PDEs
(Mania and Tevzadze, 2010) related to the utility maximization problem are established. Besides, we derive another version of
Forward–Backward SDE of the same problem and prove the existence of solution.
c⃝ 2018 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

We consider a financial market model, where the dynamics of asset prices is described by the continuous Rd -valued
continuous semimartingale S defined on a complete probability space (Ω ,F , P) with filtration F = (Ft , t ∈ [0, T ])
satisfying the usual conditions, where F = FT and T < ∞. We work with discounted terms, i.e. the bond is assumed
to be constant.

Let U = U (x) : R → R be a utility function taking finite values at all points of real line R such that U is
continuously differentiable, increasing, strictly concave and satisfies the Inada conditions

U ′(∞) = lim
x→∞

U ′(x) = 0, U ′(−∞) = lim
x→−∞

U ′(x) = ∞. (1)
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We also assume that U satisfies the condition of reasonable asymptotic elasticity (see [1] and [2] for a detailed
discussion of these conditions), i.e.

lim sup
x→∞

xU ′(x)
U (x)

< 1, lim inf
x→−∞

xU ′(x)
U (x)

> 1. (2)

For the utility function U we denote by Ũ its convex conjugate

Ũ (y) = sup
x

(U (x) − xy), y > 0. (3)

Denote by Me (resp. Ma) the set of probability measures Q equivalent (resp. absolutely continuous) with respect
to P such that S is a local martingale under Q.

Let Ma
U (resp. Me

U ) be the convex set of probability measures Q ∈ Ma (resp. Me) such that

EŨ
(d QT

d PT

)
< ∞. (4)

It follows from proposition 4.1 of [3] that (4) implies EŨ
(
y d QT

d PT

)
< ∞ for any y > 0.

Throughout the paper we assume that

Me
U ̸= ∅. (5)

The wealth process, determined by a self-financing trading strategy π and initial capital x , is defined as a stochastic
integral

X x,π
t = x +

∫ t

0
πud Su, 0 ≤ t ≤ T .

We consider the utility maximization problem with random endowment H , where H is a liability that the agent
must deliver at the terminal time T . H is an FT -measurable random variable which for simplicity is assumed to be
bounded (one can use also weaker assumption 1.6 from [4]). The value function V (x) associated to the problem is
defined by

V (x) = sup
π∈Πx

E
[

U
(

x +

∫ T

0
πu d Su + H

)]
, (6)

where Πx is a class of strategies which (following [2] and [4]) we define as the class of predictable S-integrable
processes π such that U (x + (π · S)T + H ) ∈ L1(P) and π · S is a supermartingale under each Q ∈ Ma

U .
The dual problem to (6) is

Ṽ (y) = inf
Q∈Me

U

E[Ũ (yρQ
T ) + yρQ

T H ], y > 0, (7)

where ρQ
t = d Qt/d Pt is the density process of the measure Q ∈ Me relative to the basic measure P .

It was shown in [4] that under assumptions (2) and (5) an optimal strategy π (x) in the class Πx exists. There
exists also an optimal martingale measure Q(y) to the problem (7), called the minimax martingale measure and by
ρ∗

= (ρ∗
t (y), t ∈ [0, T ]) we denote the density process of this measure relative to the measure P .

It follows also from [4] that under assumptions (2) and (5) optimal solutions π∗(x) ∈ Πx and Q(y) ∈ Me
U are

related as

U ′

(
x +

∫ T

0
π∗

u (x)d Su + H
)

= yρ∗

T (y), P-a.s. (8)

The continuity of S and the existence of an equivalent martingale measure imply that the structure condition is
satisfied, i.e. S admits the decomposition

St = Mt +

∫ t

0
d⟨M⟩sλs,

∫ t

0
λT

s d⟨M⟩sλs < ∞

for all t P-a.s., where M is a continuous local martingale and λ is a predictable process. The sign T here denotes the
transposition.
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Let us introduce the dynamic value function of problem (6) defined as

V (t, x) = ess sup
π∈Πx

E
(

U
(

x +

∫ T

t
πu d Su + H

) ⏐⏐⏐ Ft

)
. (9)

It is well known that for any x ∈ R the process (V (t, x), t ∈ [0, T ]) is a supermartingale admitting an RCLL
(right-continuous with left limits) modification.

Therefore, using the Galtchouk–Kunita–Watanabe (GKW) decomposition, the value function is represented as

V (t, x) = V (0, x) − A(t, x) +

∫ t

0
ψ(s, x) d Ms + L(t, x),

where for any x ∈ R the process A(t, x) is increasing and L(t, x) is a local martingale orthogonal to M .

Definition 1. We shall say that (V (t, x), t ∈ [0, T ]) is a regular family of semimartingales if
(a) V (t, x) is two-times continuously differentiable at x P- a.s. for any t ∈ [0, T ],
(b) for any x ∈ R the process V (t, x) is a special semimartingale with bounded variation part absolutely continuous

with respect to an increasing predictable process (Kt , t ∈ [0, T ]), i.e.

A(t, x) =

∫ t

0
a(s, x) d Ks,

for some real-valued function a(s, x) which is predictable and K -integrable for any x ∈ R,
(c) for any x ∈ R the process V ′(t, x) is a special semimartingale with the decomposition

V ′(t, x) = V ′(0, x) −

∫ t

0
a′(s, x) d Ks +

∫ t

0
ψ ′(s, x) d Ms + L ′(t, x).

where a′, ϕ′ and L ′ are partial derivatives of a, ϕ and L respectively.

If F(t, x) is a family of semimartingales then
∫ T

0 F(ds, ξs) denotes a generalized stochastic integral, or a stochastic
line integral (see [5], or [6]). If F(t, x) = xG t , where G t is a semimartingale then the stochastic line integral coincides
with the usual stochastic integral denoted by

∫ T
0 ξsdGs or (ξ · G)T .

It was shown in [7–9] (see, e.g., Theorem 3.1 from [9]) that if the value function satisfies conditions (a)–(c) then it
solves the following BSPDE

V (t, x) = V (0, x)

+
1
2

∫ t

0

1
V ′′(s, x)

(ϕ′(s, x) + λ(s)V ′(s, x))T d⟨M⟩s(ϕ′(s, x) + λ(s)V ′(s, x))

+

∫ t

0
ϕ(s, x) d Ms + L(t, x), V (T, x) = U (x) (10)

and optimal wealth satisfies the SDE

X t (x) = x −

∫ t

0

ϕ′(s, Xs(x)) + λ(s)V ′(s, Xs(x))
V ′′(s, Xs(x))

d Ss . (11)

This assertion is a verification theorem since conditions are required directly on the value function V (t, x) and
not on the basic objects (on the asset price model and on the objective function U ) only. In the case of complete
markets [10] conditions on utility functions are given to ensure properties (a)–(c) and thus existence of a solution to
the BSPDE (10), (11) is established. Note that the BSPDE (10), (11) is of the same form for random utility functions
U (ω, x), for utility functions defined on half real line and properties (a)–(c) are also satisfied for standard (exponential,
power and logarithmic) utility functions.

In the paper [11] a new approach was developed, where a characterization of optimal strategies to the problem (6)
in terms of a system of Forward–Backward Stochastic Differential Equations (FBSDE) in the Brownian framework
was given. The key observation was an existence of a stochastic process Y with YT = H such that U ′(X t + Yt ) is a
martingale. The same approach was used in [12], where these results were generalized in semimartingale setting with
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continuous filtration rejecting also some technical conditions imposed in [11]. The FBSDE for the pair (X, Y ) (where
X is the optimal wealth and Y the process mentioned above) is of the form (see, [12])

Yt = Y0 +

∫ t

0

[
λT

s
U ′(Xs + Ys)
U ′′(Xs + Ys)

−
1
2
λT

s
U ′′′(Xs + Ys)U ′(Xs + Ys)2

U ′′(Xs + Ys)3 (12)

+ Z T
s

]
d⟨M⟩sλs −

1
2

∫ t

0

U ′′′(Xs + Ys)
U ′′(Xs + Ys)

d⟨N ⟩s +

∫ t

0
Zsd Ms + Nt , YT = H.

X t = x −

∫ t

0

(
λs

U ′(Xs + Ys)
U ′′(Xs + Ys)

+ Zs
)
d Ss, (13)

where N is a local martingale orthogonal to M .
Note that in [11] and [12] an existence of a solution of FBSDE (12), (13) is not proved, since not all conditions

of corresponding theorems are formulated in terms of basic objects. E.g., in both papers it is imposed that
E(U ′(X∗

T + H ))2 < ∞ and it is not clear if an optimal strategy satisfying this condition exists. Note that in [11]
in the case of complete markets an existence of a solution of FBSDE (12), (13) is proved under certain regularity
assumptions on the objective function U .

One of our goal is to derive another version of FBSDE (12), (13) and to prove the existence of a solution which
will imply the existence of a solution of the system (12), (13) also.

The second goal is to establish relations between equations BSPDE (10), (11) and FBSDE (12), (13). Solutions of
these equations give constructions of the optimal strategy of the same problem. BSPDE (29), (30) can be considered
as a generalization of Hamilton–Jacobi–Bellman equation to the non Markovian case and FBSDE (12), (13) is linked
with the stochastic maximum principle (see [11]), although Eqs. (12)–(13) is not obtained directly from the maximum
principle. It is well known that the relation between Bellman’s dynamic programming and the Pontryagin’s maximum
principle in optimal control is of the form ψt = V ′(t, X t ), where V is the value function, X an optimal solution and
ψ is an adjoint process (see, e.g. [13,14]). Therefore, somewhat similar relation between above mentioned equations
should be expected. In particular, it is shown in Theorem 2, that the first components of solutions of these equations
are related by the equality

Yt = −Ũ ′(V ′(t, X t )) − X t .

In addition, conditions are given when the existence of a solution of BSPDE (29), (30) imply the existence of a
solution of the system (12)–(13) and vice versa.

2. Another version of the forward–backward system (12)–(13)

In this section we derive another version of the Forward–Backward system (12), (13) in which the backward
component Pt is a process, such that Pt + U ′(X t ) is a martingale.

Theorem 1. Let utility function U be three-times continuously differentiable and let the filtration F be continuous.
Assume that conditions (2) and (5) are satisfied. Then there exists a quadruple (P, ψ, L , X ), where P and X are
continuous semimartingales, ψ is a predictable M-integrable process and L is a local martingale orthogonal to M,
that satisfies the FBSDE

X t = x −

∫ t

0

λs Ps + λsU ′(Xs) + ψs

U ′′(Xs)
d Ss, (14)

Pt = P0 +

∫ t

0

[
λs −

1
2

U ′′′(Xs)

(
λs Ps + λsU ′(Xs) + ψs

)
U ′′(Xs)2

]T

d⟨M⟩s
(
λs Ps + λsU ′(Xs) + ψs

)
+

∫ t

0
ψsd Ms + L t , PT = U ′(XT + H ) − U ′(XT ). (15)

In addition the optimal strategy is expressed as

π∗

t = −
λt Pt + λtU ′(X t ) + ψt

U ′′(X t )
(16)

and the optimal wealth X∗ coincides with X.
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Proof. Define the process

Pt = E(U ′(X∗

T + H )/Ft ) − U ′(X∗

t ). (17)

Note that the integrability of U ′(X∗

T + H ) follows from the duality relation (8). It is evident that PT = U ′(X∗

T + H ) −

U ′(X∗

T ).
Since U is three-times differentiable, U ′(X∗

t ) is a continuous semimartingale and Pt admits the decomposition

Pt = P0 + At +

∫ t

0
ψud Mu + L t , (18)

where A is a predictable process of finite variations and L is a local martingale orthogonal to M .
Since ρ∗

t is the density of a martingale measure, it is of the form ρ∗
t = Et (−λ · M + R), R⊥M . Therefore, (8) and

(17) imply that

E(U ′(X∗

T + H )/Ft ) = yρ∗

t = y −

∫ t

0
λs yρ∗

s d Ms + R̃t

= y −

∫ t

0

(
Ps + U ′(X∗

s )
)
λsd Ms + R̃t , (19)

where y = EU ′(X∗

T + H ) and R̃ is a local martingale orthogonal to M .
By definition of the process Pt , using the Itô formula for U ′(X∗

t ) and taking decompositions (18), (19) in mind, we
obtain

P0 + At +

∫ t

0
ψsd Ms + L t = y −

∫ t

0

(
Ps + U ′(X∗

s )
)
λsd Ms + R̃t−

− U ′(x) −

∫ t

0
U ′′(X∗

s )π∗T
s d⟨M⟩sλs −

1
2

∫ t

0
U ′′′(X∗

s )π∗T
s d⟨M⟩sπ

∗

s

−

∫ t

0
U ′′(X∗

s )π∗

s d Ms . (20)

Equalizing the integrands of stochastic integrals with respect to d M we have that µ⟨M⟩-a.e.

π∗

t = −
λt Pt + λtU ′(X∗

t ) + ψt

U ′′(X∗
t )

(21)

Equalizing the parts of finite variations in (20) we get

At = −

∫ t

0

(
U ′′(X∗

s )λs +
1
2

U ′′′(X∗

s )π∗

s

)T d⟨M⟩sπ
∗

s (22)

and from (21), substituting the expression for π∗ in (22) we obtain that

At =

∫ t

0

[
λs −

1
2

U ′′′(Xs)

(
λs Ps + λsU ′(Xs) + ψs

)
U ′′(Xs)2

]T

d⟨M⟩s
(
λs Ps + λsU ′(Xs) + ψs

)
(23)

Therefore, (23) and (18) imply that Pt satisfies Eq. (15). Integrating both parts of equality (21) with respect to d S and
adding the initial capital we obtain Eq. (14) for the optimal wealth. □

Corollary. Let conditions of Theorem 1 be satisfied. Then there exists a solution of FBSDE (12), (13). In particular,
if the pair (X, P) is a solution of (14), (15), then the pair (X, Y ), where

Yt = −Ũ ′(Pt + U ′(X t )) − X t ,

satisfies the FBSDE (12), (13).

Conversely, if the pair (X, Y ) solves the FBSDE (12), (13), then (X t , Pt = U ′(X t + Yt ) − U ′(X t )) satisfies (14),
(15).
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3. Relations between BSPDE (10)–(11) and FBSDE (12)–(13)

To establish relations between equations BSPDE (10), (11) and FBSDE (12), (13) we need the following

Definition 2 ([15]). The function u(t, x) is called a decoupling field of the FBSDE (12), (13) if

u(T, x) = H, a.s. (24)

and for any x ∈ R, s, τ ∈ R+ such that 0 ≤ s < τ ≤ T the FBSDE

Yt = u(s, x) (25)

+

∫ t

s

(
λT

r
U ′(Xr + Yr )
U ′′(Xr + Yr )

−
1
2
λT

r
U ′′′(Xr + Yr )U ′(Xr + Yr )2

U ′′(Xr + Yr )3 + Z T
r

)
d⟨M⟩rλr

−
1
2

∫ t

s

U ′′′(Xr + Yr )
U ′′(Xr + Yr )

d⟨N ⟩r +

∫ t

s
Zr d Mr + Nt − Ns, Yτ = u(τ, Xτ ),

X t = x −

∫ t

s

(
λr

U ′(Xr + Yr )
U ′′(Xr + Yr )

+ Zr
)
d Sr , (26)

has a solution (Y, Z , N , X ) satisfying

Yt = u(t, X t ), a.s. (27)

for all t ∈ [s, τ ]. We mean that all integrals are well defined.

We shall say that u(t, x) is a regular decoupling field if it is a regular family of semimartingales (in the sense of
Definition 1).

If we differentiate equation BSPDE (10) at x (assuming that all derivatives involved exist), we obtain the BSPDE

V ′(t, x) = V ′(0, x)

+
1
2

∫ t

0

(
(ϕ′(s, x) + λs V ′(s, x))T

V ′′(s, x)
d⟨M⟩s(ϕ′(s, x) + λs V ′(s, x))

)′

+

∫ t

0
ϕ′(s, x) d Ms + L ′(t, x), V ′(T, x) = U ′(x + H ). (28)

Thus, we consider the following BSPDE

V ′(t, x) = V ′(0, x) +

∫ t

0

[
(V ′′(s, x)λs + ϕ′′(s, x))T

V ′′(s, x)

−
1
2

V ′′′(s, x)
(V ′(s, x)λs + ϕ′(s, x))T

V ′′(s, x)

]
d⟨M⟩s(V ′(s, x)λs + ϕ′(s, x))

+

∫ t

0
ϕ′(s, x) d Ms + L ′(t, x), V ′(T, x) = U ′(x + H ), (29)

where the optimal wealth satisfies the same SDE

X t (x) = x −

∫ t

0

ϕ′(s, Xs(x)) + λ(s)V ′(s, Xs(x))
V ′′(s, Xs(x))

d Ss . (30)

The FBSDE (12), (13) is equivalent, in some sense, to BSPDE (29), (30) and the following statement establishes a
relation between these equations.



M. Mania, R. Tevzadze / Transactions of A. Razmadze Mathematical Institute 172 (2018) 429–439 435

Theorem 2. Let the utility function U (x) be three-times continuously differentiable and let the filtration F be
continuous.

(a) If V ′(t, x) is a regular family of semimartingales and (V ′(t, x), ϕ′(t, x), L ′(t, x), X t ) is a solution of BSPDE
(29), (30), then the quadruple
(Yt , Z t , Nt , X t ), where

Yt = −Ũ ′(V ′(t, X t )) − X t , (31)

Z t = λtŨ ′(V ′(t, X t )) +
ϕ′(t, X t ) + λt V ′(t, X t )

V ′′(t, X t )
, (32)

Nt = −

∫ t

0
Ũ ′′(V ′(s, Xs))d

(∫ s

0
L ′(dr, Xr )

)
, (33)

will satisfy the FBSDE (12), (13). Moreover, the function u(t, x) = −Ũ ′(V ′(t, x)) − x will be the decoupling field of
this FBSDE.

(b) Let u(t, x) be a regular decoupling field of FBSDE (12), (13) and let (U ′(X t + Yt ), s ≤ t ≤ T ) be a true
martingale for every s ∈ [0, T ]. Then (V ′(t, x), ϕ′(t, x), L ′(t, x), X ) will be a solution of BSPDE (29), (30) and
following relations hold

V ′(t, x) = U ′(x + u(t, x)), hence V ′(t, X t ) = U ′(X t + Yt ), (34)

ϕ′(t, X t ) = (Z t + λs
U ′(X t + Yt )
U ′′(X t + Yt )

)V ′′(t, X t ) − λtU ′(X t + Yt ), (35)

∫ t

0
L ′(ds, Xs) =

∫ t

0
U ′′(Xs + Ys)d Ns, (36)

where
∫ t

0 L ′(ds, Xs) is a stochastic line integral with respect to the family (L ′(t, x), x ∈ R) along the process X.

Proof. (a) It follows from BSPDE (29), (30) and from the Itô – Ventzel formula that V ′(t, X t ) is a local martingale
with the decomposition

V ′(t, X t ) = V ′(0, x) −

∫ t

0
λs V ′(s, Xs)d Ms +

∫ t

0
L ′(ds, Xs). (37)

Let Yt = −Ũ ′(V ′(t, X t )) − X t . Since U is three-times differentiable (hence so is Ũ ), Yt will be a special
semimartingale and by GKW decomposition

Yt = Y0 + At +

∫ t

0
Zud Mu + Nt , (38)

where A is a predictable process of finite variations and N is a local martingale orthogonal to M .
The definition of the process Y , decompositions (37), (38) and the Itô formula for Ũ ′(V ′(t, X t )) imply that

At +

∫ t

0
Zsd Ms + Nt = (39)

=

∫ t

0
Ũ ′′(V ′(s, Xs))V ′(s, Xs)λsd Ms −

∫ t

0
Ũ ′′(V ′(s, Xs))d

(∫ s

0
L ′(dr, Xr )

)
−

1
2

∫ t

0
Ũ ′′′(V ′(s, Xs))V ′(s, Xs)2λT

s d⟨M⟩sλs −
1
2

∫ t

0
Ũ ′′′(V ′(s, Xs))d⟨

∫ .

0
L ′(dr, Xr )⟩s

+

∫ t

0

λs V ′(s, Xs) + ϕ′(s, Xs)
V ′′(s, Xs)

d Ms +

∫ t

0

λT
s V ′(s, Xs) + ϕ′(s, Xs)T

V ′′(s, Xs)
d⟨M⟩sλs .
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Equalizing the integrands of stochastic integrals with respect to d M in (39) we have that µ⟨M⟩-a.e.

Zs =
λs V ′(s, Xs) + ϕ′(s, Xs)

V ′′(s, Xs)
+ Ũ ′′(V ′(s, Xs))V ′(s, Xs)λs . (40)

Equalizing the orthogonal martingale parts we get P-a.s.

Nt = −

∫ t

0
Ũ ′′(V ′(s, Xs))d

(∫ s

0
L ′(dr, Xr )

)
. (41)

Equalizing the parts of finite variations in (39) we have

At =

∫ t

0

λT
s V ′(s, Xs) + ϕ′(s, Xs)T

V ′′(s, Xs)
d⟨M⟩sλs (42)

−
1
2

∫ t

0
Ũ ′′′(V ′(s, Xs))V ′(s, Xs)2λT

s d⟨M⟩sλs −
1
2

∫ t

0
Ũ ′′′(V ′(s, Xs))d⟨

∫ .

0
L ′(dr, Xr )⟩s

and by equalities (40), (41) we obtain from (42) that

At =

∫ t

0

(
Zs − Ũ ′′(V ′(s, Xs))V ′(s, Xs)λs −

1
2

Ũ ′′′(V ′(s, Xs))V ′(s, Xs)2λs

)T

d⟨M⟩sλs

−
1
2

∫ t

0

Ũ ′′′(V ′(s, Xs))
Ũ ′′(V ′(s, Xs))2

d⟨N ⟩s . (43)

Therefore, using the duality relations

V ′(t, X t ) = U ′(X t + Yt ),

Ũ ′′(V ′(t, X t )) = −
1

U ′′(X t + Yt )
,

Ũ ′′′(V ′(t, X t )) = −
U ′′′(X t + Yt )

(U ′′(X t + Yt ))3 ,

we obtain from (43) that

At =

∫ t

0

(
λs

U ′(Xs + Ys)
U ′′(Xs + Ys)

−
1
2
λs

U ′′′(Xs + Ys)U ′(Xs + Ys)2

U ′′(Xs + Ys)3 + Zs

)T

d⟨M⟩sλs

−
1
2

∫ t

0

U ′′′(Xs + Ys)
U ′′(Xs + Ys)

d⟨N ⟩s (44)

Thus, (38) and (44) imply that Y satisfies Eq. (12).
Since

Ũ ′′(V ′(s, Xs))V ′(s, Xs) = −
1

U ′′(Xs + Ys)
,

from (30) and (40) we obtain Eq. (13) for the optimal wealth.
The proof that the function u(t, x) = −Ũ ′(V ′(t, x)) − x is the decoupling field of the FBSDE (12) is similar. One

should take integrals from s to t and use the same arguments.
(b) Since the quadruple (Y s,x , Z s,x , N s,x , X s,x ) satisfies the FBSDE (25), (26), it follows from the Itô formula that

for any t ≥ s

U ′(X s,x
t + Y s,x

t ) = U ′(x + u(s, x)) −

∫ t

s
λrU ′(X s,x

r + Y s,x
r )d Mr (45)

+

∫ t

s
U ′′(X s,x

r + Y s,x
r )d Nr .
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Thus U ′(X s,x
t + Y s,x

t ), t ≥ s, is a local martingale and a true martingale by assumption. Therefore, it follows from
(24) and (27) that

U ′(X s,x
t + Y s,x

t ) = E(U ′(X s,x
T + H )/Ft ) = V ′(t, X s,x

t ), (46)

where the last equality is proved similarly to [3]. For t = s we obtain that

U ′(x + u(s, x)) = V ′(s, x), (47)

hence

u(t, x) = −Ũ ′(V ′(t, x)) − x . (48)

Since U (x) is three-times differentiable and u(t, x) is a regular decoupling field, equality (47) implies that V ′(t, x)
will be a regular family of semimartingales. Therefore, using the Itô – Ventzel formula for V ′(t, X s,x

t ) and equalities
(45), (46) we have∫ t

s

[
ϕ′(r, X s,x

r ) − V ′′(r, X s.x
r )(λs

U ′(X s,x
r + Y s,x

r )
U ′′(X s,x

r + Y s,x
r )

+ Z s,x
r )

]
d Mr (49)

+

∫ t

s
L ′(dr, Xr ) +

∫ t

s
a′(r, X s,x

r )d Kr

−

∫ t

s

(
λr

U ′(X s,x
r + Y s,x

r )
U ′′(X s,x

r + Y s,x
r )

+ Z s,x
r

)T d⟨M⟩r (V ′′(r, X s,x
r )λr + ϕ′′(r, X s,x

r ))

−
1
2

∫ t

s
(V ′′′(r, X s,x

r ))
(
λr

U ′(X s,x
r + Y s,x

r )
U ′′(X s,x

r + Y s,x
r )

+ Z s,x
r

)T d⟨M⟩r
(
λr

U ′(X s,x
r + Y s,x

r )
U ′′(X s,x

r + Y s,x
r )

+ Z s,x
r

)
= −

∫ t

s
λrU ′(X s,x

r + Y s,x
r )d Mr +

∫ t

s
U ′′(X s,x

r + Y s,x
r )d Nr .

Equalizing the integrands of stochastic integrals with respect to d M in (49) we have that µK -a.e.

Z s,x
r =

λr V ′(r, X s,x
r ) + ϕ′(r, X s,x

r )
V ′′(r, X s,x

r )
− λr

U ′(X s,x
r + Y s,x

r )
U ′′(X s,x

r + Y s,x
r )

. (50)

Equalizing the parts of finite variations in (49), taking (50) in mind, we get that for any t > s∫ t

s
a′(r, X s,x

r )d Kr =

∫ t

s

[ (V ′′(r, X s,x
r )λr + ϕ′′(r, X s,x

r ))
V ′′(r, X s,x

r )
(51)

−
1
2

V ′′′(r, X s,x
r )

(V ′(r, X s,x
r )λr + ϕ′(r, X s,x

r ))
V ′′(r, X s,x

r )2

]T d⟨M⟩r (V ′(r, X s,x
r )λr + ϕ′(r, X s,x

r )).

Let τs(ε) = inf{t ≥ s : Kt − Ks ≥ ε}. Since ⟨M i ,M j
⟩ ≪ K̃ for any 1 ≤ i, j ≤ d, where K̃ =

∑d
i=1⟨M i

⟩, taking an
increasing process K + K̃ (which we denote again by K ), without loss of generality we can assume that ⟨M⟩ ≪ K
and denote by Ct the matrix of Radon–Nikodym derivatives Ct =

d⟨M⟩t
d Kt

. Then from (51)∫ τs (ε)

s

[
(V ′′(r, X s,x

r )λr + ϕ′′(r, X s,x
r ))T Cr (V ′(r, X s,x

r )λr + ϕ′(r, X s,x
r ))

V ′′(r, X s,x
r )

(52)

−
1
2

V ′′′(r, X s,x
r )

(V ′(r, X s,x
r )λr + ϕ′(r, X s,x

r ))T Cr (V ′(r, X s,x
r )λr + ϕ′(r, X s,x

r ))
V ′′(r, X s,x

r )2

− a′(r, X s,x
r )

]
d Kr = 0.
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Since for any x ∈ R the process X s,x
r is a continuous function on {(r, s), r ≥ s} with X s,x

s = x (as a solution
of Eq. (26)) and V ′(t, x) is a regular family of semimartingales, dividing equality (52) by ε and passing to the limit as
ε → 0 from [7] (Proposition B1) we obtain that for each x

a′(s, x) =
(V ′′(s, x)λs + ϕ′′(s, x))T Cs(V ′(s, x)λs + ϕ′(s, x))

V ′′(s, x)
(53)

−
1
2

V ′′′(s, x)
(V ′(s, x)λs + ϕ′(s, x))T Cs(V ′(s, x)λs + ϕ′(s, x))

V ′′(s, x)2

=
1
2

(
(V ′(s, x)λs + ϕ′(s, x))T Cs(V ′(s, x)λs + ϕ′(s, x))

V ′′(s, x)

)′

, µK
− a.e.,

which implies that V ′(t, x) satisfies the BSPDE

V ′(t, x) = V ′(0, x) +
1
2

∫ t

0

(
(V ′(s, x)λs + ϕ′(s, x))T Cs(V ′(s, x)λs + ϕ′(s, x))

V ′′(s, x)

)′

d Ks

+

∫ t

0
ϕ′(s, x) d Ms + L ′(t, x), V ′(T, x) = U ′(x + H ). □ (54)

Remark 1. In the proof of the part (a) of the theorem we need the condition that V ′(t, x) is a regular family of
semimartingales only to show equality (37) and to obtain representation (33). Equality (37) can be proved without this
assumption (replacing the stochastic line integral by a local martingale orthogonal to M) from the duality relation

V ′(t, X t (x)) = ρt (y), y = V ′(x),

where ρt (y)/y is the density of the minimax martingale measure (see [2] and [4] for the version with random
endowment). Since ρt (y)/y is representable in the form E(−λ · M + D), for a local martingale D orthogonal to
M , using the Dolean Dade equation we have

V ′(t, X t ) = ρt = y −

∫ t

0
λsρsd Ms +

∫ t

0
ρsd Ds =

= 1 −

∫ t

0
λs V ′(s, Xs)d Ms + Rt ,

where Rt ≡ (Z · D)t is a local martingale orthogonal to M . Further the proof will be the same if we always use a local
martingale Rt instead of the stochastic line integral

∫ t
0 (L ′(ds, Xs). Hence the representation (33) will be of the form

Nt = −

∫ t

0
Ũ ′′(V ′(s, Xs))d Rt .

Remark 2. It follows from the proof of Theorem 2, that if a regular decoupling field for the FBSDE (12), (13) exists,
then the second component of the solution Z is also of the form Z t = g(ω, t, X t ) for some measurable function g
and if we assume that any orthogonal to M local martingale L is represented as a stochastic integral with respect
to the given continuous local martingale M⊥, then the third component N of the solution will take the same form
Nt =

∫ t
0 g⊥(s, Xs)d M⊥

s , for some measurable function g⊥.

Remark 3. Similarly to Theorem 2(b) one can show that u(t, x) = V ′(t, x) − U ′(x) is the decoupling field of (14),
(15).
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