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Abstract

We consider a Bayesian-martingale approach to the general change-point detection problem. In our
setting the change-point represents a random time of bifurcation of two probability measures given on
the space of right-continuous functions. We derive a reflecting backward stochastic differential equation
(RBSDE) for the value process related to the disorder problem and show that in classical cases of the
Wiener and Poisson disorder problems this RBSDE is equivalent to free-boundary problems for parabolic
differential and differential–difference operators respectively.
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1. Introduction

Classical disorder problems consider the detection of a change in the mean (or in other
probabilistic characteristics) of a stochastic process X t that occurs at a random time θ which is
called the change-point. The Bayesian formulation of the problem, proposed in [16], assumes that
the change-point θ admits a known prior distribution, although the variable θ itself is unknown
to us, since it cannot be observed directly. A sequential change-point detection procedure
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is identified with a stopping time τ with respect to the filtration F X
t of observable events

(interpreted as the time at which the “alarm signal” is given), at which it is declared that a change
has occurred. The aim of the problem is to find a stopping time τ , based on the observations
X t , which is “as close as possible” to the change-point θ . More exactly, the design of the
quickest change-point detection procedures involves optimizing the trade-off between two kinds
of performance measures, one being a measure of detection delay and the other being a measure
of the frequency of false alarm.

Among all processes considered in the context of disorder problems, the Wiener process and
the Poisson process take a central place; in these cases the problem can be solved explicitly.
In [16] (see also [17]) an explicit solution of a Wiener disorder problem is derived, reducing the
initial optimal stopping problem to a free-boundary problem for a parabolic differential operator.
The Poisson disorder problem was first studied in [6], where the problem was solved in some
particular cases. Their results have been extended in [2], where lesser restrictions on the model
parameters were required. The complete solution of the Poisson disorder problem was given
in [12] by reducing the initial optimal stopping problem to the free-boundary problem for a
differential–difference operator. Note that in all these papers the case of infinite time horizon is
considered.

In this paper we present a Bayesian-martingale approach to the general disorder problem
with infinite time horizon where the change-point represents a random time of bifurcation of
two probabilistic measures given on the space of right-continuous functions. The setting of the
problem is discussed in Section 2.

In Section 3 we derive a martingale stochastic differential equation (SDE) for the a posteriori
probability process πt of the change-point θ , which plays, as is well known, a crucial role by
reducing the disorder problem to an optimal stopping problem and determining the value process
and the optimal stopping rule.

In Section 4 we introduce the value process of the related optimal stopping problem and show
that this process uniquely solves a suitable reflecting backward stochastic differential equation
(RBSDE). The value functions related to disorder problems (or to an optimal stopping problem
in general) of Markov processes are usually solutions of suitable free-boundary problems. So the
RBSDE for the value processes and the free-boundary problems for the value functions should be
equivalent in some sense, at least in simple cases when the a posteriori probability process πt is
a sufficient statistic and the value process Vt of the problem is related to the value function ρ(π)
of the same problem by the equality Vt = ρ(πt ). The problem is to deduce the differentiability
properties and smooth fit conditions for the value functions, based on the properties of the process
ρ(πt ) being a solution of a RBSDE. We consider classical disorder problems for Wiener and
Poisson processes and show that in these cases related RBSDEs for value processes and the
corresponding free-boundary problems are equivalent.

In Section 5 we consider the disorder problem for a Wiener process. This problem was
solved in [16], where an explicit expression for the value function ρ(π) of the initial stopping
problem was given and it was shown that this function (together with the optimal threshold A∗)
uniquely solves the corresponding free-boundary problem. On the basis of results of Section 4,
we give a probabilistic proof of this fact. We show that ρ(π) is a solution of the free-boundary
problem if and only if the process ρ(πt ) is a solution of the corresponding RBSDE. The key
step here is showing that if the value process Vt = ρ(πt ) satisfies the RBSDE, then the
function ρ(π) is continuously differentiable on (0, 1] and twice continuously differentiable on
(0, A∗), 0 < A∗ < 1. In particular this implies that the smooth fit condition is satisfied. Besides,
we show that the smooth fit of the second derivative fails.
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In Section 6 we consider the disorder problem for a Poisson process whose intensity
changes from λ0 to λ1 at some random time θ . As mentioned above, the closed form solution
of this problem was given in [12], where the problem was reduced to a free-boundary
differential–difference problem. We show that this free-boundary problem is also equivalent to
the well posedness of the general RDSDE studied in Section 4. In particular, this shows that the
unique solution of the free-boundary differential–difference problem coincides with the value
function of the problem. Besides, we derive the smooth fit conditions for the value function (in
cases when this condition is satisfied) and establish when the smooth fit condition breaks down
directly from the RBSDE for the value process.

2. Bayesian statement of the disorder problem

In this section after some preliminaries we discuss the Bayesian statement of the problem for
a general martingale model.

Let (Ω ,F, F = (Ft , t ≥ 0)) be a filtered measurable space with F = F∞. Assume that P0

and P1 are two fixed locally equivalent probability measures (P1 loc
∼ P0) defined on (Ω ,F) and

let ψ = ψ(x) be a distribution function of some non-negative random variable. Without loss of
generality (e.g., taking P =

1
2 (P

1
+ P0)) one can assume that there is a probability measure P

on (Ω ,F) such that

P1
� P, P0

� P, P1 loc
∼ P, P0 loc

∼ P.

For simplicity let us assume that the restrictions of the measures P0 and P1 coincide on the
σ -algebra F0.

Let (Z i
t =

dP i
t

dPt
, t ≥ 0), i = 0, 1, be the density process of the measure P i relative to P , which

is an uniformly integrable P-martingale with Z i
t > 0P-a.s. for any t ∈ [0,∞[. Then there exists

a local martingale M i
∈ Mloc(F, P) such that

Z i
= E(M i ) = (Et (M

i ), t ≥ 0), i = 0, 1,

where E(M), called the Doléans exponential of M , is the unique solution of the linear Stochastic
Differential Equation (SDE)

Z t = 1 +

∫ t

0
Zs−dMs (2.1)

(see, e.g., [8] or [9]).
For the statement of the problem in a general martingale setting let us extend the initial

probability space as follows:
Ω = Ω ⊗ R+, F = F ⊗ B(R+), F t = Ft ⊗ B(R+), where B(R+) is the Borel σ -algebra on

R+
= [0,∞).

The measure P
ψ

on F ⊗ B(R+) is defined in a following way: let for every A ∈ F and
B ∈ B(R+)

P
ψ
(A × B) =

∫
A

∫
B
E∞(M

x )ψ(dx)P(dω), (2.2)

where

M x
t =

∫ t

0
I{x≤s}dM1

s +

∫ t

0
I{x>s}dM0

s . (2.3)
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Note that, since

EE∞(M
x ) = EEx−(M

0)
E∞(M1)

Ex−(M1)
= EEx−(M

0)E

(
E∞(M1)

Ex−(M1)

/
Fx−

)
= 1,

the Fubini theorem implies that P
ψ

is a probability measure.
Let us denote by Pψ the restriction of the measure P

ψ
on the σ -algebra F ⊗ R+.

For every u < v and t we have∫
(u,v]

Et (M
x )ψ(dx) =

∫
(u,v]

I{x>t}Et (M
0)ψ(dx)+

∫
(u,v]

I{x≤t}Et (M
x )ψ(dx)

= Et (M
0)(ψ(v ∨ t)− ψ(u ∨ t))

+ Et (M
1)

∫
(u∧t,v∧t]

Ex−(M0)

Ex−(M1)
ψ(dx). (2.4)

So, we could define the measure P
ψ

just by P0, P1 and ψ . For every u < v and A ∈ Ft

P
ψ
(A×]u, v]) = (ψ(v ∨ t)− ψ(u ∨ t))P0(A)+

∫
A

∫
(u∧t,v∧t]

Es−(M0)

Es−(M1)
ψ(ds)dP1.

If we denote by Pψt the restriction of the measure P
ψ

t on the σ -algebra Ft ≡ Ft × R+, we will
have for every A ∈ Ft

Pψt (A) = P
ψ

t (A × R+) = (1 − ψ(t))P0(A)+

∫
A

∫
[0,t]

Es−(M0)

Es−(M1)
ψ(ds)dP1, (2.5)

where we assume that E0−(M0)

E0−(M1)
= 1;

Thus, the measures P
ψ

t (and Pψt ) do not depend on the choice of the dominating measure P .
It is easy to see that Pψ � P and

Zψt ≡
dPψt
dPt

= (1 − ψ(t))Et (M
0)+ Et (M

1)

∫
[0,t]

Es−(M0)

Es−(M1)
ψ(ds). (2.6)

According to (2.2), Zψt =
∫

R+ Et (M x )ψ(dx).

Remark 2.1. Since P1 loc
∼ P0, we have that Pψ

loc
∼ P0 and one can express the density process

Ẑψt = dPψt /dP0
t in the form

Ẑψt =
dPψt
dP0

t
= (1 − ψ(t))+ Et (M)

∫
[0,t]

E−1
s− (M)ψ(ds), (2.7)

where Z t = (Et (M), t ≥ 0) is the density process of P1 relative to P0.

Let us define on the space (Ω , F) the random variable

θ = θ(ω) = θ(ω, x) = x .

It is evident from (2.2) that

P
ψ
(θ ≤ x) = P

ψ
(Ω × [0, x]) = ψ(x).



T. Kavtaradze et al. / Stochastic Processes and their Applications 117 (2007) 1093–1120 1097

This means that the distribution function ψ = ψ(x) by means of which we have defined the

new measure P
ψ

on the extended measurable space (Ω , F) comes to be the a priori distribution
function of the variable θ , associated with the random time of ‘disorder’.

The aim of the problem is to find a stopping time τ with respect to the filtration Ft of
observable events (interpreted as the time at which the “alarm signal” is given) which is “as
close as possible” to the change-point θ . Following [16] we define the cost criterion by

V (τ ) = P̄ψ (τ < θ)+ Eψ max(Kτ − Kθ , 0), (2.8)

where P̄ψ (τ < θ) is a probability of “false alarm” and Eψ max(Kτ − Kθ , 0) is an average delay
(measured by an Ft predictable increasing process K ) of detecting the change-point correctly.

The stopping time τ ∗ is called optimal if

V (τ ∗) = inf
τ

V (τ ), (2.9)

where inf is taken over the class of all F-stopping times.
Introducing the a posteriori probability process πt

πt = P
ψ
(θ ≤ t | Ft ),

similarly to [16] one can reduce problem (2.9) to the optimal stopping problem

V (τ ∗) = inf
τ

Eψ
[
(1 − πτ )+

∫ τ

0
πs−dKs

]
, (2.10)

since P̄ψ (τ < θ) = Eψ (1 − πτ ) and

Ēψ max(Kτ − Kθ , 0) = Ēψ
∫ τ

0
I(θ≤s)dKs = Eψ

∫ τ

0
πs−dKs

by the projection theorem.
Let us introduce the value process of the problem (2.10)

Vt = essinf
τ≥t

Eψ
[
(1 − πτ )+

∫ τ

t
πs−dKs/Ft

]
. (2.11)

It is well known that under some regularity conditions (see, e.g., [4]) the stopping time τ ∗ defined
by

τ ∗
= inf{t : Vt = 1 − πt } (2.12)

is optimal for the problem (2.10). In the case of the Wiener disorder problem considered in [16]
the optimal stopping time is of the following simple form:

τ ∗
= inf{t : πt ≥ A∗

}, (2.13)

where the constant A∗ is a solution of a certain integral equation and the value function V is
explicitly calculated as a function of ψ(0) = π and A∗. Here the differential equation for the
process πt plays a crucial role.

In our general setting the process πt is no longer sufficient for determining the optimal
stopping rule; however the equation for πt is essential to characterize the value process Vt as
a solution of the corresponding RBSDE. Therefore, in the next section we focus our attention on
the derivation of a stochastic differential equation for πt .
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3. Differential equation for the a posteriori distribution process

After giving some auxiliary facts and recalling properties of Girsanov’s transform we derive
the stochastic differential equation for the a posteriori distribution process of the change-point
θ based on knowing its a priori distribution function ψ and the local martingales M i

∈

Mloc(F, P), i = 0, 1.
It follows from the generalized Bayes theorem (see, e.g., [10] or [18]) that

πt =

∫
R+ I(x≤t)Et (M x )ψ(dx)

Zψt
, (3.1)

where

Zψt =

∫
R+

Et (M
x )ψ(dx). (3.2)

Using (2.4) and (2.6) we get

πt =

Et (M1)
∫
[0,t]

Es−(M0)

Es−(M1)
ψ(ds)

(1 − ψ(t))Et (M0)+ Et (M1)
∫
[0,t]

Es−(M0)

Es−(M1)
ψ(ds)

. (3.3)

Dividing the numerator and the denominator of the right-hand side of (3.3) by Et (M0), one can
write πt also in a form not depending on the dominating measure P:

πt =
Et (M)

∫
[0,t] E

−1
s− (M)ψ(ds)

(1 − ψ(t))+ Et (M)
∫
[0,t] E

−1
s− (M)ψ(ds)

, (3.4)

where Et (M) = dP1
t /dP0

t is the density process of P1 relative to P0.

Lemma 3.1. The martingale Zψt is the Doléans exponential of the local martingale Mψ

(i.e., Zψt = Et (Mψ )), where

Mψ
t =

∫ t

0
(1 − πs−)dM0

s +

∫ t

0
πs−dM1

s +

∑
s≤t
(1 − πs−)

∆ψs

1 − ψ(s−)
(∆M1

s − ∆M0
s ).

(3.5)

Proof. Note that from (3.3) we have that

πt Zψt = Et (M
1)

∫
[0,t]

Es−(M0)

Es−(M1)
ψ(ds), (3.6)

(1 − πt )Z
ψ
t = (1 − ψ(t))Et (M

0). (3.7)

Therefore, an application of Itô’s rule to (2.6) yields

Zψt = 1 +

∫ t

0
(1 − ψ(s−))Es−(M

0)dM0
s +

∫ t

0

∫
[0,s)

Eu−(M0)

Eu−(M1)
ψ(du)Es−(M

1)dMs
1

+

∑
s≤t

[
4Es(M

1)
Es−(M0)

Es−(M1)
− 4Es(M

0)

]
4ψ(s). (3.8)
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Since by Eq. (3.7)

Et−(M
0) =

Zψt−(1 − πt−)

1 − ψ(t−)
, (3.9)

and

∆Et (M) = Et−(M)∆M, (3.10)

we have that the last term of (3.8) equals∑
s≤t
(1 − πs−)Z

ψ
s−

∆ψs

1 − ψ(s−)
(∆M1

s − ∆M0
s ). (3.11)

Therefore, from (3.6)–(3.8) we obtain that Zψt = Et (Mψ ) satisfies

Zψt = 1 +

∫ t

0
Zψs−

[
(1 − πs−)dM0

s + πs−dM1
s + (1 − πs−)

∆ψs

1 − ψ(s−)
d(M1

s − M0
s )

]
(3.12)

and the assertion of lemma follows from the uniqueness of the solution of Eq. (2.1). �

Remark 3.1. Similarly to above, one can show that the density process Ẑψt defined by (2.7)
admits the representation Ẑψt = Et (M̂ψ ), where

M̂ψ
t =

∫ t

0
πs−dMs +

∑
s≤t
(1 − πs−)

∆ψs

1 − ψ(s−)
∆Ms . (3.13)

For two semimartingales X and Y , with ∆Yt 6= −1 for all t , let us denote by L(X, Y ) the
Girsanov transform

L t (X, Y ) = X t −

∫ t

0

1
1 + ∆Ys

d[Y, X ]s .

Note that (see, e.g., [11])

Et (X)

Et (Y )
= Et (L(X − Y, Y )). (3.14)

Since for any X -integrable predictable process H

L(H · X, Y ) = H · L(X, Y ),

from (3.5)

L t (M
1
− Mψ ,Mψ ) =

∫ t

0
(1 − πs−)dLs

×

(
M1

− M0
−

∑
u≤·

∆ψu

1 − ψ(u−)
∆(M1

u − M0
u ),Mψ

)
. (3.15)

It is also evident that

∆L(X, Y ) =
∆X

1 + ∆Y
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and, in particular,

∆L t (M
1
− Mψ ,Mψ ) = (1 − πt−)

∆(M1
t − M0

t )

1 + ∆Mψ
t

1 − ψ(t)

1 − ψ(t−)
. (3.16)

Theorem 3.1. The a posteriori probability process πt satisfies the following stochastic
differential equation:

πt = π0 +

∫ t

0
πs−(1 − πs−)dLs

(
M1

− M0
−

∑
u≤·

∆ψu

1 − ψ(u−)
∆(M1

u − M0
u ),Mψ

)

+

∑
s≤t
(1 − πs−)

2 (1 − ψ(s))

(1 − ψ(s−))2
∆(M1

s − M0
s )

1 + ∆Mψ
s

∆ψ(s)+

∫ t

0

1 − πs−

1 − ψ(s−)
ψ(ds).

(3.17)

Proof. By virtue of (3.6) and (3.14)

πt = Et (L(M
1
− Mψ ,Mψ ))

∫
[0,t]

Ex−(M0)

Ex−(M1)
ψ(dx). (3.18)

From (3.18) using the Itò formula we have

πt = π0 +

∫ t

0

∫
[0,s)

Ex−(Mo)

Ex−(M1)
ψ(dx)Es−(L(M

1
− Mψ ,Mψ ))dLs(M

1
− Mψ ,Mψ )

+

∫
[0,t]

Es−(M0)

Es−(Mψ )
ψ(ds)+

∑
s≤t

∆Es(L(M
1
− Mψ ,Mψ ))

Es−(M0)

Es−(M1)
∆ψ(s). (3.19)

Eqs. (3.15) and (3.18) imply that the second term of the right-hand side of (3.19) is equal to∫ t

0
πs−(1 − πs−)dLs(M

1
− M0

−

∑
u≤s

∆ψu

1 − ψ(u−)
∆(M1

u − M0
u ),Mψ ). (3.20)

On the other hand, using successively (3.10), (3.14), (3.16) and (3.9) we obtain∑
s≤t

∆Es(L(M
1
− Mψ ,Mψ ))

Es−(M0)

Es−(M1)
∆ψ(s)

=

∑
s≤t

∆Ls(M
1
− Mψ ,Mψ )

Es−(M0)

Es−(Mψ )
∆ψ(s)

=

∑
s≤t
(1 − πs−)

2 (1 − ψ(s))

(1 − ψ(s−))2
∆(M1

s − M0
s )

1 + ∆Mψ
s

∆ψ(s). (3.21)

Note that (3.9) also implies that the third term of the right-hand side of (3.19) is equal to∫ t

0

1 − πs−

1 − ψ(s−)
ψ(ds). (3.22)

Therefore relations (3.19)–(3.22) imply that πt satisfies the SDE (3.17). �
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Remark 3.2. Sometimes it is more convenient to write Eq. (3.17) using the martingale M̂ψ from
Remark 3.1. Like for Theorem 3.1 one can show that πt satisfies equation

πt = π0 +

∫ t

0
πs−(1 − πs−)dLs

(
M −

∑
u≤·

∆ψu

1 − ψ(u−)
∆Mu, M̂ψ

)

+

∑
s≤t
(1 − πs−)

2 (1 − ψ(s))

(1 − ψ(s−))2
∆Ms

1 + ∆M̂ψ
s

∆ψ(s)+

∫ t

0

1 − πs−

1 − ψ(s−)
ψ(ds). (3.23)

In particular, if ψ(t) is continuous, this equation for πt takes the form

πt = π0 +

∫ t

0
πs−(1 − πs−)dLs

(
M, M̂ψ

)
+

∫ t

0

1 − πs−

1 − ψ(s)
ψ(ds).

Remark 3.3. Another form for the equation for the a posteriori distribution function (πt , t ≥ 0)
can be given by applying Itô’s formula to the left-hand side of (3.7):

πt = π0 −

∫ t

0
(1 − πs−)

1 − ψ(s)

1 − ψ(s−)
dLs

(
M0

− Mψ ,Mψ
)

+

∫ t

0

1 − πs−

1 − ψ(s−)
ψ(ds).

(3.24)

4. Reflecting backward stochastic differential equation (RBSDE) for the value process

In this section we provide the reflecting BSDE for the value process of the optimal stopping
problem (2.10).

Let us introduce the value process of the problem (2.10):

Vt = essinf
τ≥t

Eψ
[
(1 − πτ )+

∫ τ

t
πs−dKs/Ft

]
,

where Eψ is an expectation w.r.t. the measure Pψ , which we consider as a reference probability
measure throughout this section.

It is well known that (see, e.g., [4]) Vt is a RCLL process such that

(i) Vt ≤ 1 − πt for all t ,
(ii) the process Vt +

∫ t
0 πs−dKs is a submartingale,

(iii) Vt is the largest process satisfying (i) and (ii).

Moreover for any t ≥ 0 the stopping time τ ∗ defined by

τ ∗
t = inf{s ≥ t : Vs = 1 − πs}

is t-optimal (at least if K and ψ are continuous and F is quasi-left-continuous (see [4] or [7])),
that is

Vt = Eψ
[
(1 − πτ∗

t
)+

∫ τ∗
t

t
πs−dKs/Ft

]
.

Hence Vt is a special semimartingale with canonical decomposition

Vt = V0 −

∫ t

0
πs−dKs + Bt + Nt , (4.1)

where N is a martingale and B is a predictable increasing process with B0 = 0.
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It is also well known (see e.g. [4,7] and [15]) that increasing process Bt is growing only on
the set {Vt− = 1 − πt−} (on the stop region) and Vt + (π− · K )t is a martingale on the go region
{Vt− < 1 − πt−}, i.e., the process Bt satisfies the relation∫ T

0
I{Vs−<1−πs−}dBs = 0, (4.2)

which implies that the process∫ t

0
I{Vs−<1−πs−}d

(
Vs +

∫ s

0
πu−dKu

)
=

∫ t

0
I{Vs−<1−πs−}dNs

is a martingale.
Note that relation (4.2) guaranties the maximality of V and together with (i) and (ii) uniquely

determines the value process. But the maximality of V , as well as condition (4.2), is difficult to
verify and this leads to the necessity of giving a differential characterization of the value process.
We shall combine the results of [1,7,5] and [15] to derive a reflecting BSDE for the process V in
our case.

Denote by S1 the class of semimartingales X with the decomposition

X t = X0 + At + Mt , t ≥ 0,

where Mt is a uniformly integrable martingale and At is a process of integrable variation on
[0,∞].

We define a solution of RBSDE related to the disorder problem as a triple (Yt , νt , L t ) of
adapted processes satisfying:

(I) L t is a uniformly integrable martingale,
(II) νt is a predictable process with 0 ≤ νt ≤ 1,

(III) Yt is a semimartingale from S1,
(IV) Yt ≤ 1 − πt for all t ≥ 0,
(V) limt→∞ Yt = 0, Pψ -a.s.,

(VI)

Yt = Y0 +

∫ t

0
(1 − νs)I(Ys−=1−πs−)d

(∫
·

0
πu−dKu −

∫
·

0

1 − πu−

1 − ψ(u−)
ψ(du)

)+

s

−

∫ t

0
πs−dKs + L t . (4.3)

Theorem 4.1. Assume that:
(A) ψ is a distribution function concentrated on [0,∞].
(B) K is a predictable increasing process such that E Kt < ∞ for any t ∈ [0,∞).
Then there exists a solution of RBSDE (4.3) satisfying (I)–(VI). If a triple (Yt , νt , L t ) satisfies

conditions (I)–(VI), then Yt = Vt and L t coincides with the martingale part of the value process
V .

Proof. Using Eq. (3.24) for πt and the decomposition (4.1) we have

1 − πt − Vt = 1 − π0 − V0 −

∫ t

0

1 − πs−

1 − ψ(s−)
ψ(ds)+

∫ t

0
πs−dKs

− Bt +

∫ t

0
(1 − πs−)

1 − ψ(s)

1 − ψ(s−)
dM̃s − Nt , (4.4)
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where by M̃ we denoted the Pψ -martingale M̃t = L t
(
M0

− Mψ ,Mψ
)
.

By Tanaka’s formula

(1 − πt − Vt )
+

= (1 − π0 − V0)
+

+

∫ t

0
I{1−πs−>Vs−}d(1 − πs − Vs)

+
1
2
L1−π−V

t (0)+

∑
0<s≤t

I(1−πs−−Vs−=0)(1 − πs − Vs), (4.5)

where L1−π−V
t (0) is the local time of the process 1 − πt − Vt at 0. Therefore, from (4.4) and

(4.5)

(1 − πt − Vt )
+

= (1 − π0 − V0)
+

+

∫ t

0
I(1−πs−>Vs−)πs−dKs

−

∫ t

0
I(1−πs−>Vs−)

1 − πs−

1 − ψ(s−)
ψ(ds)−

∫ t

0
I(1−πs−>Vs−)dBs

+

∑
0<s≤t

I(1−πs−−Vs−=0)(1 − πs − Vs)+
1
2
L1−π−V

t (0)

+

∫ t

0
I(1−πs−>Vs−)[πs−(1 − πs−)dM̃s − dNs]. (4.6)

Since Vt ≤ 1 − πt and
∫ t

0 I(1−πs−>Vs−)dBs = 0, comparing the finite variation parts of the
right-hand sides of (4.4) and (4.6) we obtain that∫ t

0
I(1−πs−=Vs−)πs−dKs −

∫ t

0
I(1−πs−=Vs−)

1 − πs−

1 − ψ(s−)
ψ(ds)

−

(
1
2
L1−π−V

t (0)+ Ãt

)
= Bt (4.7)

where by Ãt we have denoted the compensator of the process (
∑

0<s≤t I(1−πs−−Vs−=0)(1 −πs −

Vs), t ≥ 0).
Since B, L(0) and Ã are increasing processes, relation (4.7) implies that the measures dBt

and d(L(0) + Ã)t are absolutely continuous w.r.t. the measure dKt . Moreover, from (4.7) we
also have∫ t

0
I(1−πs−=Vs−)d

(
π− · K −

1 − π−

1 − ψ−

· ψ

)+

s
−

(
1
2
L1−π−V

t (0)+ Ãt

)
= Bt +

∫ t

0
I(1−πs−=Vs−)d

(
π− · K −

1 − π−

1 − ψ−

· ψ

)−

s
(4.8)

and the process
∫ t

0 I(1−πs−=Vs−)d
(
π− · K −

1−π−

1−ψ−
· ψ
)+

s
−

(
1
2L

1−π−V
t (0)+ Ãt

)
is increasing;

hence there exists a predictable process µt such that 0 ≤ µt ≤ 1 and(
1
2
L1−π−V

t (0)+ Ãt

)
=

∫ t

0
µs I(1−πs−=Vs−)d

(∫
·

0
πu−dKu −

∫
·

0

1 − πu−

1 − ψ(u−)
ψ(du)

)+

s
,

(4.9)
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where At = A+
t − A−

t is a unique decomposition of a process of finite variation A as a difference
of two increasing processes such that the non-negative measures induced by A+ and A− on [0, t]
have disjoint supports. The total variation of such a process is given by (VarA)t = A+

t + A−
t .

It follows from (4.8) and (4.9) that∫ t

0
(1 − µs)I(1−πs−=Vs−)d

(
π− · K −

1 − π−

1 − ψ−

· ψ

)+

s

−

∫ t

0
I(1−πs−=Vs−)d

(
π− · K −

1 − π−

1 − ψ−

· ψ

)−

s
= Bt (4.10)

is an increasing process, which implies that

0 ≤ µs ≤ I(1−πs−=Vs−)d
(
π− · K −

1 − π−

1 − ψ−

· ψ

)+

s
-a.e. and (4.11)

{s : 1 − πs− = Vs−} ⊆ supp
(
π− · K −

1 − π−

1 − ψ−

· ψ

)+

. (4.12)

In particular, we have that

Bt =

∫ t

0
(1 − µs)I(1−πs−=Vs−)d

(
π− · K −

1 − π−

1 − ψ−

· ψ

)+

s

=

∫ t

0
(1 − µs)I(1−πs−=Vs−)d

(
π− · K −

1 − π−

1 − ψ−

· ψ

)
s
. (4.13)

Therefore (4.13) and (4.1) imply that

Vt = V0 +

∫ t

0
(1 − µs)I(Vs−=1−πs−)d

(∫
·

0
πu−dKu −

∫
·

0

1 − πu−

1 − ψ(u−)
ψ(du)

)+

s

−

∫ t

0
πs−dKs + Nt , (4.14)

which means that the triple (V, µ, N ) satisfies Eq. (4.3).
It follows from equality (4.13) that the value process satisfies also the equation

Vt = V0 −

∫ t

0
(I(1−πs−>Vs−) + µs I(1−πs−=Vs−))πs−dKs

−

∫ t

0
(1 − µs)I(1−πs−=Vs−)

1 − πs−

1 − ψ(s−)
ψ(ds)+ Nt , (4.15)

which implies that Vt is a supermartingale. Since V is bounded, it is a supermartingale of class D,
and by the uniqueness of the Doob–Meyer decomposition N is a uniformly integrable martingale
and V is a semimartingale from class S1.

Since 0 ≤ Vt ≤ 1 − πt and limt→∞ πt = 1Pψ -a.s. (the proof of this fact is the same as
in [16]), we have that limt→∞ Vt exists and is equal to zero.

Thus, the triple (V, µ, N ) is a solution of (I)–(VI).

Uniqueness: Let a triple (Yt , νt , L t ) be a solution of (I)–(VI). Then it follows from (4.3) and (II)
that the process Yt +

∫ t
0 πs−dKs is a submartingale. Since Vt is the largest process that satisfies

(i) and (ii), we have Vt ≥ Yt .
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Let us show that Yt ≥ Vt . Let

σt = inf{s ≥ t : Ys = 1 − πs}.

By condition (IV) we have Ys < 1 − πs on the interval [t; σt ). Therefore, it follows from (4.3)
that

Yσt − Yt = −

∫ σt

t
πs−dKs + Lσt − L t . (4.16)

On the other hand condition (V) implies that Yσt = 1 − πσt . Therefore taking conditional
expectations in (4.16) we obtain that

Yt = E

(
1 − πσt +

∫ σt

t
πs−dKs/Ft

)
and by definition of the value process Yt ≥ Vt . Thus Yt = Vt . It is evident that the martingale
parts of V and Y are also indistinguishable. �

Remark 4.1. By (4.9), (4.12) and (4.15) we have that the value process also satisfies the
following equation:

Vt = V0 −

∫ t

0
I(1−πs−>Vs−)πs−dKs −

∫ t

0
I(1−πs−=Vs−)

1 − πs−

1 − ψ(s−)
ψ(ds)

−

(
1
2
L1−π−V

t (0)+ Ãt

)
+ Nt . (4.17)

Remark 4.2. Comparing the martingale parts of (4.4) and (4.5) we have that∫ t

0
I(1−πs−=Vs−)(1 − πs−)

1 − ψ(s)

1 − ψ(s−)
dM̃s =

∫ t

0
I(1−πs−=Vs−)dNs

+

( ∑
0<s≤t

I(1−πs−−Vs−=0)(1 − πs − Vs)− Ãt

)
. (4.18)

Let us write the a priori distribution functions in the form

ψπ (t) = πδ0(t)+ (1 − π)ϕ(t) (4.19)

where δ0(t) is a Dirac measure having a mass at 0, and ϕ(t) is any fixed distribution function
of some positive random variable. From now on taking expectation with respect to the measure
P̄ψ

π
(resp. Pψ

π
) we will denote as Ēπ (resp. Eπ ) (Ēψ

π
→ Ēπ ). Hence the value V0 can be

rewritten as a function of π (π and ω in general):

V0(π) = inf
τ

Eπ
[
(1 − πτ )+

∫ τ

0
πsdKs

]
.

Now we shall prove the concavity of the value function V0(π), which will be essentially used in
the sequel. For the value function corresponding to the classical disorder problems this fact was
proved in [16].

Lemma 4.1. The value function V0(π) is a concave function of π .
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Proof. We need to show that for any π1, π2 ∈ [0, 1] and α ∈ (0, 1)

V0(απ1 + (1 − α)π2) ≥ αV0(π1)+ (1 − α)V0(π2),

Let π = απ1 + (1 − α)π2. By (4.19), ψπ (t) = αψπ1(t) + (1 − α)ψπ2(t) and P̄ψ
π

=

α P̄ψ
π1

+ (1 − α)P̄ψ
π2 by the definition of the measure P̄ψ (see (2.2)).

As V0(π) = infτ Ēπ (I(τ<θ) + (Kτ − Kθ )+) the concavity of the function V0(π) is
straightforward. �

5. Disorder problem for a Wiener process

In this section we consider the classical disorder problem of a Wiener process and show that
in this case the RBSDE (4.3) is equivalent to the free-boundary problem considered in [16].

Let Ω be the space C of continuous functions x = (xt , t ≥ 0), F the Borel σ -algebra B(C)
of C , (Bt (C), t ≥ 0) the corresponding filtration.

Assume that P0 is the measure on (C,B(C)) such that 1
σ

X t is a standard Wiener process and
P1 is the measure on (C,B(C)) such that the process

1
σ
(X t − r t)

is a Wiener process under P1, where X t is a coordinate process and r is some constant. Then

P1 loc
∼ P0 and the density process of P1 with respect to P0 is of the form

Z t =
dP1

t

dP0
t

= exp
{

r

σ
X t −

r2

2σ 2 t

}
.

Thus, Z t = Et (M), with Mt =
r
σ

X t .
Let ψ be a distribution function such that

ψ(0)− ψ(0−) = π

1 − ψ(t) = (1 − π) exp{−λt}, t > 0, (5.1)

where λ is a known strictly positive constant and 0 ≤ π ≤ 1.
In this case M̂ψ

t =
r
σ

∫ t
0 πs−dXs and

L t (M, M̂ψ ) =
r

σ

(
X t −

r

σ

∫ t

0
πs−ds

)
(5.2)

where W̄t = X t −
r
σ

∫ t
0 πs−ds is a Wiener process with respect to the measure P̂ψ which we

shall denote hereafter by Pπ . Note also that in this case 1
1−ψ(s)ψ(ds) = λds.

Therefore, it follows from Eq. (3.23) (see Remark 3.2) that in this case the equation for πt
coincides with the equation derived in [16]:

πt = π0 +
r

σ

∫ t

0
πs(1 − πs)dW̄s + λ

∫ t

0
(1 − πs)ds. (5.3)

Lemma 5.1. Let a ≤ π , where a, π ∈ [0, 1). Then

0 < λ(1 − a)
∫

∞

0
Pπ (πs ≤ a)ds ≤ EπLπ∞(a) ≤ 2(1 − π). (5.4)
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Proof. By the Itô–Tanaka formula

|πt − a| = |π − a| + λ

∫ t

0
(1 − πs)sign(πs − a)ds + Lπt (a)

+
r

σ

∫ t

0
πs(1 − πs)sign(πs − a)dW̃t . (5.5)

Taking expectations with respect to the measure Pπ , since the stochastic integral from (5.5) is a
martingale, we have

EπLπt (a) = Eπ |πt − a| − |π − a| − λEπ
∫ t

0
(1 − πs)sign(πs − a)ds. (5.6)

Since (3.7) and (5.1) imply that

Eπ (1 − πt ) = (1 − π) exp{−λt}, (5.7)

from (5.6) we obtain

EπLπt (a) ≤ Eπ |πt − a| − |π − a| + λ

∫ t

0
Eπ (1 − πs)ds

≤ Eπ |πt − a| − |π − a| + (1 − π)(1 − exp{−λt}).

Therefore, the passage to the limit as t → ∞ in the last inequality, keeping in mind that
limt→∞ πt = 1, gives the last inequality of (5.4):

EπLπ∞(a) ≤ 1 − a − (π − a)+ (1 − π) = 2(1 − π).

On the other hand, from (5.6) (keeping in mind that 1 −πs > 1 − a on the set (πs < a)) we also
have

EπLπt (a) = Eπ |πt − a| − |π − a|

− λEπ
∫ t

0
(1 − πs)I(πs>a)ds + λEπ

∫ t

0
(1 − πs)I(πs≤a)ds

≥ Eπ |πt − a| − |π − a|

− λEπ
∫ t

0
(1 − πs)ds + λ(1 − a)Eπ

∫ t

0
I(πs≤a)ds. (5.8)

It follows from (5.7) and relation limt→∞ πt = 1 that for π ≥ a

lim
t→∞

(
Eπ |πt − a| − |π − a| − λ

∫ t

0
Eπ (1 − πs)ds

)
= 0.

Therefore, passing to the limit in (5.8) we obtain the validity of the inequality

EπLπ∞(a) ≥ λ(1 − a)
∫

∞

0
Pπ (πs ≤ a)ds.

Finally, since∫
(π−ε,π+ε)

1 + λ(1 − x)

x2(1 − x)2
dx < ∞, for some ε > 0,
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at every π ∈ (0, 1), the process πt is regular in (0, 1) (see, e.g., [3]). This means that πt
reaches a level x with positive probability starting at π , for every x and π from (0, 1). Therefore∫

∞

0 Pπ (πs ≤ a)ds is strictly positive. �

Assume that Kt = ct . So, the cost criterion is of the same form as in [16]:

ρτ (π) = Pπ (τ < θ)+ cEπ max(τ − θ, 0), (5.9)

and the value function of the optimal stopping problem (2.10) is

ρ(π) = inf
τ

Eπ

(
1 − πτ + c

∫ τ

0
πsds

)
. (5.10)

Since (πt ,Ft , Pπ ) is a time-homogeneous Markov process, we have that

Vt = ρ(πt ) a.s. for all t ≥ 0. (5.11)

According to the general theory of optimal stopping the optimal stopping rule is

τ ∗
= inf{t : ρ(πt ) = 1 − πt }. (5.12)

Since ρ(π) is concave by Lemma 4.1, ρ(π) ≤ 1 − π and ρ(π) = 1 − π if π = 1, we have that
ρ(π) = 1 − π for all π ≥ A∗ and ρ(π) < 1 − π if π < A∗, where

A∗
= inf{A : ρ(A) = 1 − A}.

Therefore, the optimal stopping time of (2.10) is in this case of the form

τ ∗(π) = inf{t : πt ≥ A∗
} (5.13)

and the aim is to calculate ρ(π) and the constant A∗. This was done in [16] by first solving a
suitable free-boundary problem and then showing that the unique solution of this problem is the
value function. Our main aim in this section is to show that since the value process Vt = ρ(πs)

satisfies the RBSDE (4.3), the value function ρ(π) will be the solution of the free-boundary
problem considered in [16].

Theorem 5.1. The value function ρ(π) is a non-negative concave function and there is a
constant A∗

∈ (0, 1] such that:
(1) ρ(π) is twice continuously differentiable on (0, A∗) and satisfies the PDE

r2

2σ 2π
2(1 − π)2ρ′′(π)+ λ(1 − π)ρ′(π) = −cπ, if 0 ≤ π < A∗, (5.14)

(2) ρ(π) is equal to 1 − π if π ≥ A∗ and
(3) satisfies the smooth fit condition

ρ′(A∗) = −1.

Besides, the value function satisfies the normal entrance condition:

ρ′(0+) = 0.

Conversely, if ρ̃(π) is a non-negative concave function with second-order derivative
satisfying (1)–(3) for some B∗

∈ (0, 1], then the triple Vt = ρ̃(πt ), νt = 0 and L t equal
to the martingale part of ρ̃(πt ) satisfies the RBSDE (I)–(VI). In particular this implies that
ρ̃(π) = ρ(π) and A∗

= B∗.
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Proof. Let D = {π : ρ(π) < 1 − π} and let ∂D be the boundary of this set. It is evident that
ρ(π) ≤ 1 − π and ρ(1) = 0 (since πt = 1 for all t ≥ 0, if π0 = 1). Therefore, the concavity of
ρ(π) implies that ∂D contains only one point (say A∗) and according to Theorem 6 from [7] we
have L1−π−V (0) = 0, which means that the process µt from (4.15) is zero.

Thus (5.11) and (4.15) imply that the value process Vt = ρ(πt ) satisfies the equation

ρ(πt ) = ρ(π0)− c
∫ t

0
πs I(ρ(πs )<1−πs )ds − λ

∫ t

0
(1 − πs)I(ρ(πs )=1−πs )ds + Nt . (5.15)

Since ρ(π) is concave (by Lemma 4.1), ρ(π) ≤ 1 −π and ρ(π) = 1 −π if π = 1, we have that
ρ(π) = 1 − π for all π ≥ A∗ and ρ(π) < 1 − π if π < A∗, where

A∗
= inf{A : ρ(A) = 1 − A} = ∂D.

Besides, the optimal stopping rule is of the form (5.13) and

{(ω, s) : ρ(πs) < 1 − πs} = {(ω, s) : πs < A∗
},

{(ω, s) : ρ(πs) = 1 − πs} = {(ω, s) : πs ≥ A∗
}.

Therefore, there exists A∗
∈ (0, 1) such that ρ(πt ) satisfies the equation

ρ(πt ) = ρ(π0)− c
∫ t

0
πs I(πs<A∗)ds − λ

∫ t

0
(1 − πs)I(πs≥A∗)ds +

∫ t

0
ZsdW̃s, (5.16)

where N = Z · W̃ by the martingale representation theorem and Zs = −
b
σ
πs(1 − πs) on the set

{πs ≥ A∗
} dP × ds a.e. by Remark 4.2.

Since ρ(π) is concave, by the Tanaka–Meyer formula

ρ(πt ) = ρ(π0)+ λ

∫ t

0
ρ′

−(πs)(1 − πs)ds +
1
2

∫
R
Lπt (a)ν′′(da)

+
r

σ

∫ t

0
ρ′

−(πs)πs(1 − πs)dW̃s, (5.17)

where Lπt (a) is the local time at the point a of the process πt , ρ′
− is the left-hand derivative of

ρ(π) and ν′′ is the measure of the second derivative of ρ.
Comparing the parts of finite variations of (5.17) and (5.16), keeping in mind that ρ′

−(πs) =

−1 on the set {πs > A∗
}, we have

1
2

∫
R
Lπt (a)ν′′(da) = −

∫ t

0
[cπs + λ(1 − πs)ρ

′
−(πs)]I(πs<A∗)ds. (5.18)

Let h(x), x ∈ R be a bounded measurable function. Since the measure dLπt (a) is a.s. carried
by the set {t : πt = a}, integrating the process h(πs)π

2
s (1 − πs)

2 with respect to both parts of
equality (5.18) and using Fubini’s theorem we get

1
2

∫
R
Lπt (a)h(a)a2(1 − a)2ν′′(da)

= −

∫ t

0
h(πs)π

2
s (1 − πs)

2
[cπs + λ(1 − πs)ρ

′
−(πs)]I(πs<A∗)ds. (5.19)

By the occupation formula (see, e.g., [13] or [14]),
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0
h(πs)π

2
s (1 − πs)

2
[cπs + λ(1 − πs)ρ

′
−(πs)]I(πs<A∗)ds

=
σ 2

r2

∫ t

0
h(πs)[cπs + λ(1 − πs)ρ

′
−(πs)]I(πs<A∗)d〈π〉s

=
σ 2

r2

∫
R
Lπt (a)h(a)[ca + λ(1 − a)ρ′

−(a)]I(a<A∗)da. (5.20)

Therefore,∫
[0,1]

Lπt (a)h(a)a2(1 − a)2ν′′(da)

= −
2σ 2

r2

∫
[0,1]

Lπt (a)h(a)[ca + λ(1 − a)ρ′
−(a)]I(a<A∗)da. (5.21)

Since ρ(π) is concave and decreasing we have that −1 ≤ ρ′
− ≤ 0 and we may use

Fubini’s theorem and the Lebesgue theorem of monotone convergence, i.e., taking mathematical
expectations with respect to the measure Pπ (for some π < 1) and passing to the limit as t → ∞

in the last equality, we obtain that∫
R

h(a)a2(1 − a)2 EπLπ∞(a)ν′′(da)

= −
2σ 2

r2

∫
R

h(a)[ca + λ(1 − a)ρ′
−(a)]I(a<A∗)E

πLπ∞(a)da (5.22)

for any bounded measurable function h.
Since by Lemma 5.1 we have 0 < EπLπ∞(a) < ∞ for all a, π such that 0 ≤ a ≤ π < 1,

(5.22) and the arbitrariness of the function h imply that the measure ν′′(da) is absolutely
continuous with respect to the Lebesgue measure on (0, 1) and, hence, ρ(π) admits a second-
order generalized derivative. Therefore, by Sobolev’s embedding theorem (see [19]) there exists
the first derivative of ρ(π) in the usual sense and this derivative is continuous.

If we denote by ρ′′(π) the second-order generalized derivative of ρ from (5.22) we have that
a.e. with respect to the Lebesgue measure the value function ρ(π) satisfies the PDE

r2

2σ 2π
2(1 − π)2ρ′′(π) = −λ(1 − π)ρ′(π)− cπ (5.23)

on the open interval (0, A∗).
Since equality (5.23) is fulfilled on the set (0, A∗) a.e. with respect to the Lebesgue measure

and the right-hand side of (5.23) is continuous, then there exists a modification of ρ′′(π) (for
convenience we denote this modification also by ρ′′(π)) which is continuous on (0, A∗). It
is evident that the continuous modification of ρ′′(π) coincides with the ordinary second-order
derivative of ρ and Eq. (5.23) is satisfied for all π ∈ (0, A∗).

Since ρ(π) = 1 − π for all π ≥ A∗ and ρ(π) admits a continuous derivative, we have that
ρ′(π) = −1 for all π ≥ A∗ and, therefore, the constant A∗ can be calculated from the smooth fit
condition

ρ′(A∗) = −1.

Let us show now that ρ′(0) = 0. We shall first show that the value function ρ(π) is a
decreasing function. Let π ≤ π ′

≤ A∗ and define σ = inf{t : ππt ≥ π ′
}. It is evident that
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ππσ = π ′ and it follows from Eq. (5.16) that

ρ(ππσ ) = ρ(π)− c
∫ σ

0
ππs I(ππs <A∗)ds +

∫ σ

0
ZsdW̄s . (5.24)

Since Z · W̄ is a martingale and ρ(ππσ ) = ρ(π ′), taking expectations in (5.24) we obtain that

ρ(π ′)− ρ(π) = −cEπ
∫ σ

0
ππs ds ≤ 0.

Let (πn, n ≥ 1) be a sequence such that πn ↓ 0. Then from (5.23)

r2

2σ 2π
2
n (1 − πn)

2ρ′′(πn) = −λ(1 − πn)ρ
′(πn)− cπn (5.25)

for each n ≥ 1. Since ρ′(π) is continuous, the limit as n → ∞ of the right-hand side exists
and is equal to −λρ′(0+). Therefore there exists the limit of the left-hand side and since ρ(π) is
concave, this limit is non-positive, i.e., ρ′(0+) ≥ 0. Since the function ρ(π) is decreasing, ρ′(πn)

is non-positive and, hence, the limit of the right-hand side is non-negative, i.e., ρ′(0+) ≤ 0. Thus
ρ′(0+) = 0 and Eq. (5.23) for π = 0 is also satisfied.

Thus, we have shown that the value function ρ(π) is a concave function admitting the second-
order derivative (ρ′′(π) can be discontinuous only at points π = 0 and π = A∗) and it satisfies
the free-boundary problem (1)–(3).

Conversely, let ρ̃(π) be a non-negative concave function satisfying (1)–(3). Then by Itô’s
formula

ρ̃(πt ) = ρ̃(π0)+ λ

∫ t

0
ρ̃′(πs)(1 − πs)ds +

r2

2σ 2

∫ t

0
π2

s (1 − πs)
2ρ̃′′(πs)ds

+
r

σ

∫ t

0
πs(1 − πs)ρ̃

′(πs)dW̃s . (5.26)

Since ρ̃′′(π) = 0 and ρ̃′(π) = −1 for all π > B∗, it follows from (5.14) and (5.26) that

ρ̃(πt ) = ρ̃(π0)− λ

∫ t

0
(1 − πs)I(πs≥B∗)ds − c

∫ t

0
πs I(πs<B∗)ds

+
r

σ

∫ t

0
πs(1 − πs)ρ̃

′(πs)dW̃s . (5.27)

Let Ã = inf{A : ρ̃(A) = 1−A}. Since ρ̃(π) is concave, the smooth fit condition ρ̃′(B∗) = −1
implies that B∗

∈ [ Ã, 1]. On the other hand if B∗ > Ã then on the interval ( Ã, B∗) we shall have
ρ̃′′(π) = 0, ρ̃′(π) = −1 and for any π ∈ ( Ã, B∗) Eq. (5.14) will not be satisfied. Thus B∗

= Ã
and

{πs < B∗
} = {ρ̃(πs) < 1 − πs},

{πs ≥ B∗
} = {ρ̃(πs) = 1 − πs}. (5.28)

From (5.27) and (5.27) we obtain that

ρ̃(πt ) = ρ̃(π0)− λ

∫ t

0
(1 − πs)I(ρ̃(πs )=1−πs )ds

− c
∫ t

0
πs I(ρ̃(πs )<1−πs )ds +

r

σ

∫ t

0
πs(1 − πs)ρ̃

′(πs)dW̃s . (5.29)
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We shall show now that λ
λ+c ≤ B∗. Indeed, passing to the limit in (5.23) as π ↑ B∗ and using

the smooth fit condition we have that

−
r2

2σ 2 (B
∗)2(1 − B∗)2 lim inf

π↑B∗
ρ′′(π) ≤ cB∗

− λ(1 − B∗). (5.30)

From the concavity of the function ρ(π) we have that the left-hand side of this inequality is
non-negative and hence λ

λ+c ≤ B∗. This inequality implies that cπs − λ(1 − πs) is positive on
the set πs ≥ B∗. Therefore, we can rewrite (5.27) in the following form:

ρ̃(πt ) = ρ̃(π0)− c
∫ t

0
πsds +

∫ t

0
(cπs − λ(1 − πs))

+ I(ρ̃(πs )=1−πs )ds

+
r

σ

∫ t

0
πs(1 − πs)ρ̃

′(πs)dW̃s, (5.31)

which enables us to conclude that the triple Yt = ρ̃(πt ), νt = 0, L t =
r
σ

∫ t
0 πs(1−πs)ρ̃

′(πs)dW̃s
satisfies the RBSDE (4.3). It is easy to see that this triple satisfies (I)–(V). Indeed, since ρ̃(π)
is concave, condition (2) implies that ρ̃(πt ) ≤ 1 − πt for all t ≥ 0 and limt→∞ ρ̃(πt ) ≤

limt→∞(1 − πt ) = 0. Besides, the positivity of ρ̃(π) implies that limt→∞ ρ̃(πt ) = 0 and
that ρ̃(πt ) is bounded. Therefore, it follows from (5.27) that ρ̃(πt ) is a supermartingale from
the class S1. Thus conditions (I)–(V) are satisfied and by Theorem 4.1 ρ̃(πt ) coincides with the
value process Vt . Hence by (5.11) ρ̃(πt ) = ρ(πt ) and ρ̃(π) = ρ(π) for all π ∈ [0, 1]. �

Thus we have proved that the RBSDE (I)–(VI) and the free-boundary problem (1)–(3)
are equivalent. The solution of the free-boundary problem (1)–(3) is given [16]. Following
Shiryaev [16], if we denote ρ′(π) by g(π) from (5.14) we have that

g′(π) = −
2λσ 2

r2π2(1 − π)
g(π)−

2cσ 2

r2π(1 − π)2
.

Since g(0) = 0, we find that for π < A∗

g(π) = ρ′(π) = −
2cσ 2

r2

∫ π

0
exp

{
−

2λσ 2

r2 (H(π)− H(y))

}
dy

y(1 − y)2
, (5.32)

where H(y) = ln y
1−y −

1
y . If we define A∗ as a unique solution of equation g(A∗) = −1, then

the value function ρ(π) coincides with

ρ(π) =

1 − A∗
−

∫ A∗

π

g(x)dx, 0 ≤ π ≤ A∗

1 − π, A∗
≤ π ≤ 1.

(5.33)

Remark 5.1. Let us note that the smooth fit of the second derivative cannot be fulfilled and the
second-order derivative of ρ(π) is discontinuous at the point A∗. Indeed (1)–(3) imply that ρ′′(π)

can be continuous only if A∗
=

λ
λ+c . On the other hand by partial integration∫ π

0

y

1 − y
exp

{
2λσ 2

r2 H(y)

}
dH(y)

=
r2

2λσ 2

π

1 − π
exp

{
2λσ 2

r2 H(π)

}
−

r2

2λσ 2

∫ π

0
exp

{
2λσ 2

r2 H(y)

}
dy

(1 − y)2
(5.34)
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and from (5.32) and (5.34) we obtain that

g(π) > −
c

λ

π

1 − π
. (5.35)

Therefore on the set {π : π ≤
λ
λ+c } we have

g(π) > −1. (5.36)

In particular ρ′( λ
λ+c ) > −1 and hence A∗

6=
λ
λ+c . Thus, the second-order derivative of the value

function is discontinuous at the point A∗.

6. Poisson disorder problem

In this section we consider the disorder problem for a Poisson process whose intensity changes
from λ0 to λ1 at some random time θ and show that in this case the RBSDE (4.3) is equivalent to a
free-boundary differential–difference problem considered in [12]. Besides, we derive the smooth
fit conditions for the value function (in cases when this condition is satisfied) and establish when
the smooth fit condition breaks down directly from the RBSDE for the value process.

Let Ω be the space X of piecewise-constant functions x = (xt , t ≥ 0) such that x0 = 0 and
xt = xt− + (0 or 1), B = σ {x : xs, s ≥ 0},Bt = σ {x : xs, s ≤ t}.

Note that for any x = (xt , t ≥ 0) ∈ X , xt is expressed as

xt =

∑
i≥1

I{τi (x)≤t},

where

τi (x) =

{
inf{s ≥ 0 : xs = i}
∞ lim

t→∞
xt < i. (6.1)

Let P0 and P1 be two Poisson measures on (X,B) with parameters λ0 and λ1 respectively.
This means that under the measure P i the compensator of the coordinate process X t (x) = xt , t ≥

0, is equal to Ai (t, x) = λi t , i = 1, 2. (Note that the family of σ -algebras (Bt , t ≥ 0), completed
by P0 and P1, is right-continuous.)

As is known,

P1 loc
∼ P0 and

dP1
t

dP0
t

= exp
{

ln
λ1

λ0
X t − (λ1 − λ0)t

}
(see [10]).

It is easy to see that dP1
t

dP0
t

= Et (M), where

Mt =

(
λ1

λ0
− 1

)
(X t − λ0t), M ∈ Mloc(F, P0).

Let ψ(0)−ψ(0−) = π and 1 −ψ(t) = (1 − π) exp{−λt}, where λ is a known constant and
0 ≤ π ≤ 1.

By Lemma 3.1 (see Remark 3.1)

M̂ψ
t =

(
λ1

λ0
− 1

)∫ t

0
πs−d(Xs − λ0s) (6.2)
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and, hence,

L t (M, M̂ψ ) =

(
λ1

λ0
− 1

)∫ t

0

dXs

1 + πs−

(
λ1
λ0

− 1
) − (λ1 − λ0)t. (6.3)

Since ∆ψt = 0, it follows from Remark 3.2 that the a posteriori probability process πt satisfies
the equation

dπt = λ(1 − πt−)dt +
πt−(1 − πt−)(λ1 − λ0)

λ1πt− + λ0(1 − πt−)
(dX t − (λ1πt− + λ0(1 − πt−))dt), (6.4)

which coincides with the equation derived in [12].

Remark 6.1. The process (X t −
∫ t

0 (λ1πs− + λ0(1 − πs−))ds,Bt ), t ≥ 0, is a martingale under
Pπ and (πt ,Bt , Pπ ) is a time-homogeneous (strong) Markov process.

Assume that Kt = ct . So, the cost criterion is of the same form as in (5.9) and the value
function of the optimal stopping problem (2.10) is as in (5.10).

Since (πt ,Ft , Pπ ) is a time-homogeneous(strong) Markov process, we have that

Vt = ρ(πt ) a.s. for all t ≥ 0. (6.5)

Note that the cases λ1 < λ0 and λ1 > λ0 are quite different. e.g., a key difference between
these cases is the fact that when λ1 < λ0, Eq. (6.6) has no singularity points, whereas B̂ =

λ
λ1−λ0

is a singularity point of (6.6) whenever λ < λ1−λ0 (see [12] for detailed analysis of these cases).
Let us first consider the case λ1 > λ0.

Theorem 6.1. Let λ1 > λ0. The value function ρ(π) is a non-negative concave function and
there exists a constant B∗

∈ (0, 1] such that:
(1) ρ(π) admits a continuous first derivative on (0, B∗) (perhaps except for the point B̂ =

λ
λ1−λ0

)
and satisfies a differential–difference equation:

(λ− π(λ1 − λ0))(1 − π)ρ′(π)+ (λ1π + λ0(1 − π))

×

[
ρ

(
λ1π

λ1π + λ0(1 − π)

)
− ρ(π)

]
= −cπ, (6.6)

if π < B∗.
(2) It is equal to 1 − π , if π ≥ B∗.
(3) It satisfies the continuous fit condition

ρ(B∗
−) = 1 − B∗.

Moreover, if c > λ1 − λ0 − λ, then
(3∗) The value function ρ(π) satisfies the smooth fit condition:

ρ′(B∗
−) = −1.

Conversely, if ρ̃(π) is a non-negative, concave function satisfying (1)–(3) in the case c ≤

λ1 − λ0 − λ and (1), (2), (3∗) in the case c > λ1 − λ0 − λ for some A∗
∈ (0, 1], then the triple

Yt = ρ̃(πt ), νt = 0 and L t equal to the martingale part of ρ̃(πt ) satisfies the RBSDE (I)–(VI).
In particular this implies that ρ̃(π) = ρ(π) and A∗

= B∗.
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Proof. Similarly to the Wiener case,

{(ω, s) : ρ(πs) < 1 − πs} = {(ω, s) : πs < B∗
},

{(ω, s) : ρ(πs) = 1 − πs} = {(ω, s) : πs ≥ B∗
},

where

B∗
= inf{B : ρ(B) = 1 − B}

and the optimal stopping rule is of the form

τ ∗
= inf{t : ρ(πt ) = 1 − πt } = inf{t : πt ≥ B∗

}. (6.7)

Taking into account the above facts it follows from Remark 4.1. (see (4.17)) that the value
process ρ(πt ) satisfies the following equation:

ρ(πt ) = ρ(π0)− c
∫ t

0
πs I(πs<B∗)ds − λ

∫ t

0
(1 − πs)I(πs≥B∗)ds

−

(
1
2
L0

t (1 − π − V )+ Ãt

)
+ Nt . (6.8)

It is evident that the process (L0
t (1 − π − V ), t ≥ 0) is indistinguishable from zero. Indeed,

since both functions πt and Vt have jumps at the discontinuity points of the process X t and the
number of these points for the process X t on each interval (0, t] is finite, we will have that the
following condition is fulfilled:∑

0<s≤t

|4(1 − πs − Vs)| < ∞ a.s., for each t > 0.

Besides, as the processes πt and Vt do not have continuous martingale parts, we have that
L0

t (1 − π − V ) = 0 (see, e.g., Corollary 3 of Theorem 56, Chapter 4 from [13]).
Recall that Ãt is the compensator of the process

∑
0<s≤t I(1−πs−=ρ(πs−))(1 − πs − ρ(πs)).

Therefore Ãt can be written as follows:

− Ãt =

∫ t

0
(λ1πs + λ0(1 − πs))

[
ρ

(
λ1πs

λ1πs + λ0(1 − πs)

)
− ρ(πs)

]
I(πs≥B∗)ds

+

∫ t

0
(λ1 − λ0)πs(1 − πs)I(πs≥B∗)ds. (6.9)

Since λ1π
λ1π+λ0(1−π)

> π and ρ(π) = 1 − π for any π ≥ B∗, then ρ(
λ1π

λ1π+λ0(1−π)
) =

1 −
λ1π

λ1π+λ0(1−π)
. Therefore it follows easily from (6.9) that Ãt = 0. Hence the process µt

from (4.15) is indistinguishable from zero.
Thus from (6.8) we have

ρ(πt ) = ρ(π0)− c
∫ t

0
πs I(πs<B∗)ds − λ

∫ t

0
(1 − πs)I(πs≥B∗)ds + Nt . (6.10)

Since the function ρ(π) is concave and the martingale part of the process (πt , t ≥ 0) is a
pure-jump process and so La

t (π) = 0, by the Tanaka–Meyer formula

ρ(πt ) = ρ(π0)+

∫ t

0
ρ′

−(πs−)dπs +

∑
s≤t
(ρ(πs)− ρ(πs−)− ρ′

−(πs−)4πs), (6.11)

where by ρ′
−(π) we have denoted the left derivative of the function ρ(π).
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As the compensator Â of the last summand of Eq. (6.11) is equal to

Ât ≡

∫ t

0
(λ1πs + λ0(1 − πs))

[
ρ

(
λ1πs

λ1πs + λ0(1 − πs)

)
− ρ(πs)

]
ds − (λ1 − λ0)

×

∫ t

0
πs(1 − πs)ρ

′
−(πs)ds

keeping in mind that ρ′
−(π) = −1 for π > B∗, from (6.9) we obtain that

Ât =

∫ t

0
(λ1πs + λ0(1 − πs))

[
ρ

(
λ1πs

λ1πs + λ0(1 − πs)

)
− ρ(πs)

]
I(πs<B∗)ds

−

∫ t

0
(λ1 − λ0)πs(1 − πs)ρ

′
−(πs)I(πs<B∗)ds. (6.12)

Therefore by (6.11) we have

ρ(πt ) = ρ(π0)+ λ

∫ t

0
(1 − πs)ρ

′
−(πs)I(πs<B∗)ds − λ

∫ t

0
(1 − πs)I(πs≥B∗)ds

+

∫ t

0
(λ1πs + λ0(1 − πs))

[
ρ

(
λ1πs

λ1πs + λ0(1 − πs)

)
− ρ(πs)

]
I(πs<B∗)ds

−

∫ t

0
(λ1 − λ0)πs(1 − πs)ρ

′
−(πs)I(πs<B∗)ds + M̃t , (6.13)

where M̃t is a martingale.
By the uniqueness of the canonical decomposition from (6.9), (6.10) and (6.13) we have that∫ t

0
(λ− (λ1 − λ0)πs)(1 − πs)ρ

′
−(πs)I(πs<B∗)ds +

∫ t

0
cπs I(πs<B∗)ds

+

∫ t

0
(λ1πs + λ0(1 − πs))

(
ρ

(
λ1πs

λ1πs + λ0(1 − πs)

)
− ρ(πs)

)
I(πs<B∗)ds = 0. (6.14)

Further let us define

B̂ =
λ

λ1 − λ0
(6.15)

and observe that (6.4) can be rewritten in the following form:

dπt = (λ1 − λ0)(B̂ − πt−)(1 − πt−)dt +
πt−(1 − πt−)(λ1 − λ0)

λ1πt− + λ0(1 − πt−)
dX t . (6.16)

Hence, if π < B̂, then πt ↓ π as t → 0 Pπ -a.s. and if π > B̂, then πt ↑ π as t → 0 Pπ -a.s.
More exactly for each ω ∈ N , for some N ⊂ Ω , with Pπ (N ) = 1, there exists t0 = t0(ω), such
that πt ↑ π for t0(ω) ≥ t → 0.

At the same time, since ρ(π) is a concave function and ρ′
−(π) is a non-increasing left-

continuous function having right-hand-side limits, we have that

lim
t→0

ρ′
−(πt ) = ρ′

+(π)P
π -a.s, if π > B̂ and

lim
t→0

ρ′
−(πt ) = ρ′

−(π)P
π -a.s, if π ≤ B̂.
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Taking into consideration these facts by dividing the right-hand side of (6.14) by t , the
passage to the limit as t → 0 gives that the value function ρ(π) satisfies the following
differential–difference equation:

(λ− (λ1 − λ0)π)(1 − π)ρ̃′(π)

= −

(
(λ1π + λ0(1 − π))

[
ρ

(
λ1π

λ1π + λ0(1 − π)

)
− ρ(π)

]
+ cπ

)
(6.17)

for all π < B∗, where ρ̃′(π) = ρ′
−(π), if π < B̂ and ρ̃′(π) = ρ′

+(π), if π > B̂.
Since the right-hand side of (6.17) is a continuous function, then ρ̃′(π) is continuous except

at the point π = B̂. Since ρ̃′(π) coincides with left or right derivatives of the function ρ(π) and
ρ̃′(π) is continuous, we obtain that ρ(π) admits a continuous derivative and ρ̃′(π) = ρ′(π) for
all π ∈ (0, B∗) (perhaps except at the point π = B̂). Therefore (6.17) implies that ρ(π) satisfies
Eq. (6.6) for all π ∈ (0, B∗).

Going to the limit as π → 0+ in (6.17) we obtain that ρ(π) satisfies the normal entrance
condition

ρ′(0+) = 0,

and hence ρ(π) is a decreasing function.
Since ρ(π) is continuous and ρ(π) = 1 − π for π > B∗, the continuous fit condition

ρ(B∗
−) = 1 − B∗

is fulfilled. Thus the value function ρ(π) satisfies conditions (1)–(3).
We shall show now that in the case c > λ1 − λ0 − λ the smooth fit condition (3∗) is satisfied.

Since {ρ(πs) = 1 − πs} = {πs ≥ B∗
}, from (4.12) we have that cπs − λ(1 − πs) ≥ 0 on the set

{πs ≥ B∗
} and hence

B∗
≥

λ

λ+ c
. (6.18)

Passing to the limit in (6.6), as π ↑ B∗, we have

ρ̃′(B∗
−) =

B∗
[(λ1 − λ0 − c)− (λ1 − λ0)B∗

]

(1 − B∗)[λ− B∗(λ1 − λ0)]
, (6.19)

if B∗
6= B̂ =

λ
λ1−λ0

.
Since ρ(π) is concave and satisfies the normal entrance condition, we have that ρ′(π) ∈

[−1, 0]. By resolving the system{
ρ̃′(B∗

−) ≥ −1
ρ̃′(B∗

−) ≤ 0
(6.20)

we have B∗
∈ [max(λ1−λ0−c

λ1−λ0
, 0), λ

λ+c ], which together with (6.18) implies that

B∗
=

λ

λ+ c
;

Substituting λ
λ+c instead of B∗ in (6.19) we obtain that

ρ′(B∗
−) = −1.

Hence condition (3∗) is also satisfied and the first part of the theorem is proved. �
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Conversely, let ρ̃(π) be a non-negative, concave function satisfying (1)–(3) if c ≤ λ1 −λ0 −λ

and conditions (1), (2), (3∗) if c > λ1 − λ0 − λ. Then by the Tanaka–Meyer formula

ρ̃(πt ) = ρ̃(π0)+

∫ t

0
ρ̃′

−(πs−)dπs +

∑
s≤t
(ρ̃(πs)− ρ̃(πs−)− ρ̃′

−(πs−)4πs). (6.21)

Since the compensator of the last summand is equal to∫ t

0
(λ1πs + λ0(1 − πs))

[
ρ̃

(
λ1πs

λ1πs + λ0(1 − πs)

)
− ρ̃(πs)

]
ds

− (λ1 − λ0)

∫ t

0
πs(1 − πs)ρ̃

′
−(πs)ds,

keeping in mind the fact that ρ̃′(π) = −1 for all π > A∗, it follows from (6.6) that

ρ̃(πt ) = ρ̃(π0)− c
∫ t

0
πs I(πs<A∗)ds − λ

∫ t

0
(1 − πs)I(πs≥A∗)ds + L̃ t , (6.22)

where

L̃ t ≡

∫ t

0

πs−(1 − πs−)(λ1 − λ0)

λ1πs− + λ0(1 − πs−)
ρ̃′

−(πs−)(dXs − (λ1πs− + λ0(1 − πs−)))ds

is the martingale part of this decomposition.
Let B̃ = inf{B : ρ̃(B) = 1 − B}. Since ρ̃(π) is concave, the continuous fit condition implies

that A∗
∈ [B̃, 1]. On the other hand if A∗ > B̃ then on the interval (B̃, A∗) we shall have

ρ̃′(π) = −1. Further λ1π
λ1π+λ0(1−π)

> π , which implies that ρ( λ1π
λ1π+λ0(1−π)

) = 1 −
λ1π

λ1π+λ0(1−π)

for any π ∈ (B̃, A∗). Taking into consideration these facts we obtain that Eq. (6.6) in this case
can be satisfied only at the point π =

λ
λ+c , which gives a contradiction. Thus B̃ = A∗ and

{πs < A∗
} = {ρ̃(πs) < 1 − πs},

{πs ≥ A∗
} = {ρ̃(πs) = 1 − πs}. (6.23)

Therefore from (6.22) and (6.22) we obtain that

ρ̃(πt ) = ρ̃(π0)− c
∫ t

0
πs I(ρ̃(πs )<1−πs )ds − λ

∫ t

0
(1 − πs)I(ρ̃(πs )=1−πs )ds + L̃ t . (6.24)

Since ρ̃(π) is a bounded function, ρ̃(πt ) is a supermartingale of the class D. Hence ρ̃(πt ) ∈ S1

and L̃ t is a uniformly integrable martingale.
We shall show now that A∗

≥
λ
λ+c . Indeed passing to the limit in (6.6) when π ↑ A∗ and

using the continuous fit condition we obtain that

ρ̃′(A∗
−) =

A∗
[(λ1 − λ0 − c)− (λ1 − λ0)A∗

]

(1 − A∗)[λ− A∗(λ1 − λ0)]
(6.25)

if A∗
6= B̂ =

λ
λ1−λ0

.

Since ρ̃(π) is concave and satisfies the normal entrance condition, we have ρ̃′(π) ∈ [−1, 0].
Consider the following three cases:
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(a) If c < λ1 − λ0 − λ, by resolving the system{
ρ̃′(A∗

−) ≥ −1
ρ̃′(A∗

−) ≤ 0
(6.26)

we obtain that A∗
∈ [

λ
λ+c ,

λ1−λ0−c
λ1−λ0

].

(b) If c = λ1 − λ0 − λ, and A∗
6= B̂ =

λ
λ+c =

λ
λ1−λ0

, then by (6.25) ρ̃′(A∗
−) =

A∗

1−A∗ > 0,

which gives a contradiction, since ρ̃′ is a non-positive function. Thus, A∗
= B̂ =

λ
λ+c .

(c) If c > λ1 − λ0 − λ, then the smooth fit condition and (6.25) implies that

A∗
[(λ1 − λ0 − c)− (λ1 − λ0)A∗

]

(1 − A∗)[λ− A∗(λ1 − λ0)]
= −1,

which gives

A∗
=

λ

λ+ c
.

Hence A∗
≥

λ
λ+c in all cases. This inequality implies that cπs − λ(1 − πs) is positive on the

set πs ≥ A∗. Therefore we can rewrite (6.24) in the following form:

ρ̃(πt ) = ρ̃(π0)− c
∫ t

0
πsds +

∫ t

0
(cπs − λ(1 − πs))

+ I(ρ̃(πs )=1−πs )ds + L̃ t . (6.27)

This implies that the triple Yt = ρ̃(πt ), νt = 0, L t =
∫ t

0
πs−(1−πs−)(λ1−λ0)
λ1πs−+λ0(1−πs−)

ρ̃′
−(πs−)(dXs −

(λ1πs− + λ0(1 − πs−)))ds satisfies RBSDE (4.3). Besides, (IV) straightforwardly follows from
the concavity of the function ρ̃(π). Since limt→∞ πt = 1, this gives together with (IV) that
condition (V) is also satisfied. Therefore by Theorem 4.1 ρ̃(πt ) coincides with the value process
Vt . Hence by (6.5) ρ̃(πt ) = ρ(πt ) and ρ̃(π) = ρ(π) for all π ∈ [0, 1]. �

In the next theorem, we consider the case λ1 < λ0. Note that in this case, contrary to the case
λ1 > λ0, the process µt is not equal to zero, which leads to additional technical difficulties. Due
to the lack of the space we give this theorem without proof.

Theorem 6.2. Let λ1 < λ0. The value function ρ(π) is a non-negative concave function and
there exists a constant B∗

∈ (0, 1] such that:
(1) ρ(π) admits a continuous first derivative on (0, B∗) and satisfies a differential–difference
equation:

(λ− π(λ1 − λ0))(1 − π)ρ′(π)+ (λ1π + λ0(1 − π))

×

[
ρ

(
λ1π

λ1π + λ0(1 − π)

)
− ρ(π)

]
= −cπ, (6.28)

if π < B∗.
(2) It is equal to 1 − π , if π ≥ B∗.
(3∗) It satisfies the smooth fit condition:

ρ′(B∗
−) = −1.

Conversely, if ρ̃(π) is a non-negative, concave function satisfying (1), (2), (3∗) for some
A∗

∈ (0, 1], then the triple Vt = ρ̃(πt ), νt =
(λ+πt (λ1−λ0))(1−S(πt )−ρ(S(πt )))

cπt −λ(1−πt )
I(ρ̃(πt )=1−πt ),

where S(π) =
λ1π

λ0+(λ1−λ0)π
and L t is equal to the martingale part of ρ̃(πt ), satisfies the

RBSDE (I)–(VI). In particular this implies that ρ̃(π) = ρ(π) and A∗
= B∗.
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