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ON MARTINGALE TRANSFORMATIONS OF THE LINEAR BROWNIAN MOTION

Michael Mania Revaz Tevzadze

Abstract. We describe the classes of functions f = (f(x), x ∈ R), for which processes f(Wt)−
Ef(Wt) and f(Wt)/Ef(Wt) are martingales.
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1 Introduction. Let W = (Wt, t ≥ 0) be a standard Brownian Motion defined
on a probability space (Ω,F ,P) with filtration F = (Ft, t ≥ 0) satisfying the usual
conditions. A function f = (f(x), x ∈ R) is called a semimartingale function of the
process X if the transformed process (f(Xt), t ≥ 0) is a semimartingale. It was shown
in [4] that every semimartingale function of Brownian Motion is locally difference of two
convex functions. In [1], [3] the description of time-dependent semimartingale functions
of Brownian Motion and diffusion processes in terms of generalized derivatives was given.
All these results imply that if f(Wt) is a right-continuous martingale, then f is a linear
function.

We generalize this assertion in two directions. We show that a) if f(Wt) is only a
martingale (without assuming the regularity of paths), then f(x) is equal to the linear
function almost everywhere with respect to the Lebesgue measure and b) if f(Wt)/Ef(Wt)
(resp. f(Wt) − Ef(Wt)) is a right-continuous martingale, then the function f is of the
form f(x) = aeλx+ be−λx (resp. f(x) = ax2+ bx+ c) for some constants a, b, c and λ ∈ R.

2 Main results. The following theorem is the main result of the paper.

Theorem 1. Let f = (f(x), x ∈ R) be a strictly positive function such that f(Wt) is
integrable for every t ≥ 0.

a) If the process

Nt =
f(Wt)

Ef(Wt)
, t ≥ 0,

is a right-continuous (P -a.s.) martingale, then the function f is of the form

f(x) = aeλx + be−λx, for some λ, a, b ∈ R. (1)

b) If the process Nt is a martingale, then the function f(x) coincides with the function
aeλx + be−λx (for some λ, a, b ∈ R) almost everywhere.
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Proof. a) Let g(t) ≡ Ef(Wt). Since E|f(Wt)| < ∞ for all t ≥ 0 the function g(t) will be
continuous for any t > 0. Since Nt is right-continuous and g(t) is continuous, the process
f(Wt) will be also right-continuous. This implies that f(x) is a continuous function.

Since f(Wt)/g(t) is a martingale, we have

f(Wt)

g(t)
=

1

g(T )
E(f(WT )/Ft) (2)

P − a.s. for all t ≤ T .
Let

u(t, x) = E(f(WT )/Wt = x).

Since f is positive, u(t, x) will be of the class C1.2 on (0, T )×R and satisfies the backward
Kolmogorov equation (see, e.g. [2] page 257)

∂u

∂t
+

1

2

∂2u

∂x2
= 0, 0 < t < T, x ∈ R. (3)

By the Markov property u(t,Wt) = E(f(WT )/Ft) and from (2) we have

f(Wt) =
g(t)

g(T )
u(t,Wt) a.s.

Therefore, ∫
R

∣∣∣∣f (x)− g(t)

g(T )
u (t, x)

∣∣∣∣ 1√
2πt

e−
x2

2t dx = 0

which implies that for any 0 < t ≤ T

f (x) =
g(t)

g(T )
u (t, x) a.e. (4)

with respect to the Lebesgue measure. Since f and u are continuous, we obtain that for
any 0 < t < T

f (x) =
g(t)

g(T )
u (t, x) for all x ∈ R.

Since g(t) > 0 for all t, this implies that g(t) is differentiable, f(x) is two-times differen-
tiable and for any 0 < t < T

u (t, x) =
g(T )

g(t)
f (x) for all x ∈ R. (5)

Therefore, it follows from (3) and (5) that

1

2

g(T )

g(t)
f ′′(x)− g(T )g′(t)

g2(t)
f(x) = 0,
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which implies that
f ′′(x)

f(x)
= 2

g′(t)

g(t)
. (6)

Since the left-hand side of (6) does not depend on t and the right- hand side on x, both
parts of (6) are equal to a constant which should be positive, since f and g are strictly
positive (hence f ′′ and g′ have the same sign). Therefore, we obtain

f ′′(x) = λ2f(x) and g′(t) =
λ2

2
g(t).

for some constant λ ∈ R. Therefore,

f(x) = aeλx + be−λx, g(t) = Ef(Wt) = (a+ b)e
λ2

2
t.

b) Let f̃(x) = g(0)
g(T )

u(0, x).

It follows from (4) that
λ(x : f(x) ̸= f̃(x)) = 0, (7)

where by definition of u(t, x) the function f̃(x) is continuous. It follows from (7) that
P (f(Wt) = f̃(Wt)) = 1 for any t ≥ 0 and since Ef(Wt) = Ef̃(Wt), we obtain that for
any t ≥ 0

P

(
f(Wt)

Ef(Wt)
=

f̃(Wt)

Ef̃(Wt)

)
= 1.

This implies that the process f̃(Wt)/Ef̃(Wt) is a continuous martingale and it follows
from part a) of this theorem that f̃(x) is of the form (1). Therefore, f(x) coincides with
the function aeλx + be−λx almost everywhere.

Theorem 2. Let f(Wt) be integrable for every t ≥ 0.
a) If the process M = (f(Wt)−Ef(Wt), t ≥ 0) is a right-continuous (P -a.s.) martin-

gale, then the function f is of the form

f(x) = ax2 + bx+ c for some α, b and c ∈ R. (8)

b) If the process Mt is a martingale, then f(x) coincides with the function ax2 + bx + c
(for some a, b, c ∈ R) almost everywhere w. r. t. the Lebesgue measure.

Proof. a) Let g(t) = Ef(Wt) and F (t, x) = f(x) − g(t), t ≥ 0, x ∈ R. Similarly to the
proof of Theorem 2 one can show that for any t ≤ T

f(x)− g(t) + g(T ) = u(t, x), a.e (9)

and by continuity of f(x)

f(x)− g(t) + g(T ) = u(t, x), for all 0 ≤ t ≤ T, x ∈ R, (10)



On Martingale Transformations of the Linear Brownian Motion 61

where u(t, x) = E(f(WT )/Wt = x) is a solution of the Kolmogorov backward equation
(3). This implies that g(t) is differentiable, f(x) is two-times differentiable and it follows
from (3) and (10)

1

2
f ′′(x) = g′(t). (11)

Since the left-hand side of (11) does not depend on t and the right-hand side on x, both
parts of (6) are equal to a constant. Therefore, we obtain

f ′′(x) = 2a and g′(t) = a for some a ∈ R. (12)

The solutions of these equations are

f(x) = ax2 + bx+ c and g(t) = at+ c (13)

respectively. The part b) is proved similarly to corresponding assertion of Theorem 1.

Corollary. Let f = (f(x), x ∈ R) be a function of one variable.
a) If the process (f (Wt) ,Ft, t ≥ 0) is a right-continuous martingale, then

f (x) = bx+ c for all x ∈ R for some b, c ∈ R. (14)

b) If the process (f (Wt) ,Ft, t ≥ 0) is a martingale, then f (x) = bx + c (for some
constants b, c ∈ R) almost everywhere.

Proof. If the process f(Wt) is a martingale, then g(t) = Ef(Wt) is a constant and the
constant a in (13) is equal to zero. Therefore, this corollary follows from Theorem 2.
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