Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 34, 2020

ON MARTINGALE TRANSFORMATIONS OF THE LINEAR BROWNIAN MOTION

Michael Mania Revaz Tevzadze

Abstract. We describe the classes of functions $f = (f(x), x \in R)$, for which processes $f(W_t) - Ef(W_t)$ and $f(W_t)/Ef(W_t)$ are martingales.

Keywords and phrases: Brownian motion, martingales.

AMS subject classification (2010): 60G44, 60J65, 97I70.

1 Introduction. Let $W = (W_t, t \ge 0)$ be a standard Brownian Motion defined on a probability space $(\Omega, \mathcal{F}, \mathcal{P})$ with filtration $F = (\mathcal{F}_t, t \ge 0)$ satisfying the usual conditions. A function $f = (f(x), x \in R)$ is called a semimartingale function of the process X if the transformed process $(f(X_t), t \ge 0)$ is a semimartingale. It was shown in [4] that every semimartingale function of Brownian Motion is locally difference of two convex functions. In [1], [3] the description of time-dependent semimartingale functions of Brownian Motion and diffusion processes in terms of generalized derivatives was given. All these results imply that if $f(W_t)$ is a right-continuous martingale, then f is a linear function.

We generalize this assertion in two directions. We show that a) if $f(W_t)$ is only a martingale (without assuming the regularity of paths), then f(x) is equal to the linear function almost everywhere with respect to the Lebesgue measure and b) if $f(W_t)/Ef(W_t)$ (resp. $f(W_t) - Ef(W_t)$) is a right-continuous martingale, then the function f is of the form $f(x) = ae^{\lambda x} + be^{-\lambda x}$ (resp. $f(x) = ax^2 + bx + c$) for some constants a, b, c and $\lambda \in R$.

2 Main results. The following theorem is the main result of the paper.

Theorem 1. Let $f = (f(x), x \in R)$ be a strictly positive function such that $f(W_t)$ is integrable for every $t \ge 0$.

a) If the process

$$N_t = \frac{f(W_t)}{Ef(W_t)}, \quad t \ge 0,$$

is a right-continuous (P-a.s.) martingale, then the function f is of the form

$$f(x) = ae^{\lambda x} + be^{-\lambda x}, \quad for \ some \quad \lambda, a, b \in R.$$
 (1)

b) If the process N_t is a martingale, then the function f(x) coincides with the function $ae^{\lambda x} + be^{-\lambda x}$ (for some $\lambda, a, b \in R$) almost everywhere.

Proof. a) Let $g(t) \equiv Ef(W_t)$. Since $E|f(W_t)| < \infty$ for all $t \ge 0$ the function g(t) will be continuous for any t > 0. Since N_t is right-continuous and g(t) is continuous, the process $f(W_t)$ will be also right-continuous. This implies that f(x) is a continuous function.

Since $f(W_t)/g(t)$ is a martingale, we have

$$\frac{f(W_t)}{g(t)} = \frac{1}{g(T)} E(f(W_T) / \mathcal{F}_t)$$
(2)

P-a.s. for all $t \leq T$. Let

$$u(t,x) = E(f(W_T)/W_t = x)$$

Since f is positive, u(t, x) will be of the class $C^{1.2}$ on $(0, T) \times R$ and satisfies the backward Kolmogorov equation (see, e.g. [2] page 257)

$$\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial^2 u}{\partial x^2} = 0, \quad 0 < t < T, x \in R.$$
(3)

By the Markov property $u(t, W_t) = E(f(W_T)/\mathcal{F}_t)$ and from (2) we have

$$f(W_t) = \frac{g(t)}{g(T)}u(t, W_t) \quad a.s.$$

Therefore,

$$\int_{R} \left| f(x) - \frac{g(t)}{g(T)} u(t, x) \right| \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^{2}}{2t}} dx = 0$$

which implies that for any $0 < t \leq T$

$$f(x) = \frac{g(t)}{g(T)}u(t,x) \quad a.e.$$
(4)

with respect to the Lebesgue measure. Since f and u are continuous, we obtain that for any 0 < t < T

$$f(x) = \frac{g(t)}{g(T)}u(t,x)$$
 for all $x \in R$.

Since g(t) > 0 for all t, this implies that g(t) is differentiable, f(x) is two-times differentiable and for any 0 < t < T

$$u(t,x) = \frac{g(T)}{g(t)}f(x) \quad \text{for all} \quad x \in R.$$
(5)

Therefore, it follows from (3) and (5) that

$$\frac{1}{2}\frac{g(T)}{g(t)}f''(x) - \frac{g(T)g'(t)}{g^2(t)}f(x) = 0,$$

which implies that

$$\frac{f''(x)}{f(x)} = 2\frac{g'(t)}{g(t)}.$$
(6)

Since the left-hand side of (6) does not depend on t and the right- hand side on x, both parts of (6) are equal to a constant which should be positive, since f and g are strictly positive (hence f'' and g' have the same sign). Therefore, we obtain

$$f''(x) = \lambda^2 f(x)$$
 and $g'(t) = \frac{\lambda^2}{2}g(t)$.

for some constant $\lambda \in R$. Therefore,

$$f(x) = ae^{\lambda x} + be^{-\lambda x}, \quad g(t) = Ef(W_t) = (a+b)e^{\frac{\lambda^2}{2}t}.$$

b) Let $\tilde{f}(x) = \frac{g(0)}{g(T)}u(0,x)$. It follows from (4) that

$$\lambda(x:f(x) \neq \hat{f}(x)) = 0, \tag{7}$$

where by definition of u(t, x) the function $\tilde{f}(x)$ is continuous. It follows from (7) that $P(f(W_t) = \tilde{f}(W_t)) = 1$ for any $t \ge 0$ and since $Ef(W_t) = E\tilde{f}(W_t)$, we obtain that for any $t \ge 0$

$$P\left(\frac{f(W_t)}{Ef(W_t)} = \frac{\tilde{f}(W_t)}{E\tilde{f}(W_t)}\right) = 1.$$

This implies that the process $\tilde{f}(W_t)/E\tilde{f}(W_t)$ is a continuous martingale and it follows from part a) of this theorem that $\tilde{f}(x)$ is of the form (1). Therefore, f(x) coincides with the function $ae^{\lambda x} + be^{-\lambda x}$ almost everywhere.

Theorem 2. Let $f(W_t)$ be integrable for every $t \ge 0$.

a) If the process $M = (f(W_t) - Ef(W_t), t \ge 0)$ is a right-continuous (P-a.s.) martingale, then the function f is of the form

$$f(x) = ax^2 + bx + c \quad for \ some \quad \alpha, b \quad and \quad c \in R.$$
(8)

b) If the process M_t is a martingale, then f(x) coincides with the function $ax^2 + bx + c$ (for some $a, b, c \in R$) almost everywhere w. r. t. the Lebesgue measure.

Proof. a) Let $g(t) = Ef(W_t)$ and $F(t, x) = f(x) - g(t), t \ge 0, x \in R$. Similarly to the proof of Theorem 2 one can show that for any $t \le T$

$$f(x) - g(t) + g(T) = u(t, x),$$
 a.e (9)

and by continuity of f(x)

$$f(x) - g(t) + g(T) = u(t, x), \text{ for all } 0 \le t \le T, x \in R,$$
 (10)

where $u(t,x) = E(f(W_T)/W_t = x)$ is a solution of the Kolmogorov backward equation (3). This implies that g(t) is differentiable, f(x) is two-times differentiable and it follows from (3) and (10)

$$\frac{1}{2}f''(x) = g'(t). \tag{11}$$

Since the left-hand side of (11) does not depend on t and the right-hand side on x, both parts of (6) are equal to a constant. Therefore, we obtain

f''(x) = 2a and g'(t) = a for some $a \in R$. (12)

The solutions of these equations are

 $f(x) = ax^2 + bx + c$ and g(t) = at + c (13)

respectively. The part b) is proved similarly to corresponding assertion of Theorem 1. \Box

Corollary. Let $f = (f(x), x \in R)$ be a function of one variable.

a) If the process $(f(W_t), \mathcal{F}_t, t \geq 0)$ is a right-continuous martingale, then

 $f(x) = bx + c \quad for \ all \quad x \in R \quad for \ some \quad b, c \in R.$ (14)

b) If the process $(f(W_t), \mathcal{F}_t, t \ge 0)$ is a martingale, then f(x) = bx + c (for some constants $b, c \in R$) almost everywhere.

Proof. If the process $f(W_t)$ is a martingale, then $g(t) = Ef(W_t)$ is a constant and the constant a in (13) is equal to zero. Therefore, this corollary follows from Theorem 2. \Box

REFERENCES

- CHITASHVILI, R., MANIA, M. On functions transforming Wiener process into semimartingale. Probab. Theory Related Fields, 109, (1997), 57–76.
- 2. KARATZAS, I., SHREVE, S.E. Brownian Motion and Stochastic Calculus. Springer, 1991.
- MANIA, M., TEVZADZE, R. Semimartingale functions for a class of diffusion processes. *Theory* Probab. Appl., 45, 2 (2000), 337–343.
- WANG, A.T. Generalized Itô's formula and additive functionals of Brownian motion. Zeit. für Warscheinlichkeit., 41 (1977), 153–159.

Received 28.05.2020; revised 28.07.2020; accepted 17.09.2020.

Author(s) address(es):

Michael Mania A. Razmadze Mathematical Institute I. Javakhishvili Tbilisi State University Tamarashvili str. 6, 0177 Tbilisi, Georgia E-mail: misha.mania@gmail.com

Revaz Tevzadze Georgian American University M. Alexidze str. 8, 0193 Tbilisi, Georgia E-mail: rtevzadze@gmail.com