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Abstract
We prove an existence of a unique solution of an exponential martingale equation in the class
of BMO martingales. The solution is used to characterize optimal martingale measures.

1 Introduction

Let (Ω,F , P ) be a probability space with filtration F = (Ft, t ∈ [0, T ]). We assume that all
local martingales with respect to F are continuous. Here T is a fixed time horizon and F = FT .
Let M be a stable subspace of the space of square integrable martingales H2. Then its
ordinary orthogonal M⊥ is a stable subspace and any element of M is strongly orthogonal to
any element of M⊥ (see, e.g. [3], [8]).
We consider the following exponential equation

ET (m)Eα
T (m⊥) = c exp{η}, (1)

where η is a given FT -measurable random variable and α is a given real number. A solution of
equation (1) is a triple (c,m,m⊥), where c is strictly positive constant, m ∈M and m⊥ ∈M⊥.
Here E(X) is the Doleans-Dade exponential of X.
It is evident that if α = 1 then equation (1) admits an ”explicit” solution. E.g., if α = 1 and η
is bounded, then using the unique decomposition of the martingale E(exp{η}/Ft)

E(exp{η}/Ft) = E exp{η}+mt(η) +m⊥
t (η), m(η) ∈M, m⊥(η) ∈M⊥, (2)
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it is easy to verify that the triple c = 1
E exp{η} ,

mt =
∫ t

0

1
E(exp{η}/Fs)

dms(η), m⊥
t =

∫ t

0

1
E(exp{η}/Fs)

dm⊥
s (η)

satisfies equation (1). Note also that if α = 0 then a solution of (1) does not exist in general.
In particular, in this case equation (1) admits a solution only if η satisfies (2) with m⊥(η) = 0.
Other cases are much more involved and (1) is equivalent to solve a certain martingale backward
equation with square generator.
Equations of such type are arising in mathematical finance and they are used to characterize
optimal martingale measures (see, Biagini, Guasoni and Pratelli (2000), Mania and Tevzadze
(2000), (2003),(2005)). Note that equation (1) can be applied also to the financial market
models with infinitely many assets (see M. De Donno, P. Guasoni, M. Pratelli (2003)). In
Biagini at al (2000) an exponential equation of the form

ET (
∫ .

0
hsdWs)

ET (
∫ .

0
ksdMs)

= c exp{
∫ T

0

λ2
sds} (3)

was considered (which corresponds to the case α = −1). Assuming that any element of H2 is
representable as a sum of stochastic integrals H ·W+K ·M , where W is a Brownian motion and
M is a martingale (not necessarily continuous) orthogonal to W , they identified the variance-
optimal martingale measure as the solution of equation (3). In so-called extreme cases (already
studied in Pham et al. (1998), Laurent and Pham (1999) using different methods), when the
market price of risk λ is measurable with respect to the σ-algebras generated by W and M
respectively, they gave explicit solutions of (3)) providing an explicit form for the density of
the variance-optimal martingale measure. These extreme cases correspond in our setting to
the following conditions on the random variable η:

exp{η} = c(η) +mT (η), for a constant c(η) and mT (η) ∈M, (4)

exp{ 1
α
η} = c(η)⊥ +mT (η)⊥, for a constant c(η)⊥ and m(η)⊥ ∈M⊥ (5)

respectively. It is easy to see that if (4) is satisfied then the triple c = 1
c(η) , m = (c(η) +

m(η))−1 ·m(η), m⊥ = 0 solves equation (1) and under condition (5) equation (1) is satisfied
if m = 0, m⊥ = (c(η)⊥ +m(η)⊥)−1 ·m(η)⊥ and c = E−α exp{ 1

αη}.
Our aim is to prove the existence of a unique solution of equation (1) for arbitrary α 6= 0 and
η of a general structure, assuming that it satisfies the following boundedness condition:
B) η is an FT -measurable random variable of the form

η = η̄ + γAT , (6)

where η̄ ∈ L∞, γ is a constant and A = (At, t ∈ [0, T ]) is a continuous F -adapted increasing
process such that

E(AT −Aτ/Fτ ) ≤ C

for all stopping times τ for a constant C > 0.
The main statement of the paper is the following
Theorem 1. Let condition B) be satisfied. Then there is a constant γ0 > 0 such that for
any |γ| ≤ γ0 there exists a unique triple (c,m,m⊥), where c ∈ R+,m ∈ BMO ∩M,m⊥ ∈
BMO ∩M⊥, that satisfies equation (1).
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In case α = −1 and γ = 0 this theorem was proved in [14].
In P. Grandits and T. Rheinländer (2002), T. Rheinländer (2005) and D. Hobson (2004) mini-
mal entropy and q-optimal martingale measures are studied using a fundamental representation
equation of type

q

2
KT = MT −

q − 1
2

〈M〉T + LT +
1
2

+ c′,

where KT =
∫ T

0
λ2

tdt, Mt =
∫ t

0
ϕu(dBu + qλudu),Lt =

∫ t

0
ξudZu, B and Z are independent

Brownian motions and λ is fixed process. This equation is equivalent to (1) for suitable α, η
and for the probability measure dP̃ = ET (−q

∫ ·
0
λsdMs)dP , since B̃t = Bt + q

∫ t

0
λsds and Zt

are independent Brownian motions w.r.t. P̃ . Assumption B) guarantees the solvability of the
equation either if ess supτ Ẽ

(∫ T

τ
q2λ2

udu|Fτ

)
is small enough or if KT is bounded.

One can show that equation (1) is equivalent to the following semimartingale backward equa-
tion with the square generator

Yt = Y0 −
γ

2
At − 〈L〉t −

1
α
〈L⊥〉t + Lt + L⊥t , YT =

1
2
η̄. (7)

We show that there exists a unique triple (Y, L, L⊥), where Y is a bounded continuous semi-
martingale, L ∈ BMO ∩M, L⊥ ∈ BMO ∩M⊥, that satisfies equation (7). If the filtration F
is generated by a multidimensional Brownian motion and if AT is bounded, the existence of
a solution of equation (7) follows from the results of M. Kobylanski (2000) and J.P. Lepeltier
and J. San Martin (1998), where the BSDEs (Backward Stochasic Differential Equations) with
generators satisfying the square growth conditions were considered. We prove existence and
uniqueness of (7) (or (1)) by different methods.
In section 2, using the BMO norm for martingales (L and L⊥) and the L∞([0, T ]× Ω) norm
for semimartingales Y , we apply the fixed-point theorem to show an existence of a solution
first in case when L∞ norm of η̄ and constant γ are sufficiently small. Then we construct the
solution for an arbitrary bounded η̄.
In section 3 we construct a solution of equation (1) using the value process of a certain op-
timization problem, for some values of the parameter α. We give also a necessary condition
for equation (1) to admit a solution in the class BMO (or a bounded solution Y for equation
(7)). This condition shows that we can’t expect an existence of a bounded solution of (7) for
arbitrary γ.

2 Proof of the main Theorem

We recall the definition of BMO-martingales and of a similar notion for the processes of finite
variation.
The square integrable continuous martingaleM belongs to the class BMO if there is a constant
C > 0 such that

E
1
2 (< M >T − < M >τ |Fτ ) ≤ C, P − a.s.

for every stopping time τ . The smallest constant with this property (or +∞ if it does not
exist) is called the BMO norm of M and is denoted by ||M ||BMO.
For the process of finite variation A we denote by vart

s(A) the variation on the segment [s, t].
If

E(varT
τ (A)|Fτ ) ≤ C, P − a.s.
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for every stopping time τ , let us denote by |A|ω the smallest constant with this property.
We say that the process B strongly dominates the process A and write A ≺ B, if the difference
B − A ∈ A+

loc, i.e., is a locally integrable increasing process. We shall use also the notation
ϕ ·X for the stochastic integral with respect to the semimartingale X.
Let N ∈ BMO(P ) and dQ = ET (N)dP . Then Q is a probability measure equivalent to
P by Theorem 2.3 Kazamaki 1994). Denote by ψ = ψ(X) = 〈X,N〉 − X the Girsanov’s
transformation. It is well known that (see Kazamaki 1994 ) both H2 and BMO are invariant
under transformation ψ. Let M(Q) and M⊥(Q) be images of the mapping ψ for M and
M⊥ respectively, . Note that M(Q) and M⊥(Q) are stable orthogonal subspaces of the space
H2(Q) of square integrable martingales with respect to Q.
We shall need the following lemma to switch solutions of equation (1) for different final random
variables.
Lemma 1. Let there exists m1,m

⊥
1 ∈ BMO, m1 ∈M,m⊥

1 ∈M⊥ such that

ET (m1)Eα
T (m⊥

1 ) = c1 exp{η1}. (8)

Let Q be a probability measure defined by

dQ = ET (m1 +m⊥
1 )dP

and assume that there exists m2,m
⊥
2 ∈ BMO(Q), m2 ∈M(Q),m⊥

2 ∈M⊥(Q) such that

ET (m2)Eα
T (m⊥

2 ) = c2 exp{η2}. (9)

Then there exists a solution of equation

ET (m)Eα
T (m⊥) = c exp{η1 + η2}. (10)

Proof. Note that
dP

dQ
= E−1

T (m1 +m⊥
1 ) = ET (m̃1 + m̃⊥

1 ),

where m̃1 = 〈m1〉 −m1 and m̃⊥
1 = 〈m⊥

1 〉 −m⊥
1 are BMO martingales under Q.

By Girsanov’s theorem m2 and m⊥
2 are special semimartingales under P with the decomposi-

tion
m2 = m̂2 + 〈m2, m̃1〉, m⊥

2 = m̂⊥
2 + 〈m⊥

2 , m̃
⊥
1 〉

where m̂2 = m2 − 〈m2, m̃1〉 and m̂⊥
2 = m⊥

2 − 〈m⊥
2 , m̃

⊥
1 〉 are BMO(P )-martingales according

to Theorem 3.6 of Kazamaki (1994).
Girsanov’s theorem and the uniqueness of the canonical decomposition of special semimartin-
gales imply that

〈m̂2,m1〉 = −〈m2, m̃1〉, 〈m̂⊥
2 ,m

⊥
1 〉 = −〈m⊥

2 , m̃
⊥
1 〉. (11)

Multiplying now equations (2.1) and (2.2) and using Yor’s formula we obtain

ET (m1 +m2 + 〈m̂2,m1〉)Eα
T (m⊥

1 +m⊥
2 + 〈m̂⊥

2 ,m
⊥
1 〉) = c1c2 exp{η1 + η2}. (12)

By equality (11) and Theorem 3.6 of Kazamaki (1994) m2 + 〈m̂2,m1〉 and m⊥
2 + 〈m̂⊥

2 ,m
⊥
1 〉

are BMO(P ) martingales. It is easy to see that these martingales are strongly orthogonal to
each other. Therefore, c = c1c2, m = m1 +m2 + 〈m̂2,m1〉 and m⊥ = m⊥

1 +m⊥
2 + 〈m̂⊥

2 ,m
⊥
1 〉

satisfy equation (2.3).
Now we shall show the uniqueness of a solution of equation (1) in the class BMO.
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Proposition 1. Let η be an FT -measurable random variable. If there exists a triple
(c,m,m⊥), where c ∈ R+,m ∈ BMO ∩ M,m⊥ ∈ BMO ∩ M⊥ satisfying equation (1),
then such solution is unique.
Proof. Let (c,m,m⊥) and (c′, l, l⊥) be two solutions of (1) from the class BMO. Then (1)
implies that

c′
ET (m)
ET (l)

= c
Eα

T (l⊥)
Eα

T (m⊥)
. (13)

Recall that if M and N are continuous local martingales then (see, e.g., Jacod 1979)

Et(M)
Et(N)

= Et(M −N − 〈M −N,N〉), Eα
t (M) = Et(αM +

α(α− 1)
2

〈M〉).

Therefore, from (13) we have that

c′ET (m− l − 〈m− l, l〉) = cEα
T (l⊥ −m⊥ − 〈l⊥ −m⊥,m⊥〉) =

= cET (α(l⊥ −m⊥)− 〈α(l⊥ −m⊥),
α+ 1

2
m⊥ − α− 1

2
l⊥〉). (14)

Let Q be a measure defined by

dQ = ET (l +
α+ 1

2
m⊥ − α− 1

2
l⊥)dP.

Since l+ α+1
2 m⊥− α−1

2 l⊥ ∈ BMO(P ) the processes m− l−〈m− l, l〉 and α(l⊥−m⊥)−〈α(l⊥−
m⊥), α+1

2 m⊥ − α−1
2 l⊥〉 are BMO-martingales with respect to the measure Q according to

Theorem 3.6 of Kazamaki (1994) and corresponding Doleans-Dade exponentials are uniformly
integrable Q-martingales. Therefore equality (14) holds for all t ∈ [0, T ], which implies that
c = c′ and

m− l − 〈m− l, l〉 = α(l⊥ −m⊥)− 〈α(l⊥ −m⊥),
α+ 1

2
m⊥ − α− 1

2
l⊥〉.

Hence m − l = α(l⊥ −m⊥) and since m − l is orthogonal to l⊥ −m⊥, we obtain that m = l
and m⊥ = l⊥.
Proposition 2a. Let η be a bounded FT -measurable random variable. Then there exists a
triple (c,m,m⊥), where c ∈ R+,m ∈ BMO ∩M,m⊥ ∈ BMO ∩M⊥, that satisfies equation
(1).
Proof. It is evident that equation (1) is equivalent to the following martingale equation

− ln c− 1
2
〈m〉T −

α

2
〈m⊥〉T +mT + αm⊥

T = η. (15)

Denoting c′ = − 1
2 ln c, L = 1

2m, L
⊥ = α

2m
⊥, ξ = 1

2η one can write this equation in the form

c′ − 〈L〉T −
1
α
〈L⊥〉T + LT + L⊥T = ξ. (16)

where α 6= 0. The latter equation can be also written in the following equivalent semimartingale
form as a BSDE

Yt = Y0 − 〈L+ L⊥, L+
1
α
L⊥〉t + Lt + L⊥t , YT = ξ. (17)



Martingale Equation 211

Let first show that there exists a solution (c,m,m⊥) of equation (16) if |ξ|∞ is small enough.
For brevity we shall use the notation 〈m〉tT = 〈m〉T − 〈m〉t for the square characteristic of a
martingale m.
Let consider the mapping

Lt + L⊥t = E(ξ + 〈l + l⊥, l +
1
α
l⊥〉T /Ft)− (18)

−E(ξ + 〈l + l⊥, l +
1
α
l⊥〉T ),

Yt = E(ξ + 〈l + l⊥, l +
1
α
l⊥〉tT /Ft), (19)

which transforms BMO-martingales l and l⊥ into a triple (Y, L, L⊥), where L and L⊥ are
BMO-martingales and Y is a semimartingale. Using L∞([0, T ]×Ω) norm for semimartingales
and BMO norms for martingales, we shall show that if the norm |ξ|∞ is sufficiently small, then
there exists r > 0 such that mapping (18) is a contraction in the ball

Br = {(l, l⊥), ||l + l⊥||BMO ≤ r}

Using the Ito formula for Y 2
T − Y 2

t and (18),(19) we have

Y 2
t − Y 2

T = −2
∫ T

t

Ysd(Ls + L⊥s ) +

2
∫ T

t

Ysd〈l + l⊥, l +
1
α
l⊥〉s − 〈L+ L⊥〉tT . (20)

For any l, l⊥ ∈ BMO by condition B) and (19) Y is bounded and L and L⊥ are square
integrable martingales. Therefore, the stochastic integral Y · (L + L⊥) is a martingale and
taking conditional expectations in (20) we have

Y 2
t + E(〈L+ L⊥〉tT /Ft) = E(ξ2/Ft) + 2E(

∫ T

t

Ysd〈l + l⊥, l +
1
α
l⊥〉s/Ft).

Since 〈l+ l⊥, l + 1
α l

⊥〉 ≺ (| 1
α | ∨ 1)〈l+ l⊥〉 and 1

2 |Y |
2
∞ + 1

2 |L+ L⊥|2BMO ≤ esssup(Y 2
t +E(〈L+

L⊥〉tT /Ft)), using the notation β = 2(| 1
α | ∨ 1) we get

Y 2
t + E(〈L+ L⊥〉tT /Ft) ≤

≤ |ξ|2∞ + β|Y |∞E(〈l + l⊥〉tT /Ft) ≤ (21)

≤ |ξ|2∞ +
1
2
|Y |2∞ +

1
2
β2E2(〈l + l⊥〉tT /Ft)

and hence
|L+ L⊥|2BMO ≤ 2|ξ|2∞ + β2|l + l⊥|4BMO.

If 2|ξ|∞ ≤ 1
2β , then there exists r satisfying the inequality

r2 ≥ 4|ξ|2∞ + β2r4. (22)

Therefore |l + l⊥|BMO ≤ r implies |L+ L⊥|2BMO ≤ 4|ξ|2∞ + β2r4 ≤ r2.
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Now we shall show that the mapping (18) is a contraction on the ball Br from the space
BMO. Let Yi, Li, L

⊥
i , i = 1, 2 correspond to li, l⊥i , i = 1, 2 by transformation (18),(19). Since

Y1(T )− Y2(T ) = 0 applying the Ito formula for (Y1 − Y2)2 similarly to (21) we obtain

(Y1(t)− Y2(t))2 + E(〈L1 − L2 + L⊥1 − L2
⊥〉tT /Ft) ≤ (23)

2E(
∫ T

t

|Y1(s)− Y2(s)|dvars
t (〈l1 + l⊥1 , l1 +

1
α
l⊥1 〉 − 〈l2 + l⊥2 , l2 +

1
α
l⊥2 〉)/Ft) ≤

≤ |Y1 − Y2|2∞ + E2(varT
t (〈l1 + l⊥1 , l1 +

1
α
l⊥1 〉 − 〈l2 + l⊥2 , l2 +

1
α
l⊥2 〉)/Ft).

On the other hand using the Kunita-Watanabe inequality, elementary inequalities (a+ b)2 ≤
2(a2 + b2) and 〈l + l⊥, l + 1

α l
⊥〉 ≺ 1

2β〈l + l⊥〉 we get

E2(varT
t (〈l1 + l⊥1 , l1 +

1
α
l⊥1 〉 − 〈l2 + l⊥2 , l2 +

1
α
l⊥2 〉)/Ft) ≤

≤ 2E2(varT
t 〈l1 − l2 + l⊥1 − l⊥2 , l1 +

1
α
l⊥1 〉/Ft)+

2E2(varT
t 〈l1 + l2

⊥, l1 − l2 +
1
α

(l⊥1 − l⊥2 )〉/Ft) ≤ (24)

≤ 2E(〈l1 − l2 + l⊥1 − l⊥2 〉tT /Ft)E(〈l1 +
1
α
l⊥1 〉tT /Ft)+

2E(〈l2 + l2
⊥〉tT /Ft)E(〈l1 − l2 +

1
α

(l⊥1 − l⊥2 )〉tT /Ft) ≤

≤ β2E(〈l1 − l2 + l⊥1 − l⊥2 〉tT /Ft)×

[E(〈l1 + l⊥1 〉tT /Ft) + E(〈l2 + l2
⊥〉tT /Ft)].

If l1, l2 ∈ Br, the relations (23) and (24) imply the inequality

|L1 − L2 + L⊥1 − L2
⊥|BMO ≤ rβ|l1 − l2 + l⊥1 − l⊥2 |BMO.

Finally we remark that if |ξ|∞ ≤ 1
4β and 1

8β2 ≤ r2 < 1
4β2 then the inequalities (22) and rβ < 1

are satisfied simultaneously. Thus we obtain that if |ξ|∞ is small enough, then the mapping
(18) is a contraction and by fixed point theorem equation (17) (and hence equation (1)) admits
a unique solution. In particular if |ξ|∞ ≤ 1

4β then the BMO-norm of the solution is less than
1
β .
To get rid of the assumption that |ξ|∞ should be small enough, let us use the Lemma 1. Let
us take an integer n ≥ 1 so that equation

c1ET (m)Eα
T (m⊥) = exp{ 1

n
ξ} (25)

admits a solution. Let dQ = ET (m1 + m⊥
1 )dP , where (m1,m

⊥
1 ) ∈ BMO(P ) is a solution of

(25). Since the norm |ξ|∞ is invariant with respect to an equivalent change of measure and
since the Girsanov transformation is an isomorphism of BMO(P ) onto BMO(Q), similarly as
above one can show that there exists a pair m2,m

⊥
2 ∈ BMO(Q) that satisfies equation (25).

Therefore by Lemma 1, there exists a solution of equation

c2ET (m)Eα
T (m⊥) = exp{ 2

n
ξ}. (26)
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Using now Lemma 1 to equation (26) by induction we obtain that there exists a solution of
equation (1).
Remark. For the solution (Y,m,m⊥) of (17) the following estimate is true

|Yt| ≤ |ξ|∞ for all t ∈ [0, T ].

Indeed, since m,m⊥ ∈ BMO, the process Y is a uniformly integrable martingale under Q,
where dQ = ET (L+ αL⊥)dP then (17). Therefore

Yt = EQ(ξ/Ft) ≤ |ξ|∞.

Let us consider now the case, where the final random variable is of the form η = γAT for a
constant γ and an increasing process (At, t ∈ [0, T ]).
Proposition 2b. Assume that η = γAT , |A|ω < ∞ and |γ| < |α|∧1

2|A|ω . Then there exists a
unique triple (c,m,m⊥), where c ∈ R+,m ∈ BMO ∩M,m⊥ ∈ BMO ∩M⊥, that satisfies
equation (1).
Proof. The proof is similar to the proof of Proposition 2a. The only difference is that in
equation (19) ξ is replaced by γ̄(AT −At), where γ̄ = 1

2γ and equation (17) is replaced by the
BSDE

Yt = Y0 − γ̄At − 〈L+ L⊥, L+
1
α
L⊥〉t + Lt + L⊥t , YT = 0. (27)

Therefore, applying the Itô formula for Y 2
t and after using the same arguments we obtain

Y 2
t + E(〈L+ L⊥〉tT /Ft) ≤

≤ 2|Y |∞
[
γ̄E(AT −At/Ft) + βE(〈l + l⊥〉tT /Ft)

]
≤ (28)

≤ |Y |2∞ + 2γ̄2E2(AT −At/Ft) + 2β2E2(〈l + l⊥〉tT /Ft)

and hence
|L+ L⊥|2BMO ≤ 2γ̄2|A|2ω + 2β2|l + l⊥|4BMO.

If |γ̄||A|ω < 1
4β (or equivalently |γ| < |α|∧1

2|A|ω ) we can take r satisfying the inequalities

r2 ≥ 2γ̄2|A|2ω + 2β2r4 and 2βr < 1. (29)

Therefore |l + l⊥|BMO ≤ r implies |L+ L⊥|2BMO ≤ 2γ̄2|A|ω + 2β2r4 ≤ r2.
The contraction property of the mapping is proved similarly to Proposition 2a and the Lipschitz
constant is again 2βr.
The proof of Theorem 1. The uniqueness is proved in Proposition 1. An existence is a
consequence of Proposition 2a, Proposition 2b and Lemma 1.

3 Solution as a value process of an optimization problem

In this section we shall construct the solution of equation (1) using the value process of a
certain optimization problem for some values of parameter α.
Let A = (At, t ∈ [0, T ]) be a continuous F -adapted increasing process. Assume that
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D) there exists m∗ ∈M⊥ ∩BMO such that

E(eAT−AτE1−α
tT (m∗)/Fτ ) ≤ C (30)

for all stopping times τ , for some C > 0, where EtT (m∗) = ET (m∗)
Et(m∗) .

Remark. It is evident that condition D) is satisfied if

E(eAT−Aτ /Fτ ) ≤ C (31)

for all stopping times τ , for some C > 0 and vice versa if condition D) and α∈̄(0, 1) are satisfied
then there exists the measure dQ = ET (m∗∗)dP, m∗∗ ∈M⊥ ∩BMO such that

EQ(eAT−Aτ /Fτ ) ≤ C.

Let us introduce the value process

Vt = Vt(α) = ess inf
m⊥∈M⊥

E(eAT−AtE1−α
tT (m⊥)|Ft). (32)

Note that Vt is value process of an optimization problem, which contains the problem of finding
of the q-optimal martingale measure dual to the power utility maximization problem.
Theorem 2. Let α < 0 and let η be an FT -measurable random variable of the form η = AT ,
where A = (At, t ∈ [0, T ]) is a continuous F -adapted increasing process. If condition D) is
satisfied, then the triple

(c,m,m⊥) = (
1
V0
,

1
V
· L, 1

αV
· L⊥) ∈ R+ × (BMO ∩M)× (BMO ∩M⊥),

where L+ L⊥ is the martingale part of V , satisfies equation (1).
Moreover lnVt is a unique bounded solution of (17).
If E(AT − Aτ/Fτ ) ≤ C for every stopping time τ and if there exists a triple (c,m,m⊥),
c ∈ R+,m ∈ BMO ∩M,m⊥ ∈ BMO ∩M⊥, satisfying equation (1), then condition D) is
fulfilled.
Proof. It is evident that

1 ≤ Vt ≤ C, (33)

where the first inequality follows from Jensen’s inequality and the second follows from con-
dition D). Similarly to Theorem 1 of [15] one can show that Vt defined by (32) is a special
semimartingale which is a unique bounded solution of the BSDE

Vt = −
∫ t

0

VsdAs −
1− α

2α

∫ t

0

1
Vs
d < L⊥ > +Lt + L⊥t , VT = 1. (34)

and L,L⊥ ∈ BMO.
Since Vt ≥ 1, the martingales m = 1

V ·L and m⊥ = 1
αV ·L⊥ also belong to the class BMO and

it is not difficult to see that the triple (1/V0,m,m
⊥) satisfies equation (1). Indeed, applying

the Itô formula for lnVt from equation (34) we have

lnVt = lnV0 −At −
1
2
<

1
V
· L >t +(

1
V
· L)t+

− α

2
<

1
αV

· L⊥ >t +α(
1
αV

· L⊥)t. (35)
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Using the boundary condition and (34) we obtain the equality (1).
Assume now that there exists a triple c ∈ R+,m ∈ BMO∩M,m⊥ ∈ BMO∩M⊥ that satisfies
equation (1). Consider the process

Yt = ce−AtEt(m)Eα
t (m⊥).

Equality (1) implies that YT = 1, hence

Yt = eAT−AtE−1
tT (m)E−α

tT (m⊥) (36)

and
lnYt = E(AT −At/Ft) +

1
2
E(< m >tT /Ft) +

α

2
E(< m⊥ >tT /Ft).

Since m and m⊥ belong to BMO and E(AT − At/Ft) ≤ const, the process lnYt is bounded.
Since Y is strictly positive, this implies that the process Y satisfies the two-sided inequality

0 < c ≤ Yt ≤ C. (37)

(in particular, Yt = Vt by the uniqueness of (34))
Therefore (36) and (37) imply that

E(eAT−AtE1−α
tT (m⊥)/Ft) = YtE(EtT (m)EtT (m⊥)/Ft) = Yt ≤ C.

Remark. If 0 < α < 1 and there is a triple (c,m,m⊥), where c ∈ R+,m ∈ BMO ∩M,m⊥ ∈
BMO ∩M⊥ satisfying equation (1), then there exists C > 0 such that

E(eAT−Aτ /Fτ ) ≤ C

for all stopping times τ .
Indeed, similarly as above, the process Y defined by (36) satisfies inequality (37) and from
(36) we have

E(eAT−At/Ft) = YtE(EtT (m)Eα
tT (m⊥)/Ft).

Since 0 < α < 1 and since Et(m⊥) is a martingale under the measure dQ = ET (m)dP , using
the Hölder inequality we obtain from the latter equality that

E(eAT−At/Ft) = YtE
Q(Eα

tT (m⊥)/Ft) ≤

≤ C(EQ(EtT (m⊥)/Ft)α = C.

This remark and Theorem 2 show that if γ is large enough so that conditionE(eγ(AT−Aτ )/Fτ ) ≤
const is not satisfied then the bounded solution of the equation (27) does not exist.
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