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BACKWARD STOCHASTIC PDE AND HEDGING IN

INCOMPLETE MARKETS

M. MANIA AND R. TEVZADZE

Abstract. We consider a problem of minimization of a hedging error

in an incomplete financial market model. The hedging error is mea-

sured by a positive strictly convex random function and the dynamics

of asset price is given by a continuous one dimensional semimartingale

defined on a complete probability space with continuous filtration.

Under some regularity assumptions we derive a backward stochastic

PDE for the value function of the problem and show that the strategy

is optimal if and only if the corresponding wealth process satisfies a

certain forward-SDE. As an example the case of mean-variance hedg-

ing is considered.

1. Introduction

Let S be a semimartingale with the decomposition

St = Mt +

t
∫

0

λsd〈M〉s, (1.1)

whereM is a continuous local martingale and λ is a predictable process. The
process S is defined on a complete filtered probability space with continuous
filtration and describes the dynamics of asset prices in an incomplet financial
market.
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We consider an optimization problem

to minimize E
[

U(Xx,π
T )

]

over all π ∈ Π, (1.2)

where Xx,π
t = x+

t
∫

0

πsdSs is the wealth process starting from initial capital

x, determined by the self-financing trading strategy π. U is an objective
function eventually dependent on ω, which can be interpreted as a function
which measures a hedging error and is assumed to be positive and strictly
convex a.e..

Let us introduce the value function of the problem defined as

V (t, x) = ess inf
π∈Π

E

(

U
(

x+

T
∫

t

πs dSs

)

/Ft

)

, (1.3)

where Π is a class of F -predictable S−integrable processes.

Under some regularity assumptions on the value function (sufficient for
the application of the Itô–Ventzell formula) we show that this function satis-
fies the following backward stochastic partial differential equation (BSPDE)

V (t, x) = V (0, x) +
1

2

t
∫

0

(ϕx(s, x) + λ(s)Vx(s, x))
2

Vxx(s, x)
d〈M〉s +

+

t
∫

0

ϕ(s, x)dMs +m(t, x), V (T, x) = U(x), (1.4)

where m(·, x) is a local martingale orthogonal to M for all x ∈ R and
subscripts ϕx, Vx, Vxx stand for partial derivatives. Moreover, we show that
the strategy π∗ is optimal if and only if the corresponding wealth process
X∗ = (X∗

t , t ∈ [0, T ]) satisfies the forward-SDE

X∗
t = x−

t
∫

0

ϕx(u,X
∗
u) + Vx(u,X

∗
u)λ(s)

Vxx(u,X∗
u)

dSu. (1.5)

If U(x) = (x −H)2, where H is a contingent claim due at time T , then
(1.2) corresponds to the well-known mean-variance hedging problem

to minimize E(Xx,π
T −H)2 over all π ∈ Π (1.6)

first studied by Föllmer and Sondermann [8] (see, e.g., [5], [12], [22], [23],
[21], [9], [11], for further generalizations and related results). We show that
in this case V (t, x) is a quadratic trinomial of the form V (t, x) = V0(t) −
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2V1(t)x + V2(t)x
2 and equation (1.4) gives a triangle system of backward

equations for the coefficients Vi, i = 0, 1, 2, of the value function

V2(t) = V2(0) +

t
∫

0

(ϕ2(s) + λ(s)V2(s))
2

V2(s)
d〈M〉s +

+

t
∫

0

ϕ2(s)dMs + L2(t), V2(T ) = 1,

V1(t) = V1(0) +

t
∫

0

(ϕ2(s) + λ(s)V2(s))(ϕ1(s) + λ(s)V1(s))

V2(s)
d〈M〉s +

+

t
∫

0

ϕ1(s)dMs + L1(t), V1(T ) = H,

V0(t) = V0(0) +

t
∫

0

(ϕ1(s) + λ(s)V1(s))
2

V2(s)
d〈M〉s +

+

t
∫

0

ϕ0(s)dMs + L0(t), V0(T ) = H2,

where L0, L1 and L2 are local martingales orthogonal to M .
Besides, equation (1.5) is transformed into a linear one

X∗
t = x+

t
∫

0

ϕ1(s) + λ(s)V1(s)

V2(s)
dSs −

t
∫

0

ϕ2(s) + λ(s)V2(s)

V2(s)
X∗
s dSs (1.7)

for the optimal wealth process.
Note that (1.7) gives an alternative equivalent form to the well-known

feedback form solution of problem (1.6), usually derived using the density
process of the variance-optimal martingale measure [11] (see also [12], [19],
[20], [24]). At the end of Section 4 we establish relations between equation
(1.7) and equation (4.9) derived in [11] as well, as between equations for V2

and for the value process of the variance-optimal martingale measure (see
[14], [18]).

2. Basic assumptions and some auxiliary facts

We consider an incomplete financial market model, where the dynamics
of asset prices are described by a continuous semimartingale S defined on
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a complete filtered probability space (Ω, F,F) = (Ft, t ∈ [0, T ], P ), where
F = FT and T < ∞ is a fixed time horizon. For all unexplained notations
from the martingale theory, we refer to [4] and [13].

Denote by Me the set of martingale measures, i.e., the set of measures Q
equivalent to P on FT such that S is a local martingale under Q. Let Zt(Q)
be the density process of Q with respect to the basic measure P , which is a
strictly positive uniformly integrable martingale. For any Q ∈ Me there is
a P -local martingale MQ such that Z(Q) = E(MQ) = (Et(MQ), t ∈ [0, T ]),
where E(M) is the Doleans-Dade exponential of M .

We shall say that a measure Q satisfies the Reverse Hölder inequality
Rp(P ), p > 1 if there exists a constant C such that

E
(

EpτT (MQ)/Fτ
)

≤ C, P − a.s.

for every stopping time τ , where EτT (MQ) = ET (MQ)
Eτ (MQ) .

Troughout the paper, we shall use the following assumptions:

A 1) all P -local martingales are continuous;

A 2) the set of equivalent martingale measures Me is not empty.

Remark 2.1. Condition A1) is equivalent to the continuity of the filtra-
tion and implies that any F -semimartingale is special.

Remark 2.2. Since S is continuous, the existence of an equivalent martin-
gale measure implies that the structure condition is satisfied, i.e., S admits

the decomposition (1.1) and
∫ T

0 λ2
ud〈M〉u <∞ a.s.

Let Πp, p ≥ 1, be the space of all predictable S-integrable processes π
such that the stochastic integral

(π · S)t =

t
∫

0

πu dSu, t ∈ [0, T ],

is in the Sp space of semimartingales, i.e.,

E

(

T
∫

0

π2
sd〈M〉s

)p/2

+ E

(

T
∫

0

∣

∣πs dAs
∣

∣

)p

<∞.

Define GpT as the space of terminal values of stochastic integrals, i.e.,

GpT (Π) =
{

(π · S)T : π ∈ Πp
}

.

For convenience we give some assertions from Theorem 4.1 of [10] (pre-
viously proved in [2] for the case p = 2), which establishes nessecary and
sufficient conditions for the closedness of the space GpT in Lp.
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Proposition 2.1. Let S be a continuous semimartingale. Let p > 1 and
let q be conjugate to p. Then the following assertions are equivalent:

(1) There is a martingale measure Q ∈ Me and GpT is closed in Lp.

(2) There is a martingale measure Q that satisfies the Reverse Hölder
condition Rq(P ).

(3) There is a constant C such that for all π ∈ Πp we have

∥

∥ sup
t≤T

(π · S)t
∥

∥

Lp(P )
≤ C

∣

∣(π · S)T
∥

∥

Lp(P )
.

(4) There is a constant c such that for every stopping time τ , every
A ∈ Fτ and for every π ∈ Πp with π = πI]τ,T ] we have

∥

∥IA − (π · S)T
∥

∥

Lp(P )
≥ cP (A)1/p.

Remark 2.3. Assertion (4) implies that for every stopping time τ and for
every π ∈ Πp we have

E

(

∣

∣

∣
1 −

T
∫

τ

πu dSu

∣

∣

∣

p

/Fτ

)

≥ cp.

Suppose that the objective function U(x) = U(ω, x) satisfies the following
conditions:

B1) U(x) is non-negative and EU(x) <∞,

B2) U(x) is strictly convex function P -a.s.,

B3) optimization problem (1.3) admits a solution, i.e., for any t and x
there is a strategy π∗(t, x) such that

V (t, x) = E

(

U
(

x+

T
∫

t

π∗
s(t, x) dSs

)

/Ft

)

. (2.1)

One sufficient condition for B3) is given in Appendix C.

Remark 2.4. Condition B2) implies that the optimal strategy is unique
if it exists. Indeed, if there exist two optimal strategies π1 and π2, then by
convexity of U the strategy π̄ = 1

2π
1 + 1

2π
2 is also optimal. Therefore,

1

2
E

[

U
(

x+

T
∫

t

π1
s dSs

)∣

∣

∣
Ft

]

+
1

2
E

[

U
(

x+

T
∫

t

π2
s dSs

)

|Ft

]

=

= E

[

U
(

x+

T
∫

t

π̄s dSs

)

∣

∣Ft

]
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and

1

2
U

(

x+

T
∫

t

π1
s dSs

)

+
1

2
U

(

x+

T
∫

t

π2
s dSs

)

=

= U

(

x+

T
∫

t

π̄s dSs

)

P − a.s.

Now strict convexity of U leads to the equality Xπ1

= Xπ2

.

Denote by Πx the class of strategies π∈Π such that EU(x+
T
∫

0

πudSu)<∞.

Lemma 2.1. Let Condition B1) be satisfied. Then

V (t, x) = ess inf
π∈Πx

E

(

U
(

x+

T
∫

t

πs dSs

)

/Ft

)

. (2.2)

Proof. It is sufficient to show that for any π ∈ Π there exists π̃ ∈ Πx such
that

E

(

U
(

x+

T
∫

t

π̃s dSs

)

/Ft

)

≤ E

(

U
(

x+

T
∫

t

πs dSs

)

/Ft

)

. (2.3)

Let π̃u = I(u>t)IBπu, where

B =

{

ω : E

(

U
(

x+

T
∫

t

πs dSs

)

/Ft

)

≤ E
(

U(x)/Ft
)

}

By the lattice property (see Appendix A) π̃ ∈ Π and

E

(

U
(

x+

T
∫

t

π̃s dSs

)

/Ft

)

= E
(

U(x)/Ft
)

∧ E

(

U
(

x+

T
∫

t

πs dSs

)

/Ft

)

.

It is evident that (2.3) is satisfied and by Condition B1)

E

(

U
(

x+

T
∫

0

π̃s dSs

)

)

= E

(

U
(

x+

T
∫

t

π̃s dSs

)

)

≤ EU(x) <∞,

hence π̃ ∈ Πx.

Note that, if B3) is assumed then (2.3) holds for π̃ = π∗ and (2.2) is au-
tomatically satisfied. For convenience we give also the proof of the following
known statement.
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Lemma 2.2. Under conditions B1)–B3) the value function V (t, x) is a
strictly convex function with respect to x.

Proof. The convexity of V (t, x) follows from B3), since for any α, β ∈ [0, 1]
with α+ β = 1 and any x1, x2 ∈ R we have

αV (t, x1) + βV (t, x2) =

= αE

[

U
(

x1 +

T
∫

t

π∗
u(t, x1) dSu

)

∣

∣Ft

]

+ βE

[

U
(

x2 +

T
∫

t

π∗
u(t, x2) dSu

)

∣

∣Ft

]

≥

≥ E

[

U
(

αx1 + βx2 +

T
∫

t

(απ∗
u(t, x1) + βπ∗

u(t, x2)
)

dSu
∣

∣Ft

]

≥

≥ V (t, αx1 + βx2). (2.4)

To show that V (t, x) is strictly convex we must verify that if the equality

αV (t, x1) + βV (t, x2) = V
(

t, αx1 + βx2

)

(2.5)

is valid for some α, β ∈ (0, 1) with α+ β = 1, then x1 = x2.

Indeed, if equality (2.5) holds, then from (2.4) and the strict convexity
of U follows that P -a.s.

x1 +

T
∫

t

π∗
u(t, x1) dSu = x2 +

T
∫

t

π∗
u(t, x2) dSu,

which implies that x1 = x2.

Ito-Ventzell’s formula. Let (Y (t, x), t ∈ [0, T ], x ∈ R) be a family of
special semimartingales with the decomposition

Y (t, x) = Y (0, x) +B(t, x) +N(t, x), (2.6)

where B(·, x) ∈ Aloc and N(·, x) ∈ Mloc for any x ∈ R. By the Galtchouk–
Kunita–Watanabe (G-K-W) decomposition of N(·, x) with respect to M a
parametrized family of semimartingales Y admits the representation

Y (t, x) = Y (0, x) +B(t, x) +

t
∫

0

ψ(s, x)dMs + L(t, x), (2.7)

where L(·, x) is a local martingale strongly orthogonal to M for all x ∈ R.

Assume that:

C1) there exists a predictable increasing process (Kt, t ∈ [0, T ]) such that
B(·, x) and 〈M〉 are absolutely continuous with respect to K, i.e., there is



46 M. MANIA AND R. TEVZADZE

a measurable function b(t, x) predictable for every x ∈ R and a predictable
process νt such that

B(t, x) =

t
∫

0

b(s, x)dKs, 〈M〉t =

t
∫

0

νsdKs.

Note that, by continuity of M the square charateristic 〈M〉 is absolutely
continuous with respect to the continuous part Kc of the process K and

〈M〉t =

t
∫

0

νs dK
c
s =

t
∫

0

νs dKs.

Without loss of generality one can assume that ν is bounded.

C2) the mapping x → Y (t, x) is twice continuously differentiable for all
(ω, t),

C3) the first derivative Yx(t, x) is a semimartingale for any x admitting
the decomposition

Yx(t, x) = Yx(0, x) +B(x)(t, x) +

t
∫

0

ψx(s, x) dMs + L(x)(t, x), (2.8)

where B(x)(·, x) ∈ Aloc, L(x)(·, x) is a local martingale orthogonal to M for
all x ∈ R and ψx is the partial derivative of ψ at x (note that A(x) and L(x)

are not assumed to be derivatives of A and L respectively, whose existence
does not necessarely follow from condition C2)),

C4) Yxx(t, x) is RCLL process for every x ∈ R,

C5) the functions b(s, ·), ψ(s, ·) and ψx(s, ·) are continuous at x µK-a.e.,

C6) for any c > 0

E

T
∫

0

sup
|x|≤c

g(s, x) dKs <∞

for g equal to |b|, |ψ|2 and |ψ|2x.
In what follows we shall need the following version of Ito-Ventzell’s for-

mula

Proposition 2.2. Let (Y (·, x), x ∈ R) be a family of special semimartin-
gales satisfing conditions C1)–C6) and Xπ = x+π·S. Then the transformed
process (Y (t,Xπ

t ), t ∈ [0, T ]) is a special semimartingale with the decompo-
sition

Y (t,Xπ
t ) = Y (0, c) +Bt +Nt,
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where

Bt =

t
∫

0

[Yx(s,X
π
s )λsπsd〈M〉s + ψx(s,X

π
s )πsd〈M〉s +

+
1

2
Yxx(s,X

π
s )π2

sd〈M〉s] +

t
∫

0

b(s,Xπ
s ) dKs (2.9)

and N is a continuous local martingale.

One can derive this assertion from Theorem 1.1 of [15] or from Theorem 2
of [1]. Here we don’t require any condition on L(t, x) imposed in [15] and
[1], since the martingale part of substituted process Xπ is orthogonal to
L(·, x) and since we don’t give an explicit expression of the martingale part
N , which is not nessecary for our purposes.

Remark 2.5. Since the filtration is assumed to be continuous and the
semimartingale S is of the form (1.1), only the latter term of (2.9) may
have the jumps, i.e., the process K is not continuous in general.

3. The BSPDE for the value function

Denote by V1,2 the class of functions Y : Ω × [0, T ] × R → R satisfying
conditions C1)-C6).

Let us consider the following backward stochastic partial differential
equation (BSPDE)

Y (t, x) = Y (0, x) +
1

2

t
∫

0

(ψx(s, x) + λ(s)Yx(s, x))
2

Yxx(s, x)
d〈M〉s +

+

t
∫

0

ψ(s, x) dMs + L(t, x), L(·, x)⊥M, (3.1)

with the boundary condition

Y (T, x) = U(x). (3.2)

We shall say that Y solves equation (3.1), (3.2) if:

(i) Y (ω, t, x) is twice continuously differetiable for each (ω, t) and satisfies
the boundary condition (3.2),

(ii) Y (t, x) and Yx(t, x) are special semimartingales admitting decompo-
sitions (2.7) and (2.8) respectively, where ψx is the partial derivative of ψ
at x and
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(iii) P− a.s. for all x ∈ R

B(t, x) =
1

2

t
∫

0

(ψx(s, x) + λ(s)Yx(s, x))
2

Yxx(s, x)
d〈M〉s. (3.3)

Remark 3.1. If we substitute expression of B(t, x), given by equality
(3.3), in the canonical decomposition (2.7) for Y we obtain equation (3.1).
Note also that condition A1) and equality (3.3) imply that for any x ∈ R the
process Y (·, x) is a continuous semimartingale for any solution Y of (3.1).

According to Proposition A1 the value process V (t, x) is a submartingale
for any x ∈ R, which admits the canonical decomposition

(t, x) = V (0, x) +A(t, x) +

t
∫

0

ϕ(s, x)dMs +m(t, x), (3.4)

where A(·, x) ∈ A+ and m(·, x) is a local martingale strongly orthogonal to
M for all x ∈ R.

Assume that V ∈ V1,2. This implies that Vx(t, x) is a special semimartin-
gale with the decomposition

Vx(t, x) =

= Vx(0, x) +A(x)(t, x) +

t
∫

0

ϕx(s, x) dMs +m(x)(t, x), (3.5)

where A(x)(·, x) ∈ Aloc, m(x)(·, x) is a local martingale orthogonal to M for
all x ∈ R and ϕx coincides with the partial derivative of ϕ µK-a.e. Besides

A(t, x) =

t
∫

0

a(s, x) dKs,

for a measurable function a(t, x).

Proposition 3.1. Assume that conditions B1), B2) are satisfied and the
value function V (t, x) belongs to the class V1,2. Then the following inequality
holds

a(s, x) ≥
1

2

(ϕx(s, x) + λ(s)Vx(s, x))
2νs

Vxx(s, x)
for all x ∈ R µK − a.e.. (3.6)

Moreover, if the strategy π∗ is optimal then the corresponding wealth process
Xπ∗

is a solution of the following forward SDE

Xπ∗

t = Xπ∗

0 −

t
∫

0

ϕx(s,X
π∗

s ) + λ(s)Vx(s,X
π∗

s )

Vxx(s,Xπ∗

s )
dSs. (3.7)
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Proof. Using Ito-Ventzell’s formula (Proposition 2.2) for the function

V (t, x, ω) ∈ V1,2 and for the process (x+
t
∫

s

πu dSu, s ≤ t ≤ T ) we have

V

(

t, x+

t
∫

s

πu dSu

)

= V (s, x) +

t
∫

s

a

(

u, x+

u
∫

s

πv dSv

)

dKu +

+

t
∫

s

G

(

u, πu, x+

u
∫

s

πv dSv

)

dKu +Nt −Ns, (3.8)

where

G(t, p, x, ω) = Vx(t, x)pνtλ(t) + pνtϕx(t, x) +
1

2
Vxx(t, x)p

2νt (3.9)

and N is a martingale. Since by Proposition A1) the process (V (t, x +
∫ t

s πu dSu), t ∈ [s, T ]) is a submartingale for all s ≥ 0 and π ∈ Π, the
process

t
∫

s

[

a
(

u, x+

u
∫

s

πv dSv

)

+G
(

u, πu, x+

u
∫

s

πv dSv

)

]

dKu,

is increasing for any s ≥ 0. Hence, the process

t
∫

s

[

a
(

u, x+

u
∫

s

πv dSv

)

+G
(

u, πu, x+

u
∫

s

πv dSv

)

]

dKc
u,

is also increasing for any s ≥ 0, where K = Kc+Kd is a decomposition of K
into continuous and purely discontinuous increasing processes. Therefore,
taking τs(ε) = inf{t ≥ s : Kc

t −Kc
s ≥ ε} instead of t we have that for any

ε > 0 and s ≥ 0

1

ε

τs(ε)
∫

s

a

(

u, x+

u
∫

s

πv dSv

)

dKc
u ≥

≥ −
1

ε

τs(ε)
∫

s

G

(

u, πu, x+

u
∫

s

πv dSv

)

dKc
u. (3.10)

Passing to the limit in (3.10) as ε→ 0, from Proposition B of Appendix we
obtain that

a(s, x) ≥ −G(s, πs, x) µK
c

− a.e.

for all π ∈ Π. Thus,

a(t, x) ≥ −ess inf
π∈Π

G(t, πt, x); µK
c

− a.e.. (3.11)
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On the other hand,

ess inf
π∈Π

G(t, πt, x) = −
(Vx(t, x)λ(t) + ϕx(t, x))

2νt
2Vxx(t, x)

+

+ess inf
π∈Π

(

πt +
Vx(t, x)λ(t) + ϕx(t, x)

Vxx(t, x)

)2

νt = −
(Vx(t, x)λ(t) + ϕx(t, x))

2νt
2Vxx(t, x)

.

Since Vxx is strictly positive (by Lemma 2.2), conditions C3), C4), C6)
and the continuity of the filtration imply that there is a sequence of stopping
times τn = (τn(x), n ≥ 1) with τn(x) ↑ T for any x ∈ R such that

∣

∣Vx(t ∧ τn, x)
∣

∣ ≤ n, Vxx
(

t ∧ τn, x
)

≥
1

n
,

t∧τn
∫

0

λ(s)2d〈M〉s ≤ n,

t∧τn
∫

0

ϕx(s, x)
2d〈M〉s ≤ n,

which implies that the strategy πnt = −I[0,τn(x)](t)
Vx(t,x)λ(t)+ϕx(t,x)

Vxx(t,x) ∈ Π

(moreover πn ∈ Π2) for each n ≥ 1 and, hence

ess inf
π∈Π

∣

∣

∣
πt +

Vx(t, x)λ(t) + ϕx(t, x)

Vxx(t, x)

∣

∣

∣

2

≤

≤
|Vx(t, x)λ(t) + ϕx(t, x)|

2

V 2
xx(t, x)

I(τn(x)≤t) → 0; µK
c

a.e.

as n→ ∞.
Thus, for every x ∈ R we have that

a(t, x) ≥
(Vx(t, x)λ(t) + ϕx(t, x))

2νt
2Vxx(t, x)

, µK
c

a.e..

Since µK- a.e. a(t, x) ≥ 0 and µK
d

{ν 6= 0} = 0 we obtain that

a(t, x) ≥
(Vx(t, x)λ(t) + ϕx(t, x))

2νt
2Vxx(t, x)

, µK a.e.. (3.12)

Conditions C2) and C5) imply that inequality (3.12) holds µK-a.e. for
all x ∈ R.

Let us show now that if the strategy π∗ is optimal then the corresponding
wealth process Xπ∗

is a solution of equation (3.7). Let π∗(s, x) be the opti-

mal strategy and denote by X∗
t (s, x) = x+

∫ t

s π
∗
u(s, x)dSu the corresponding

wealth process.
By the optimality principle the process V (t, x+

∫ t

s π
∗
u(s, x)dSu) is a mar-

tingale on the time interval [s, T ] and the Ito-Ventzell formula implies that
µK-a.s.

a
(

t,X∗
t (s, x)

)

+ λtνtπ
∗
t Vx

(

t,X∗
t (s, x)

)

+
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+ϕx
(

t,X∗
t (s, x)

)

νtπ
∗
t (s, x) +

1

2
π∗
t (s, x)

2νtVxx
(

t,X∗
t (s, x)

)

= 0. (3.13)

It follows from (3.12) and (3.13) that µK-a.e.

Vxx(t,X
∗
t (s, x))

(

π∗
t (s, x) +

ϕx(t,X
∗
t (s, x)) + λ(t)Vx(t,X

∗
t (s, x))

Vxx(t,X∗
t (s, x))

)2

νt ≤ 0.

Since Vxx > 0 and νt > 0 µ〈M〉- a.e., we obtain that

π∗
t (s, x) = −

ϕx(t,X
∗
t (s, x)) + λ(t)Vx(t,X

∗
t (s, x))

Vxx(t,X∗
t (s, x))

µ〈M〉 − a.e. (3.14)

and integrating both parts of (3.14) by dSt (the structure condition 1.1
implies that the corresponding stochastic integrals are indistinguishable)
we obtain that the wealth process of π∗ satisfies equation

X∗
t (s, x) = x−

t
∫

s

ϕx(u,X
∗
u(s, x)) + λ(u)Vx(u,X

∗
u(s, x))

Vxx(u,X∗
u(s, x))

dSu (3.15)

which gives equation (3.7) for s = 0.

Under additional condidion
C*) (X∗

t (s, x), t ≥ s) is a continuous function of (s, x) P− a.s., for
each t ∈ [s, T ], we shall show that the value function V satisfies equation
(3.1)-(3.2).

Theorem 3.1. Let V ∈ V1,2 and assume that conditions B1)–B3), C∗)
are satisfied. Then the value function is a solution of BSPDE (3.1)–(3.2),
i.e.,

V (t, x) = V (0, x) +
1

2

t
∫

0

(ϕx(s, x) + λ(s)Vx(s, x))
2

Vxx(s, x)
d〈M〉s +

+

t
∫

0

ϕ(s, x)dMs +m(t, x), V (T, x) = U(x). (3.16)

Moreover, the strategy π∗ is optimal if and only if the corresponding wealth
process Xπ∗

is a solution of the forward SDE (3.7).

Proof. Let π∗(s, x) be the optimal strategy. By optimality principle (V (t,
X∗
t (s, x)), t ≥ s) is a martingale. Therefore, using Ito-Ventzell’s formula we

have

t
∫

s

[

a
(

u,X∗
u(s, x)

)

− g
(

u,X∗
u(s, x)

)

+

+
(

π∗
u(s, x) +

Vx(u,X
∗
u(s, x))λ(u) + ϕx(u,X

∗
u(s, x))

Vxx(u,X∗
u(s, x))

)2

νu

]

dKu = 0,
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for all t ≥ s P − a.s.,

for all t ≥ s P-a.s., where

g(s, x) =
1

2

(ϕx(s, x) + λ(s)Vx(s, x))
2νs

Vxx(s, x)
.

It follows from (3.14) that

(

π∗
u(s, x) +

Vx(u,X
∗
u(s, x))λ(u) + ϕx(u,X

∗
u(s, x))

Vxx(u,X∗
u(s, x))

)2

νu = 0

µK − a.e.

and by (3.6)

a(s, x) ≥ g(s, x) µK − a.e.. (3.17)

Thus,

t
∫

s

[

a
(

u,X∗
u(s, x)

)

− g
(

u,X∗
u(s, x)

)

]

dKu = 0, t ≥ s P a.s.

This implies that (a(s, x) − g(s, x))(Ks − Ks−) = 0 for any s ∈ [0, T ].
Therefore,

a(s, x) = g(s, x) µK
d

− a.e.. (3.18)

On the other hand

T
∫

0

1

ε

τε
s

∫

s

[

a
(

u,X∗
u(s, x)

)

− g
(

u,X∗
u(s, x)

)

]

dKc
u dK

c
s = 0, P − a.s.

and by Proposition B we obtain that

T
∫

0

[

a(s, x) − g(s, x)
]

dKc
s = 0 P − a.s.

Now (3.17), (3.18) and the latter relation result equality a(s, x) = g(s, x)
µK-a.e., hence

A(t, x) =
1

2

t
∫

0

(ϕx(s, x) + λ(s)Vx(s, x))
2

Vxx(s, x)
d〈M〉s

and V (t, x) satisfies (3.1)–(3.2).
If π̂ is a strategy such that the corresponding wealth process X π̂ satisfies

equation (3.7), then π̂ is optimal. Indeed, using the Ito-Ventzell formula and
equation (3.7) we obtain that V (t,X π̂

t ) is a martingale, hence π̂ is optimal
by optimality principle.
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Remark 3.2. Thus, to give a construction of the optimal strategy we
should: 1) first solve the backward equation (3.1),(3.2) (which determines
V and ϕ simultaneously) and substitute corresponding derivatives of V and
ϕ in equation (3.7), then 2) solve the forward equation (3.7) with respect
to Xπ∗

and, finally, 3) reproduce the optimal strategy π∗ from the corre-
sponding wealth process Xπ∗

.

Recall that the process Z belongs to the class D if the family of random
variables ZτI(τ≤T ) for all stopping times τ is uniformly integrable.

Definition 3.1. We say that Y belongs to the class D(Π) if:
i) there is a positive process ct from the class D such that

Y (t, x) ≥ −ct, for all x ∈ R,

ii) for any x ∈ R the process Y (t, x +
∫ t

0 πudSu) is of class D for every

π ∈ Πx, i.e., for any π ∈ Π with EU(x+
∫ T

0
πudSu) <∞.

Remark 3.3. Note that the value function V (t, x) belongs to the class
D(Π), since for any π ∈ Πx

0 ≤ V

(

t, x+

t
∫

0

πu dSu

)

≤ E

(

U
(

x+

T
∫

0

πu dSu

)

/Ft

)

(3.19)

and the right-hand-side of (3.19) is a uniformly integrable martingale.

Theorem 3.2. Let conditions B1)–B3) be satisfied. If the pair (Y,X ) is a
solution of the Forward-Backward Equation

Y (t, x) = U(x) −
1

2

T
∫

t

((ψx(s, x) + λ(s)Yx(s, x))
2

Yxx(s, x)
d〈M〉s −

−

T
∫

t

ψ(s, x)dMs + L(T, x) − L(t, x), (3.20)

Xt = x−

t
∫

0

ψx(s,Xs) + Yx(s,Xs)λ(s)

Yxx(s,Xs)
dSs, (3.21)

and Y belongs to the class V1,2 ∩D(Π), then such solution is unique.

Proof. Using the Ito-Ventzell’s formula for Y (t, x+
∫ t

s πudSu) we have

Y

(

t, x+

t
∫

s

πu dSu

)

= Y (s, x) +

t
∫

s

b

(

u, x+

u
∫

s

πv dSv

)

dKu +
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+

t
∫

s

G

(

u, πu, c+

u
∫

s

πv dSv

)

dKu +Nt −Ns, (3.22)

where

G(t, p, x, ω) = Yx(t, x)pνtλ(t) + pνtψx(t, x) +
1

2
Yxx(t, x)p

2νt.

Since Y solves (3.20), then equality (3.3) is valid, which implies that

Y (t, x+
∫ t

s
πudSu) is a local submartingale for each π ∈ Π.

Since Y is from the class D(Π), then the process Y (t, x+
∫ t

s
πu dSu) is a

submartingale of class D for any π ∈ Πx and using the boundary condition
we have that

Y (s, x) ≤ E

[

U
(

x+

T
∫

s

πu dSu

)

/Fs

]

which implies (taking Lemma 2.1 in mind) that

Y (s, x) ≤ V (s, x). (3.23)

Using now the Ito-Ventzell’s formula for Y (t,Xu) taking into account that
Y satisfies (3.20) and X solves (3.21) we obtain that Y (t,Xu) is a local
martingale and, hence, it is a supermartingale, since Y is bounded from
below by the process of class D. Therefore, since X0 = x, Y (T, x) = U(x)
we have that

Y (t, x) ≥ E
(

Y (T,XT )/Ft
)

=

= E

(

U
(

x+

T
∫

t

Yx(u,Xu)λu + ψx(u,Xu)

Yxx(u,Xu))
dSu

)

/Ft

)

. (3.24)

Applying inequalities (3.23) and (3.24) for s = 0 we obtain

E

(

U
(

x+

T
∫

0

Yx(u,Xu)λu + ψx(u,Xu)

Yxx(u,Xu)
dSu

)

)

≤

≤ Y (0, x) ≤ V (0, x) ≤ EU(x) <∞. (3.25)

Therefore, λ(u)Yx(u,Xu)+ψx(u,Xu)
Yxx(u,Xu)) ∈ Πx and it follows from (3.23) and (3.24)

that

Y (t, x) = V (t, x), (3.26)

hence solution of (3.20) is unique.
The equalities (3.26) and (3.21) imply that X satifies equation (3.7).

Besides, according to Proposition 3.1 the solution of (3.7) is the optimal
wealth process, hence X = Xπ∗ by the uniqueness of the optimal strategy
for the problem (1.3) (see Remark 2.4).
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4. Mean-Variance Hedging

Let us consider now the case U(x) = (x−H)2, which corresponds to the
mean-variance hedging problem (1.6), where H is a FT -measurable random
variable describing the net payoff at time T of a certain financial instrument.

Assume that
A2∗) there exists a martingale measure that satisfies the Reverse Hölder

condition R2(P ).

Theorem 4.1. Let H be a square integrable FT -measurable random vari-
able and let the objective function be of the form U(x) = |H − x|2. Then
the value function of the problem (1.6) admits a representation

V (t, x) = V0(t) − 2V1(t)x+ V2(t)x
2, (4.1)

where the processes V0(t), V1(t) and V2(t) satisfy the following system of
backward equations

V2(t) = V2(0) +

t
∫

0

(ϕ2(s) + λ(s)V2(s))
2

V2(s)
d〈M〉s +

+

t
∫

0

ϕ2(s)dMs + L2(t), V2(T ) = 1, (4.2)

V1(t) = V1(0) +

t
∫

0

(ϕ2(s) + λ(s)V2(s))(ϕ1(s) + λ(s)V1(s))

V2(s)
d〈M〉s +

+

t
∫

0

ϕ1(s)dMs + L1(t), V1(T ) = H, (4.3)

V0(t) = V0(0) +

t
∫

0

(ϕ1(s) + λ(s)V1(s))
2

V2(s)
d〈M〉s +

+

t
∫

0

ϕ0(s)dMs + L0(t), V0(T ) = H2, (4.4)

where L0, L1 and L2 are local martingales orthogonal to M .
If a triple (Y0, Y1, Y2), where Y0 ∈ D,Y 2

1 ∈ D and c ≤ Y2 ≤ C for some
constants 0 < c < C, satisfies the system (4.2)-(4.4), then such solution is
unique and coincides with the triple (V0, V1, V2).

Besides the optimal wealth process Xπ∗

satisfies the linear equation

Xπ∗

t = x+

t
∫

0

ϕ1(s) + λ(s)V1(s)

V2(s)
dSs −
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−

t
∫

0

ϕ2(s) + λ(s)V2(s)

V2(s)
Xπ∗

s dSs. (4.5)

Proof. It is evident that U(x) = |H − x|2 satisfies conditions B1), B2) and
condition B3) follows from Proposition C of Appendix, since the function
U(x) = |H − x|2 satisfies condition B3’) for p = 2 and the space G2

T of
stochastic integrals is closed by Proposition 2.1. Hence there exists opti-

mal strategy π∗(t, x) and V (t, x) = E[|H − x −
∫ T

t π∗
u(t, x)dSu|

2|Ft]. Since
∫ T

t
π∗
u(t, x)dSu coincides with the orthogonal projection of H − x ∈ L2 on

the closed subspace of stochastic integrals, then the optimal strategy is lin-
ear with respect to x, i.e., π∗

u(t, x) = π0
u(t) + xπ1

u(t). This implies that the
value function V (t, x) is of the form (4.1), where

V0(t) = E

[
∣

∣

∣

∣

T
∫

t

π0
u(t) dSu −H

∣

∣

∣

∣

2
∣

∣Ft

]

,

V1(t) = E

[(

1 +

T
∫

t

π1
u(t) dSu

)(

T
∫

t

π0
u(t) dSu −H

)

∣

∣Ft

]

,

V2(t) = E

[
∣

∣

∣

∣

T
∫

t

π1
u(t) dSu + 1

∣

∣

∣

∣

2
∣

∣Ft

]

. (4.6)

It is evident that the function U(x) = |x − H |2 satisfies all conditions of
Proposition A2 and assertion (3) of Proposition 2.1 implies that Π̃ = Π2,
where the class Π̃ is defined in Appendix A. Therefore, accoding to Propo-
sition A2 of Appendix V (t, x) is a RCLL submartingale for each x ∈ R.
Thus V0(t) = V (t, 0) is a RCLL submaringale. On the other hand for any
s ≥ t

E
[

V2(t)|Fs
]

= lim
x→∞

1

x2
E

[

V (t, x)|Fs
]

≥ lim
x→∞

1

x2
V (s, x) = V2(s) P − a.s.

and V2(t) is also a submartingale with RCLL trajectories (as a uniform limit
of RCLL processes). Hence V1(t) = 1

2 (V0(t) + V2(t) − V (t, 1)) is a special
semimartingale.

Because V0 and V2 are submartingales

V2(t) ≤ E
(

V2(T )/Ft
)

≤ 1,

V0(t) ≤ E
(

H2/Ft
)

and since V (t, x) = V0(t) − 2V1(t)x + V2(t)x
2 ≥ 0 for all x ∈ R, we have

that V 2
1 (t) ≤ V0(t)V2(t), hence

V 2
1 (t) ≤ E

(

H2/Ft
)

.
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Since V (t, x) is strictly convex and Vxx(t, x) = 2V2(t), the process V2 is
strictly positive. Moreover, it follows from Proposition 2.1 (see Remark
2.3) that there is a constant c > 0 such that V2(t) ≥ c.

Thus, V0, V
2
1 belong to the class D and the process V2 satisfies the two-

sided inequality

c ≤ V2(t) ≤ 1.

Let

Vi(t) = V0(0) +Ai(t) +

t
∫

0

ϕi(u)dMu +mi(t)

be the canonical decomposition of Vi for i = 0, 1, 2, where mi is a local
martingale strongly orthogonal to M and Ai ∈ Aloc (moreover A0 and A2

are increasing processes). Taking

K(t) = A0(t) +A2(t) + V ar(A1)(t) + 〈M〉t + t

it is evident that condition C1) is satisfied. It is easy to see that conditions
C2)-C6) are also fulfilled. By Proposition 3.1 X∗

t (s, x) is a solution of the
forward equation (3.15), which coincides in this case with linear equation
(4.5) and can be solved explicitly in terms of Vi, i = 1, 2. Therefore con-
dition C∗) is also satisfied and we may apply Theorem 3.1. Equalizing the
coefficients of the quadratic trinomial (4.1) in equation (3.16) we obtain
that V2, V1 and V0 satisfy equations (4.2), (4.3) and (4.4) respectively. The
boundary conditions for these equations follow from equality (4.6).

The proof of uniqueness.
If a triple (Y0, Y1, Y2) is a solution of system (4.2)-(4.4), then the function

Y (t, x) = Y0(t) − 2Y1(t)x + Y2(t)x
2 will be a solution of (3.1)-(3.2). By

assertion (3) of Proposition 2.1 the process (
∫ t

0 πu dSu)
2 is of class D. Since

Y 2
1 (t) ∈ D the Hölder inequality implies that the process Y1(t)(

∫ t

0 πudSu)

is of class D. Therefore, Y (t, x+
t
∫

0

πudSu) belongs to the class D for every

π ∈ Πx.
It is easy to see that Y2(t) > c implies

Y (t, x) = Y0(t) − 2Y1(t)x+ Y2(t)x
2 ≥ −

1

c
Y 2

1

for all x ∈ R. Thus Y belongs to the class D(Π) and Y (t, x) = V (t, x) by
Theorem 3.2, which implies that Yi = Vi for i = 0, 1, 2.

Remark 4.1. In a similar way one can show that for U(x) = |H − x|p the
optimal strategy is also linear w.r.t. x. Moreover if p is even, i.e., p = 2n,
then the value function is polynomial of x, i.e., V (t, x) =

∑p
j=0 Vj(t)x

j and
(3.1),(3.2) are transformed into a system of Backward SDE’s of order 2n+1
for the processes Vj(t).
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Remark 4.2. Equation (4.3) is linear with respect to (V1, ϕ1) and V1 is
expressed explicitly in terms of (V2, ϕ2) as

V1(t) = E
(

HEtT
(

−
(ϕ2

V2
+ λ

)

· S
)

/Ft
)

. (4.7)

Now we give relations of equation (4.5) with the known feedback form
solution of problem (1.6), expressed in terms of the variance-optimal mar-
tingale measure (see, e.g., [11]). To this end we recall the notion of the
variance-optimal martingale measure.

The variance-optimal martingale measure is a signed measure such that
its density with respect to the reference measure P is of minimal L2 norm
(see [2], [24] for exact definition and related results). According to [2], [24]
the variance-optimal martingale measure Q∗ always exists and is a prob-
ability measure equivalent to P , if S iscontinuous and if the subset Me

2

of equivalent martingale measures with square integrable densities is not
empty. Moreover, as it was shown in [2], if Q∗ is the variance-optimal mar-
tingale measure then the density Z∗

T of Q∗ with respect to the basic measure
P can be written as a constant plus a stochastic integral of S and the density
process Z∗

t defined by E∗(ZT /Ft) admits the same representation

Z∗
t = E∗ZT +

t
∫

0

h∗(u) dSu

for a predictable S-integrable process h∗.

Let V Ht = E∗(H/Ft) and let

V Ht = E∗H +

t
∫

0

ξH(u) dSu + LHt , 〈LH , X〉 = 0, (4.8)

be the Galtchouk–Kunita–Watanabe decomposition of V Ht with respect to
the variance-optimal martingale measure Q∗.

It was shown in [11] (see also [12], [19], [20], [24]) that the optimal mean-
variance hedging strategy is expressed in the feedback form

π∗
t = ξHt −

h∗t
Z∗
t

(

V Ht − c−

t
∫

0

π∗
u dSu

)

.

Integrating both part with respect to dSu we obtain the linear equation for
the optimal wealth process

Xπ∗

t = x+

t
∫

0

[

ξHs −
h∗s
Z∗
s

V Hs

]

dSs +

t
∫

0

h∗s
Z∗
s

Xπ∗

s dSs. (4.9)
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To show that equations (4.9) and (4.5) are equivalent we need the follow-
ing assertion proved in [17–18]. Under the present assumptions the variance-
optimal martingale measure is the solution of the optimization problem

inf
Q∈Me

2

EZ2
T (Q)

and let

Vt = ess inf
Q∈Me

2

E
(Z2

T (Q)

Z2
t (Q)

/Ft
)

be the value process of the problem.

Proposition 4.1. Let conditions A1) and A2∗) be satisfied. Then, the
value process V is a unique solution of the semimartingale backward equa-
tion

Vt = V0 −

t
∫

0

Vsλ
2
sd〈M〉s + 2

t
∫

0

λsϕsd〈M〉s +

+
1

Vs
d〈m〉s +

t
∫

0

ϕsdMs +mt, VT = 1, (4.10)

in the class of semimartingales Y satisfying the two-sided inequality

c ≤ Yt ≤ C. (4.11)

Moreover, the martingale measure Q∗ is variance-optimal if and only if
the corrersponding density is represented as

Z∗
T = ET

(

−

·
∫

0

λsdMs −

·
∫

0

1

Vs
dms

)

. (4.12)

or, equivalently, iff

Z∗
T = cET

(( ϕ

V
− λ

)

· S
)

. (4.13)

The following Proposition shows that equations (4.9) and (4.5) are equiv-
alent.

Proposition 4.2. Let conditions A1) and A2∗) be satisfied. Then

V (t) =
1

V2(t)
,
h∗t
Z∗
t

=
ϕ2(t)

V2(t)
− λt, V H(t) =

V1(t)

V2(t)

and the optimal wealth process X∗ satisfies equation (4.9).
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Proof. If we write the Itô formula for 1
V2(t) , taking in mind that V2(t) satisfies

equation (4.2), we obtain that the semimartingale 1
V2(t) satisfies equation

(4.10) with ϕ = − ϕ2

V 2

2

, m = − 1
V 2

2

· L and by uniqueness of a solution (since

c ≤ V2(t) ≤ 1) we have that

V (t) =
1

V2(t)
,

ϕ(t)

V (t)
= −

ϕ2(t)

V2(t)
. (4.14)

It follows from (4.13) that

Z∗
t = E∗(Z∗

T /Ft) = V0Et
((ϕ

V
− λ

)

· S
)

and

h∗t = V0

(ϕt
Vt

− λt

)

Et
(( ϕ

V
− λ

)

· S
)

.

Therefore (4.13) and (4.14) imply that

h∗t
Z∗
t

=
ϕt
Vt

− λt =
ϕ2(t) + λ(t)V2(t)

V2(t)
. (4.15)

Let us show now that

ϕ1(t) + λ(t)V1(t)

V2(t)
= ξH(t) −

h∗t
Z∗
t

V Ht .

From (4.12) we have that

V H(t) = E
(

HEtT
(

− λ ·M −
ϕ

V
·m

)

/Ft
)

.

Therefore (4.7),(4.13) and the equality

ET
(

− λ ·M −
ϕ

V
·m

)

= cET
(( ϕ

V
− λ

)

· S
)

imply that

V H(t) = cV1(t)
Et((

ϕ
V − λ) · S)

Et(−λ ·M − ϕ
V ·m)

=

cV1(t)
E∗(ET (( ϕV − λ) · S)/Ft)

Et(−λ ·M − ϕ
V ·m)

= V1(t)V (t) =
V1(t)

V2(t)
,

hence V1(t) = V H(t)V2(t).
Using the formula of integration by parts and equalizing the martingale

parts of V1(t) and V H(t)V2(t) we obtain that µK- a.e.

ϕ1(t) = ϕ2(t)V
H(t) + ξH(t)V2(t).

Therefore, (4.14), (4.15) and the latter equality imply that

ϕ1(t) + λ(t)V1(t)

V2(t)
=
ϕ2(t)V

H(t) + ξH(t)V2(t) + λ(t)V1(t)

V2(t)
=
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= ξH(t) − V H(t)
ϕ(t)

V (t)
+ λ(t)V H(t) = ξH(t) − V Ht

h∗t
Z∗
t

,

hence (4.9) and (4.5) are equivalent.

Remark 4.3. Note that in [11] equation (4.9) was derived assuming only
that S is continuous and Me

2 6= ∅, i.e., without assumptions A1) and A2∗).
It should be mentioned that the form of equations (3.15)-(3.16), (4.2)-(4.5)
remain the same if A1) is not required.

Remark 4.4. The condition V ∈ V1,2 is also satisfied in several other
particular cases (e.g., in the case of exponential hedging, where U(x) =
exp(H − x)), but it is important to derive the required properties of the
value function from the assumptions on the basic objects U and X , which
we plan to do in future.

Let us consider now the optimiztion problem

minimize E

(

c+

T
∫

0

πs dSs −H

)2

(4.16)

over all c ∈ R and π ∈ Π. Then for any c ∈ R

E

(

c+

T
∫

0

πs dSs −H

)2

≥ E

(

c+

T
∫

0

π∗
s (c) dSs −H

)2

=

= V (0, c) = V0(0) − 2V1(0) + c2V2(0). (4.17)

The infimum on the rigth-hand side of (4.17) is attained for c = V1(0)
V2(0)

. It

follows from Propositoin 4.2 that

V1(0)

V2(0)
= V H0 = E∗H,

where E∗ is an expectation with respect to the variance-optimal martingale
measure.

Therefore,

E

(

c+

T
∫

0

πs dSs −H

)2

≥ E

(

E∗H +

T
∫

0

πs dSs −H

)2

for all c and π. Thus, if (c∗, π∗) is a solution of (4.16) then c∗ = E∗H, as
proved by Schweizer in [24].
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A. Appendix

Let us show that the family

Λπt = E

(

U

(

x+

T
∫

0

πu dSu

)

∣

∣Ft

)

, π ∈ Π(π̃, t, T ), (A.1)

satisfies the ε-lattice property (with ε = 0) for any t ∈ [0, T ] and π̃.
Π(π̃, t, T ) is a set of predictable S-integrable processes π such that

πs = π̃sI(0≤s<t).

We shall write Π(t, T ) instead of Π(0, t, T ) for the class of strategies corre-
sponding to π̃ = 0 up to time t.

We must show that for any π1, π2 ∈ Π(π̃, t, T ) there exists a strategy
π ∈ Π(π̃, t, T ) such that

Λπt = min(Λπ
1

t ,Λ
π2

t ). (A.2)

For any π1 and π2 let us define the set

B =
{

ω : Λπ
1

t ≤ Λπ
2

t

}

and let

πs = π̃sI(0≤s<t) + π1
sIBI(s≥t) + π2

sIBcI(s≥t).

Since B is Ft−measurable we have

Λπt = E

(

U

(

x+

T
∫

0

πu dSu

)

∣

∣Ft

)

=

= E

(

U

(

x+

t
∫

0

π̃u dSu + IB

T
∫

t

π1
u dSu + IBc

T
∫

t

π2
u dSu

)

∣

∣Ft

)

=

IBE

(

U

(

x+

t
∫

0

π̃u dSu +

T
∫

t

π1
u dSu

)

∣

∣Ft

)

+

+IBcE

(

U

(

x+

t
∫

τ

π̃u dSu +

T
∫

t

π2
u dSu

)

∣

∣Ft

)

=

= IBE

(

U

(

x+

T
∫

0

π1
u dSu

)

∣

∣Ft) + IBcE

(

U

(

x+

T
∫

0

π2
u dSu

)

∣

∣Ft

)

=

= E

(

U

(

x+

T
∫

0

π1
u dSu

)

∣

∣Ft

)

∧ E

(

U

(

x+

T
∫

0

π2
u dSu

)

∣

∣Ft

)

,
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hence (A.2) is satisfied.
Proposition A1) (Optimality principle). Let condition B1) be satisfied.
a) For all x ∈ R, π ∈ Π and s ∈ [0, T ] the process (V (t, x +

∫ t

s
πu dSu), t ≥ s) is a submartingale,

b) π∗(s, x) is optimal iff (V (t, x+
∫ t

s π
∗
udSu), t ≥ s) is a martingale.

c) for all s < t

V (s, x) = ess inf
π∈Π(s,T )

E

(

V

(

t, x+

t
∫

s

πu dSu

)

∣

∣Fs

)

. (A.3)

Proof. a) For simplicity we shall take s equal to zero. V (t, x) is integrable,
since by condition B1)

V (t, x) ≤ E
(

U(x)/Ft
)

.

Let us show that Yt = V (t, x+
∫ t

0 π̃u dSu) is submartingale for all x and π̃.
Since

Yt = ess inf
π∈Π(t,T )

E

(

U

(

x+

t
∫

0

π̃u dSu +

T
∫

t

πu dSu

)

∣

∣Ft

)

using the lattice property of the family (A.1) from Lemma 16.A.5 of [7],
taking Lemma 2.1 in mind, we have

E
(

Yt|Fs
)

= E
(

ess inf
π∈Π(t,T )

E

(

U

(

x+

t
∫

0

π̃u dSu +

T
∫

t

πu dSu

)

∣

∣Ft

)

∣

∣Fs

)

=

E

(

ess inf
π∈Π(π̃,t,T )

E

(

U

(

x+

T
∫

0

πu dSu

)

∣

∣Ft

)

∣

∣Fs

)

=

ess inf
π∈Π(π̃,t,T )

E

(

U

(

x+

T
∫

0

πu dSu

)

∣

∣Fs

)

. (A.4)

It is evident that Π(π̃, t, T ) ⊆ Π(π̃, s, T ) for s ≤ t, which implies the in-
equality

ess inf
π∈Π(π̃,t,T )

E

(

U

(

x+

T
∫

0

πu dSu

)

∣

∣Fs

)

≥

ess inf
π∈Π(π̃,s,T )

E

(

U

(

x+

T
∫

0

πu dSu

)

∣

∣Ft

)

= V

(

s, x+

s
∫

0

π̃u dSu

)

. (A.5)

Thus (A.4) and (A.5) imply that E(Yt/Fs) ≥ Ys.
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b) If V (t, x+
∫ t

0 π
∗
udSu)) is a martingale, then

inf
π∈Π

EU

(

x+

T
∫

0

πu dSu

)

= V (0, x) = EV (0, x) =

= EV

(

T, x+

T
∫

0

π∗
u dSu

)

= EU

(

x+

T
∫

0

π∗
u dSu

)

,

hence, π∗ is optimal.

Conversely, if π∗ is optimal, then

EV (0, x) = inf
π∈Π

EU

(

x+

T
∫

0

πu dSu

)

=

= EU

(

x+

T
∫

0

π∗
u dSu

)

= EV

(

T, x+

T
∫

0

π∗
u dSu

)

.

Since V (t, x+
∫ t

0 π
∗
udSu) is a submartingale, the latter equality implies that

this process is also a martingale (it follows from Lemma 6.6 of [16]).

c) Since Yt = V (t, x+
∫ t

s π̃u dSu) is a submartingale for any π̃ ∈ Π(s, T ),
x ∈ R and t ≥ s we have

V (s, x) ≤ E

(

V

(

t, x+

t
∫

s

π̃u dSu

)

∣

∣Fs

)

,

hence

V (s, x) ≤ ess inf
π̃∈Π(s,T )

E

(

V

(

t, x+

t
∫

s

π̃u dSu

)

∣

∣Fs

)

. (A.6)

On the other hand for any π̃

E

(

V

(

t, x+

t
∫

s

π̃u dSu

)

∣

∣Fs

)

=

= E

(

ess inf
π∈Π(t,T )

E

(

U

(

x+

t
∫

s

π̃u dSu +

T
∫

t

πu dSu

)

∣

∣Ft)Fs

)

≤

E

(

U

(

x+

T
∫

s

π̃u dSu

)

∣

∣Ft

)

Fs

)

= E

(

U

(

x+

T
∫

s

π̃u dSu

)

∣

∣Fs

)

.
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Taking essinf of the both parts we obtain

ess inf
π̃∈Π(s,T )

E

(

V

(

t, x+

t
∫

s

π̃u dSu

)

∣

∣Fs

)

≤

≤ ess inf
π̃∈Π(s,T )

E

(

U

(

x+

T
∫

s

π̃u dSu

)

∣

∣Fs

)

= V (s, x). (A.7)

Thus the equality (A.3) follows from (A.6) and (A.7).

An existence of an RCLL modification for the value process will be proved
for a more restricted class of strategies and under additional assumptions on
the function U , which is sufficient for the case U(x) = (H − x)2 considered
in Section 4.

Let Π̃ be a class of strategies π ∈ Π such that

E sup
t≤T

U

(

t
∫

0

πu dSu

)

<∞

and let

Ṽ (t, x) = ess inf
π∈Π̃(t,T )

E

(

U

(

x+

T
∫

t

πu dSu

)

∣

∣Ft

)

.

Proposition A2. Let conditions B1), B2) be satisfied and let for any real
number α there exist constants Cα, Bα and an integrable random variable
η such that

U(αx) ≤ CαU(x) +Bαη for all x ∈ R. (A.8)

Then for every x ∈ R and every π ∈ Π̃ the process Ṽ (t, x+
∫ t

0
πu dSu) is a

submartingale admiting an RCLL modification. In particular, for any x ∈ R
there exists an RCLL submartingale (still denoted by Ṽ (t, x)) such that for
all t ∈ [0, T ]

Ṽ (t, x) = ess inf
π∈Π̃(t,T )

E

(

U

(

x+

T
∫

t

πu dSu

)

/Ft

)

.

Proof. Let us show that the process Ṽ (t, x +
∫ t

0 π̃udSu) admits an RCLL

modification for each x ∈ R and π ∈ Π̃. According to Theorem 3.1 of [16]

it is sufficient to prove that the function EṼ (t, x+
∫ t

0
π̃u dSu)), t ∈ [0, T ]) is

right-continuous for every x ∈ R.
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Let (tn, n ≥ 1) be a sequence of positive numbers such that tn ↓ t, as

n→ ∞. Since Ṽ (t, x+
∫ t

0 π̃udSu) is a submartingale, we have

EṼ

(

t, x+

t
∫

0

π̃u dSu

)

≤ lim
n→∞

EṼ

(

tn, x+

tn
∫

0

π̃u dSu

)

. (A.9)

Let us show the inverse inequality. For s = 0 equality (A.4) takes the form

EṼ

(

t, x+

t
∫

0

π̃u dSu

)

= inf
π∈Π̃(π̃,t,T )

E

(

U

(

x+

T
∫

0

πu dSu

))

. (A.10)

Therefore, for any ε > 0 there exists a strategy πε such that

EṼ

(

t, x+

t
∫

0

π̃u dSu

)

≥

≥ E

(

U

(

x+

t
∫

0

π̃u dSu +

T
∫

t

πεu dSu

))

− ε. (A.11)

Let us define a sequence (πn, n ≥ 1) of strategies

πns = π̃sI(s<tn) + πεsI(s≥tn).

Using inequality (A.11), the continuity of U (it follows from B1) and B2)),
the convergence of the stochastic integrals and Fatou’s lemma, we have

EṼ

(

t, x+

t
∫

0

π̃u dSu

)

≥ E

(

U

(

x+

t
∫

0

π̃u dSu +

T
∫

t

πεu dSu

))

− ε =

= E

(

lim
n
U

(

x+

tn
∫

0

π̃u dSu +

T
∫

tn

πεu dSu

))

− ε ≥

≥ lim
n
E

(

E

(

U

(

x+

tn
∫

0

π̃u dSu +

T
∫

tn

πεu dSu

)

/Ftn)) − ε ≥

≥ lim
n
E

(

ess inf
π∈Π̃(π̃,tn,T )

E

(

U

(

x+

tn
∫

0

π̃u dSu +

T
∫

tn

πu dSu

)

/Ftn

))

− ε =

= lim
n→∞

2E

(

Ṽ

(

tn, x+

tn
∫

0

π̃u dSu

))

− ε. (A.12)
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Here we may use the Fatou lemma, since by convexity of U and condition
(A.8) we have that

U

(

x+

tn
∫

0

π̃u dSu +

T
∫

tn

πεu dSu

)

≤

≤ Const

(

U(x) + sup
s≤T

U

(

s
∫

0

π̃u dSu

)

+ sup
t≤s≤T

U

(

t
∫

0

π̃udSu+

s
∫

t

πεu dSu

)

+η

)

and the right-hand-side of the latter inequality is integrable, since η is inte-
grable and the strategies π̃ and π= π̃sI(s<t)+π

ε
sI(s≥t) belong to the class Π̃.

Since ε is an arbitrary positive number, from (A.12) we obtain that

EṼ

(

t, x+

t
∫

0

π̃u dSu

)

≥ lim
n→∞

EṼ

(

tn, x+

tn
∫

0

π̃u dSu

)

, (A.13)

which together with (A.9) implies that the function (EṼ (t, x+
∫ t

0
π̃udSu)),

t ∈ [0, T ]) is right-continuous.

Appendix B.

Let (K(t), t ∈ R) be an increasing continuous function with continuous
inverse K−1(t) and K(±∞) = ±∞. Denote τεt = K−1(Kt + ε), σεt =
K−1(Kt − ε).

Lemma B. For any K-integrable function F

∫

R

1

ε

τε
s

∫

s

∣

∣F (t) − F (s)
∣

∣ dKt dKs → 0, as ε→ 0.

Proof. Let first assume that F is a continuous and F (t) = 0 if |t| > T for
some T > 0. Then

∫

R

1

ε

τε
s

∫

s

∣

∣F (s) − F (t)
∣

∣ dKt dKs ≤

∫

R

max
t≤s≤τε

t

∣

∣F (s) − F (t)
∣

∣ dKt ≤

≤ max
0≤s−t≤τε

t
−t

∣

∣F (s) − F (t)
∣

∣ as ε ≤ 0

since F is uniformly continuous on [−T, T ] and τεt − t→ 0 as ε→ 0.
On the other hand

∫

R

1

ε

τε
s

∫

s

∣

∣F (s) − F (t)
∣

∣ dKt dKs ≤
∣

∣F
∣

∣

L1(R,dK)
+

∫

R

1

ε

τε
s

∫

s

∣

∣F (t)
∣

∣ dKt dKs ≤
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∣

∣F
∣

∣

L1(R,dK)
+

∫

R

1

ε

t
∫

σε
t

∣

∣F (t)
∣

∣ dKs dKt ≤ 2
∣

∣F
∣

∣

L1(R,dK)
, (B.1)

since by Fubini’s theorem

∫

R

τε
s

∫

s

∣

∣F (t)
∣

∣ dKt dKs =

∫

R

∫

R

1(s≤t≤τε
s )

∣

∣F (t)
∣

∣ dKs dKt =

=

∫

R

t
∫

σε
t

∣

∣F (t)
∣

∣ dKs dKt ≤

∫

R

∣

∣F (t)
∣

∣(Kt −Kσε
t
)dKt ≤ ε

∣

∣F
∣

∣

L1(R,dK)
.

Using the inequality (B.1) we can approximate each function F ∈ L1(R, dK)
by means of continuous functions with compact support. This completes
the proof.

Corollary. For F ∈ L1(R, dK)

∫

R

∣

∣

∣

∣

1

ε

τε
s

∫

s

F (t) dKt − F (s)

∣

∣

∣

∣

dKs → 0, as ε→ 0

and if
τε

t
∫

t

F (s)dKs = 0, dK-a.s., then Ft = 0 dK-a.s.

Proposition B. Let (f(t, x), (t, x) ∈ R2) and (X(t, s), t ≥ s) be measurable
functions such that the family x → f(·, x) is continuous in L1(R, dK) and
X(s, t) is a continuous function on {(t, s); t ≥ s} with X(s, s) = x for all
s ∈ R and some x ∈ R.

Then

∫

R

∣

∣

∣

∣

1

ε

τε
s

∫

s

f
(

t,X(t, s)
)

dKt − f(s, x)

∣

∣

∣

∣

dKs → 0, as ε→ 0.

Proof. Denote by bεt expression maxσε
t
≤s≤t |X(t, s) − x|. Then

∫

R

1

ε

τε
s

∫

s

∣

∣f(t,X(t, s)) − f(s, x)
∣

∣ dKt dKs ≤

∫

R

1

ε

t
∫

σε
t

∣

∣f(t,X(t, s)) − f(t, x)
∣

∣ dKs dKt +

∫

R

1

ε

τε
s

∫

s

∣

∣f(t, x)−f(s, x)
∣

∣ dKt dKs
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The first term in the latter expression can be estimated by

∫

R

max
|x−y|≤bε

t

∣

∣f(t, x) − f(t, y)
∣

∣ dKt.

Since X(·, ·) is continuous then bεt → 0 uniformly on each [−T, T ] as ε → 0
and by continuity of the family f(·, x) ∈ L1 we get that the first summand
tends to zero. The second summand tends to zero by Lemma B.

Remark. If the functions f and K are defined on the subsets [0, T ] × R
and [0, T ] respectively we can consider the functions

f̃(t, x)=

{

f(t, x), (t, x) ∈ [0, T ×R,

0, (t, x) ∈ [0, T ]×R
, K̃(t)=











K(t), t ∈ [0, T ]

t+K(0), t < 0

K(T ) + t− T, t > T

and furter we can use the Proposition B.

Appendix C.

Assume that B3’) there exist γ > 0, a positive integrable random variable
ξ and p > 1 such that U(x) ≥ γ|x|p − ξ.

Note that function U(x) = |H − x|p for H ∈ Lp satisfies B3’) as well as
conditions B1)-B2) of Section 2.

Proposition C. Suppose that one of the assertions of Proposition 2.1 and
conditions B1), B2) and B3′) are satisfied. Then for any t and x the prob-
lem

ess inf
π∈Π

E

(

U

(

x+

T
∫

t

πs dSs

)

/Ft

)

admits a unique solution with p-integrable wealth process.

Proof. By the lattice property (see Appendix A) we can choose a sequence

π̃n ∈ Π such that E(U(x +
T
∫

t

π̃ns dSs)/Ft) ↓ V (t, x) P -a.s. By condition

B1) one can choose the sequence π̃n so that E(U(x +
∫ T

t π̃ns dSs)/Ft) ≤

E(U(x)/Ft) for all n ≥ 1. Thus E(U(x+
T
∫

t

π̃ns dSs) → EV (t, x) as n→ ∞.

By condition B3’) there exists R > 0

γE

∣

∣

∣

∣

x+

T
∫

t

π̃ns dSs

∣

∣

∣

∣

p

≤ EU

(

x+

T
∫

t

π̃ns dSs

)

+ Eξ ≤ R.
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Hence x+
∫ T

t π̃ns dSs is bounded sequence in the space Lp and we can assume
that it converges weakly. By Masur’s lemma (see, e.g., [6]) there exists a
sequence of strategies

πn =

q(n)
∑

k=n

αknπ̃
kn, where q(n) > n,

q(n)
∑

k=n

αkn = 1, αkn ≥ 0

such that
T
∫

t

πns dSs →
T
∫

t

π∗
s dSs in Lp for some π∗ ∈ Π. We can assume also

that
T
∫

t

πns dSs →
T
∫

t

π∗
s dSs P - a.s..

By convexity of U we have

E

[

U

(

x+

T
∫

t

πns dSs

)

/Ft

]

≤ E

[

U

(

x+

T
∫

t

π̃ns dSs

)

/Ft

]

.

Therefore

lim
n→∞

E

[

U

(

x+

T
∫

t

πns dSs

)

∣

∣Ft

]

≤ lim
n→∞

E

[

U

(

x+

T
∫

t

π̃ns dSs

)

∣

∣Ft

]

=V (t, x).

On the other hand the Fatou’s lemma implies that

E

[

U

(

x+

T
∫

t

π∗
s dSs

)

∣

∣Ft

]

≤ lim
n→∞

E

[

U

(

x+

T
∫

t

πns dSs

)

∣

∣Ft

]

P-a.s..

Therefore, π∗ is optimal and π∗ is unique by Remark 2.4.
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