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BACKWARD STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
RELATED TO UTILITY MAXIMIZATION AND HEDGING

M. Mania and R. Tevzadze UDC 519.2

Abstract. We study the utility maximization problem, the problem of minimization of the hedging
error and the corresponding dual problems using dynamic programming approach. We consider an
incomplete financial market model, where the dynamics of asset prices are described by an R

d-valued
continuous semimartingale. Under some regularity assumptions, we derive the backward stochastic
PDEs for the value functions related to these problems, and for the primal problem, we show that the
strategy is optimal if and only if the corresponding wealth process satisfies a certain forward SDE.
As examples we consider the mean-variance hedging problem and the cases of power, exponential,
logarithmic utilities, and corresponding dual problems.
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Part 1

BACKWARD STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

RELATED TO THE UTILITY MAXIMIZATION PROBLEM AND

HEDGING

1.1. Introduction

Portfolio optimization, hedging, and derivative pricing are fundamental problems in mathematical
finance, which are closely related to each other. The basic optimization problem of mathematical
finance, the optimal portfolio choice or hedging, is to optimize

E[U(Xx,π
T )] over all π in the class Π of strategies, (1.1.1)

where

Xx,π
t = x+

t∫

0

πudSu

is the wealth process starting from the initial capital x, determined by the self-financing trading
strategy π, and Π is some class of admissible strategies. U is the objective function, which can also
depend on ω. It can be interpreted as the utility function or a function that measures a hedging error.

If U(x) = (x − H)2, where H is a contingent claim at time T , then (1.1.1) corresponds to the
well-known mean-variance hedging problem

minimize E(Xx,π
T −H)2 over all π ∈ Π (1.1.2)

introduced by Föllmer and Sondermann [29] and then developed by numerous authors (see, e.g., [20,
33, 36, 37, 83–85] for further generalizations and related results).

If the objective function U is the utility function, then (1.1.2) is the utility maximization problem

maximize E[U(Xx,π
T )] over all π ∈ Π, (1.1.3)

i.e., for a given initial capital x > 0, the goal is to maximize the expected value from the terminal
wealth.

The utility maximization problem was first studied by Merton (1971) in a classical Black–Scholes
model. Using the Markov structure of the model, he derived the Bellman equation for the value
function of the problem and obtained a closed-form solution of this equation in the cases of power,
logarithmic, and exponential utility functions.

For general complete market models, it was shown by Pliska (1986), Cox and Huang (1989), and
Karatzas et al. (1987) that the optimal portfolio of the utility maximization problem is (up to a con-
stant) equal to the density of the martingale measure unique for complete markets. As was shown
by He and Pearson (1991) and Karatzas et al. (1991), for incomplete markets described by the Itô
processes, this method gives a duality characterization of optimal portfolios provided by the set of
martingale measures. Their idea was to solve the dual problem of finding the suitable optimal mar-
tingale measure and then to express the solution of the primal problem by using the convex duality.
Extending the domain of the dual problem, the approach was generalized to semimartingale models
under weaker conditions on the utility functions by Kramkov and Schachermayer (1999) and Cvitanic,
Schachermayer, and Wong (2001).

These approaches mainly give a reduction of the basic primal problem to the solution of the dual
problem, but the constructive solution of the dual problem for general models of incomplete markets
is itself a demanding task.

Our goal is to derive a semimartingale Bellman equation (stochastic version of the Bellman equa-
tion) directly related to the basic (or primal) optimization problem, to study the well-posedness of
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such equations, and to give constructions of optimal strategies. The application of the dynamic pro-
gramming approach directly to the primal optimization problem can represent a valuable alternative
to the commonly used convex duality approach in many cases.

Let S be an R
d-valued continuous semimartingale defined on a filtered probability space satisfying

the usual conditions. The process S describes the discounted price evolution of d risky assets in a
financial market also containing a riskless bond of constant price. To exclude arbitrage opportunities,
we assume that the set Me of equivalent martingale measures for S is nonempty. Since S is continuous,
the existence of an equivalent martingale measure implies that the structure condition is satisfied, i.e.,
S admits the decomposition

St = Mt +

t∫

0

d〈M〉sλs, 〈λ ·M〉 <∞ for all t a.s., (1.1.4)

where M is a continuous local martingale and λ is a predictable R
d-valued process.

We consider the utility function U mapping (0,∞) into R. It is assumed to be continuously differ-
entiable, strictly increasing, and strictly concave, and it satisfies the Inada conditions

U ′(0) = lim
x→0

U ′(x) = ∞, U ′(∞) = lim
x→∞U ′(x) = ∞.

Also, we set U(0) = lim
x→0

U(x) and U(x) = −∞ for all x < 0.

For any x ∈ R+, denote by Πx the class of predictable S-integrable processes π such that the
corresponding wealth process is nonnegative at any instant, i.e.,

Xx,π
t = x+

t∫

0

πudSu ≥ 0 ∀t ∈ [0, T ].

For simplicity, in the introduction, we consider the case with a single risky asset.
Let us introduce the dynamical value function of problem (1.1.3) defined as

V (t, x) = ess sup
π∈Πx

E

⎛
⎝U

⎛
⎝x+

T∫

t

πudSu

⎞
⎠/Ft

⎞
⎠ . (1.1.5)

The classical Itô formula (or its generalization given by Krylov in 1980) plays a crucial role in
deriving the Bellman equation for the value function of controlled diffusion processes. For our purposes,
the Itô formula is no longer sufficient, since the function V also depends on ω even if U is deterministic.
Therefore, the Itô–Ventzell formula must be used.

Under some regularity assumptions on the value function (sufficient for the application of the Itô–
Ventzell formula), in Theorem 1.3.1, we show that the value function defined by (1.1.5) satisfies the
following backward stochastic partial differential equation (BSPDE):

V (t, x) = V (0, x) +
1
2

t∫

0

(ϕx(s, x) + λ(s)Vx(s, x))2

Vxx(s, x)
d〈M〉s +

t∫

0

ϕ(s, x)dMs + L(t, x) (1.1.6)

with the boundary condition
V (T, x) = U(x),

where L(t, x) is a local martingale orthogonal to M for all x and the subscripts ϕx, Vx, and Vxx denote
the partial derivatives. Moreover, a strategy π∗ is optimal if and only if the corresponding wealth
process Xπ∗

is a solution of the forward SDE

Xπ∗
t = Xπ∗

0 −
t∫

0

ϕx(u,Xπ∗
u ) + λ(u)Vx(u,Xπ∗

u )
Vxx(s,Xπ∗

u )
dSu. (1.1.7)
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Thus, to construct the optimal strategy, we need:
(1) first, to solve the backward equation (1.1.6) (which determines V and ϕ simultaneously) and

substitute the corresponding derivatives of V and ϕ in Eq. (1.1.7);
(2) then to solve the forward equation (1.1.7) with respect to Xπ∗

;
(3) finally, to reproduce the optimal strategy π∗ from the corresponding wealth process Xπ∗

.
Theorem 1.3.1 is a verification theorem, since we require conditions directly imposed on the value

function V (but not only on the function U). Therefore, we cannot state that the solution of Eq. (1.1.6)
exists, but for the standard utility functions, all the conditions of Theorem 1.3.1 are satisfied, and in
these cases, the existence of a unique solutions of the corresponding backward equations follows from
this theorem.

If U(x) = xp, p ∈ (0, 1), then (1.1.3) corresponds to the power utility maximization problem:

maximize E(x+

T∫

0

πudSu)p over all π ∈ Πx. (1.1.8)

In this case, V (t, x) = xpVt, where Vt is a semimartingale and all condition of Theorem 1.3.1
are satisfied. This theorem implies that the process Vt satisfies the following backward stochastic
differential equation (BSDE):

Vt = V0 +
q

2

t∫

0

(ϕs + λsVs)2

Vs
d〈M〉s +

t∫

0

ϕsdMs + Lt, VT = 1, (1.1.9)

where q = p/(p− 1) and L is a local martingale strongly orthogonal to M . In addition, Eq. (1.1.7) is
transformed into the linear equation

X∗
t = x+ (1 − q)

t∫

0

ϕu + λuVu

Vu
X∗

udSu (1.1.10)

for the optimal wealth process.
Therefore,

X∗
t = xEt

(
(1 − q)

(ϕ
V

+ λ
)
· S
)
,

and the optimal strategy is of the form

π∗t = x(1 − q)
(
ϕt

Vt
+ λt

)
Et

(
(1 − q)

(ϕ
V

+ λ
)
· S
)
.

If we assume that U(x) is strictly convex (for each ω), then we can interpret U as a function that
measures a hedging error and consider the problem

minimize E[U(Xx,π
T )] over all π from Π, (1.1.11)

where the class Π will be specified later.
Note that the corresponding value function

V (t, x) = ess inf
π∈Π

E

⎛
⎝U

⎛
⎝x+

T∫

t

πudSu

⎞
⎠ /Ft

⎞
⎠ (1.1.12)

satisfies the same Eq. (1.1.6) as the value function of problem (1.1.3) (in this case, Vxx is negative,
and hence V (t, x) is now a submartingale for all x ∈ R

+). Equations for optimal wealth processes are
also the same, and the proof (see Theorem 1.5.1) is mainly similar to the proof of Theorem 1.3.1.

If U(x) = (x − H)2, where H is a contingent claim at time T , as was mentioned above, (1.1.11)
corresponds to the mean-variance hedging problem.
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We show that in this case, V (t, x) is a quadratic trinomial of the form V (t, x) = V0(t) − 2V1(t)x+
V2(t)x2 and Eq. (1.1.6) gives a triangular system of backward equations for the coefficients Vi, i =
0, 1, 2, of the value function. Moreover, Eq. (1.1.7) transforms into the linear equation

X∗
t = x+

t∫

0

ϕ1(s) + λ(s)V1(s)
V2(s)

dSs −
t∫

0

ϕ2(s) + λ(s)V2(s)
V2(s)

X∗
sdSs (1.1.13)

for the optimal wealth process. A similar result was obtained in [2] for Markov diffusion processes by
using the dynamic programming approach.

Note that (1.1.13) gives an alternative equivalent form to the well-known feedback form solution of
problem (1.1.2), which is usually derived using the density process of the variance-optimal martingale
measure [36] (see also [37, 73, 79, 86]). At the end of Sec. 1.5, we also establish relations between
Eqs. (1.1.13) and (1.5.21) derived in [36] and between the equations for V2 and for the value process
of the variance-optimal martingale measure (see [49, 61]).

The main tools of the work are backward stochastic differential equations, which were introduced
by J. M. Bismut in [4] for the linear case as the equations for the adjoint process in the stochastic
maximum principle; other works on the maximum principle in stochastic control were written by
Yu. Kabanov [42] and V. Arkin and M. Saksonov [1]. In [7, 74], the well-posedness results for BSDEs
with more general generators were obtained (see also [24] for references and related results). The
semimartingale backward equation that is a stochastic version of the Bellman equation in an optimal
control problem was first derived in [7] by R. Chitashvili.

The main results of this part are based on the authors’ papers [62, 63, 66].

1.2. Basic Assumptions and Some Auxiliary Facts

We consider an incomplete financial market model, in which the dynamics of asset prices are de-
scribed by an R

d-valued continuous semimartingale S defined on a filtered probability space (Ω, F ,
F = (Ft, t ∈ [0, T ]), P ) satisfying the usual conditions, where F = FT and T < ∞ is a fixed time
horizon. For all unexplained notation from the martingale theory, we refer the reader to [19, 39, 52].

Denote by Me the set of martingale measures, i.e., the set of measures Q equivalent to P on FT

such that S is a local martingale under Q. Let Zt(Q) be the density process of Q with respect to
the basic measure P , which is a strictly positive uniformly integrable martingale. For any Q ∈ Me,
there is a P -local martingale MQ such that Z(Q) = E(MQ) = (Et(MQ), t ∈ [0, T ]), where E(M) is the
Doleans-Dade exponential of M .

Recall the definition of BMO-martingales and the reverse Hölder condition.
A square integrable continuous martingale M belongs to the class BMO if there is a constant C > 0

such that
E1/2(〈M〉T − 〈M〉τ |Fτ ) ≤ C P -a.s.

for every stopping time τ . The smallest constant with this property (or +∞ if this does not exist) is
called the BMO norm of M and is denoted by ‖M‖BMO.

A strictly positive adapted process Z satisfies the reverse Hölder inequalityRp(P ), where 1 < p <∞,
if there is a constant C such that

E

((
ZT

Zτ

)p

|Fτ

)
≤ C P -a.s.

for every stopping time τ .

Proposition 1.2.1 (Kazamaki [41]). If M is a continuous BMO-martingale, then E(M) is a uni-
formly integrable martingale.

The following assertion relates BMO and the reverse Hölder condition.
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Proposition 1.2.2 (Doleans-Dade and Meyer [21]). Let M be a local martingale and E(M) be its
Doleans exponential. The following assertions are equivalent :

(i) M belongs to the class BMO ;
(ii) E(M) is a uniformly integrable martingale satisfying the reverse Hölder inequality Rp(P ) for

some p > 1.

Let Πx be the space of all predictable S-integrable processes π such that the corresponding wealth
process is nonnegative at any instant, i.e.,

x+

t∫

0

πudSu ≥ 0 ∀t ∈ [0, T ].

In the sequel, sometimes, we use the notation (π · S)t for the stochastic integral
∫ t
0 πudSu.

Assume that the objective function U(x) = U(ω, x) satisfies the following conditions:

(B1) V (0, x) <∞ for some x;
(B2) U(x) is the utility function P -a.s.;
(B3) the optimization problem (1.1.3) admits a solution, i.e., for any t and x, there is a strategy

π∗(t, x) such that

V (t, x) = E

⎛
⎝U

⎛
⎝x+

T∫

t

π∗s(t, x)dSs

⎞
⎠ /Ft

⎞
⎠ . (1.2.1)

Remark 1.2.1. As was shown by Kramkov and Schachermayer (1999), a sufficient (and necessary)
condition for (B3) is that the utility function U(x) have an asymptotic elasticity strictly less than 1,
i.e.,

AE(U) = lim sup
x→∞

xUx(x)
U(x)

< 1.

Remark 1.2.2. The strict concavity of U implies that the optimal strategy is unique, if it exists.
Indeed, if there exist two optimal strategies π1 and π2, then by the concavity of U , the strategy
π̄ = 1

2π
1 + 1

2π
2 is also optimal. Therefore,

1
2
E

⎡
⎣U
⎛
⎝x+

T∫

t

π1
sdSs

⎞
⎠ |Ft

⎤
⎦+

1
2
E

⎡
⎣U
⎛
⎝x+

T∫

t

π2
sdSs

⎞
⎠ |Ft

⎤
⎦ = E

⎡
⎣U
⎛
⎝x+

T∫

t

π̄sdSs

⎞
⎠ |Ft

⎤
⎦

and

1
2
U

⎛
⎝x+

T∫

t

π1
sdSs

⎞
⎠+

1
2
U

⎛
⎝x+

T∫

t

π2
sdSs

⎞
⎠ = U

⎛
⎝x+

T∫

t

π̄sdSs

⎞
⎠ P -a.s.

Now the strict concavity of U leads to the relation

T∫

t

π1
sdSs =

T∫

t

π2
sdSs.

For convenience, we give the proof of the following well-known assertion.

Lemma 1.2.1. Under conditions (B1)–(B3), the value function V (t, x) is a strictly concave function
with respect to x.
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Proof. The concavity of V (t, x) follows from (B2) and (B3), since for any α, β ∈ [0, 1] with α+ β = 1
and any x1, x2 ∈ R, we have

αV (t, x1) + βV (t, x2) = αE

⎡
⎣U
⎛
⎝x1 +

T∫

t

π∗u(t, x1)dSu

⎞
⎠ |Ft

⎤
⎦+ βE

⎡
⎣U
⎛
⎝x2 +

T∫

t

π∗u(t, x2)dSu

⎞
⎠ |Ft

⎤
⎦

≥ E

⎡
⎣U
⎛
⎝αx1 + βx2 +

T∫

t

(απ∗u(t, x1) + βπ∗u(t, x2))dSu

⎞
⎠ |Ft

⎤
⎦ ≥ V (t, αx1 + βx2). (1.2.2)

To show that V (t, x) is strictly concave, we need to verify that if

αV (t, x1) + βV (t, x2) = V (t, αx1 + βx2) (1.2.3)

holds for some α, β ∈ (0, 1) with α+ β = 1, then x1 = x2.
Indeed, if Eq. (1.2.3) holds, then from (1.2.2) and the strict convexity of U , it follows that

x1 +

T∫

t

π∗u(t, x1)dSu = x2 +

T∫

t

π∗u(t, x2)dSu P -a.s.,

which implies x1 = x2.

Remark 1.2.3. The concavity of V (0, x) and condition (B1) imply that V (0, x) <∞ for all x ∈ R.

The Itô–Ventzell formula. Let (Y (t, x), t ∈ [0, T ], x ∈ R) be a family of special semimartingales
with the decomposition

Y (t, x) = Y (0, x) +B(t, x) +N(t, x), (1.2.4)

where B(·, x) ∈ Aloc and N(·, x) ∈ Mloc for any x ∈ R. By the Galtchouk–Kunita–Watanabe (GKW)
decomposition of N(·, x) with respect to M , a parametrized family of semimartingales Y admits the
representation

Y (t, x) = Y (0, x) +B(t, x) +

t∫

0

ψ(s, x)dMs + L(t, x), (1.2.5)

where L(·, x) is a local martingale strongly orthogonal to M for all x ∈ R.
Assume that the following conditions hold.

(C1) There exists a predictable increasing process (Kt, t ∈ [0, T ]) such that B(·, x) and 〈M〉 are
absolutely continuous with respect to K, i.e., there is a measurable function b(t, x) predictable
for every x and a matrix-valued predictable process νt such that

B(t, x) =

t∫

0

b(s, x)dKs, 〈M〉t =

t∫

0

νsdKs.

Note that, by continuity of M , the square characteristic 〈M〉 is absolutely continuous with
respect to the continuous part Kc of the process K and

〈M〉t =

t∫

0

νsdK
c
s =

t∫

0

νsdKs.

Without loss of generality, we can assume that ν is bounded, and in the sequel, the inner
product u′νtv for u, v ∈ R

d is denoted by (u, v)νt ;
(C2) the mapping x→ Y (t, x) is twice continuously differentiable for all (ω, t);
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(C3) the first derivative Yx(t, x) is a special semimartingale admitting the decomposition

Yx(t, x) = Yx(0, x) +B(x)(t, x) +

t∫

0

ψx(s, x)dMs + L(x)(t, x), (1.2.6)

where B(x)(·, x) ∈ Aloc, L(x)(·, x) is a local martingale orthogonal to M for all x ∈ R, and ψx is
the partial derivative of ψ at x (note that A(x) and L(x) are not assumed to be the derivatives
of A and L, respectively, whose existence does not necessarily follow from condition (C2));

(C4) Yxx(t, x) is RCLL process for every x ∈ R;
(C5) the functions b(s, ·), ψ(s, ·), and ψx(s, ·) are continuous at x μK-a.e.;
(C6) for any c > 0,

E

T∫

0

sup
|x|≤c

g(s, x)dKs <∞

for g equal to |b|, |ψ|2, and |ψ|2x.
In what follows, we need the following version of the Itô–Ventzell formula.

Proposition 1.2.3. Let (Y (·, x), x ∈ R) be a family of special semimartingales satisfying conditions
(C1)–(C6) and Xπ = x + π · S. Then the transformed process Y (t,Xπ

t ), t ∈ [0, T ] is a special
semimartingale with the decomposition

Y (t,Xπ
t ) = Y (0, c) +Bt +Nt,

where

Bt =

t∫

0

[
Yx(s,Xπ

s )λ′sd〈M〉sπs + ψx(s,Xπ
s )′d〈M〉sπs +

1
2
Yxx(s,Xπ

s )π′sd〈M〉sπs

]
+

t∫

0

b(s,Xπ
s )dKs

(1.2.7)
and N is a continuous local martingale.

One can derive this assertion from of [50, Theorem 1.1] or [10, Theorem 2]. Here we do not require
any conditions on L(t, x) imposed in [10, 50], since the martingale part of the substituted process
Xπ is orthogonal to L(·, x) and since we do not give an explicit expression of the martingale part N ,
because this is not necessary for our purposes.

Remark 1.2.4. Since the semimartingale S is assumed to be continuous and is of the form (1.1.4),
only the latter term of (1.2.7) may have the jumps, i.e., the process K is not continuous in general.

1.3. Backward Stochastic Partial Differential Equation
for the Value Function

In this section, we derive the backward stochastic partial differential equation for the value function
related to the utility maximization problem.

Denote by V1,2 the class of functions Y : Ω × [0, T ] × R → R satisfying conditions (C1)–(C6).
Let us consider the following backward stochastic partial differential equation (BSPDE):

Y (t, x) = Y (0, x) +
1
2

t∫

0

(ψx(s, x) + λ(s)Yx(s, x))′

Yxx(s, x)
d〈M〉s

(
ψx(s, x) + λ(s)Yx(s, x)

)

+

t∫

0

ψ(s, x)dMs + L(t, x), L(·, x)⊥M, (1.3.1)
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with the boundary condition
Y (T, x) = U(x). (1.3.2)

We say that Y solves problem (1.3.1), (1.3.2) if:
(i) Y (ω, t, x) is twice continuously differentiable for each (ω, t) and satisfies the boundary condi-

tion (1.3.2);
(i) Y (t, x) and Yx(t, x) are special semimartingales admitting decompositions (1.2.5) and (1.2.6),

respectively, where ψx is the partial derivative of ψ at x;
(iii) P -a.s. for all x ∈ R,

B(t, x) =
1
2

t∫

0

(ψx(s, x) + λ(s)Yx(s, x))′

Yxx(s, x)
d〈M〉s

(
ψx(s, x) + λ(s)Yx(s, x)

)
. (1.3.3)

Remark 1.3.1. If we substitute the expression of B(t, x) given by Eq. (1.3.3) in the canonical de-
composition (1.2.5) for Y , then we obtain Eq. (1.3.1).

According to Proposition 1.7.1, the value process V (t, x) is a supermartingale for any x ∈ R that
admits the canonical decomposition

V (t, x) = V (0, x) +A(t, x) +

t∫

0

ϕ(s, x)dMs +m(t, x), (1.3.4)

where −A(·, x) ∈ A+ and m(·, x) is a local martingale strongly orthogonal to M for all x ∈ R+.
Assume that V ∈ V1,2. This implies that Vx(t, x) is a special semimartingale with the decomposition

Vx(t, x) = Vx(0, x) +A(x)(t, x) +

t∫

0

ϕx(s, x)dMs +m(x)(t, x), (1.3.5)

where A(x)(·, x) ∈ Aloc, m(x)(·, x) is a local martingale orthogonal to M for all x ∈ R+, and ϕx

coincides with the partial derivative of ϕ ( μK-a.e.). Moreover,

A(t, x) =

t∫

0

a(s, x)dKs

for a measurable function a(t, x).

Proposition 1.3.1. Assume that conditions (B1) and (B2) are satisfied and the value function V (t, x)
belongs to the class V1,2. Then the inequality

a(s, x) ≤ 1
2
|ϕx(s, x) + λ(s)Vx(s−, x)|2νs

Vxx(s−, x) (1.3.6)

holds for all x ∈ R μK-a.e. Moreover, if the strategy π∗ is optimal, then the corresponding wealth
process Xπ∗

is a solution of the forward SDE

Xπ∗
t = Xπ∗

0 −
t∫

0

ϕx(s,Xπ∗
s ) + λ(s)Vx(s,Xπ∗

s )
Vxx(s,Xπ∗

s )
dSs. (1.3.7)

Proof. Using the Itô–Ventzell formula (Proposition 1.2.3) for the function V (t, x, ω) ∈ V1,2 and for the
process ⎛

⎝x+

t∫

s

πudSu, s ≤ t ≤ T

⎞
⎠
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we have

V

⎛
⎝t, x+

t∫

s

πudSu

⎞
⎠ = V (s, x) +

t∫

s

a

⎛
⎝u, x+

u∫

s

πvdSv

⎞
⎠ dKu

+

t∫

s

G

⎛
⎝u, πu, x+

u∫

s

πvdSv

⎞
⎠ dKu +Nt −Ns, (1.3.8)

where

G(t, p, x, ω) = Vx(t−, x)p′νtλ(t) + p′νtϕx(t, x) +
1
2
Vxx(t−, x)p′νtp (1.3.9)

and N is a martingale. Since by Proposition 1.7.1 of the Appendix, the process⎛
⎝V (t, x+

t∫

s

πudSu), t ∈ [s, T ]

⎞
⎠

is a supermartingale for all s ≥ 0 and π ∈ Π, the process

−
t∫

s

⎡
⎣G
⎛
⎝u, πu, x+

u∫

s

πvdSv

⎞
⎠+ a

⎛
⎝u, x+

u∫

s

πvdSv

⎞
⎠
⎤
⎦ dKu

is increasing for any s ≥ 0. Hence the process

−
t∫

s

⎡
⎣G
⎛
⎝u, πu, x+

u∫

s

πvdSv

⎞
⎠+ a

⎛
⎝u, x+

u∫

s

πvdSv

⎞
⎠
⎤
⎦ dKc

u

is also increasing for any s ≥ 0, where K = Kc + Kd is a decomposition of K into continuous and
purely discontinuous increasing processes. Therefore, taking τs(ε) = inf{t ≥ s : Kc

t −Kc
s ≥ ε} instead

of t, we have that for any ε > 0 and s ≥ 0,

1
ε

τs(ε)∫

s

a

⎛
⎝u, x+

u∫

s

πvdSv

⎞
⎠ dKc

u ≤ −1
ε

τs(ε)∫

s

G

⎛
⎝u, πu, x+

u∫

s

πvdSv

⎞
⎠ dKc

u. (1.3.10)

Passing to the limit in (1.3.10) as ε→ 0, from Proposition 1.7.2 of the Appendix we obtain

a(s, x) ≤ −G(s, πs, x) μKc
-a.e.

for all π ∈ Π. Thus,
a(t, x) ≤ ess inf

π∈Π

(−G(t, πt, x)
)

μKc
-a.e.

On the other hand,

ess sup
π∈Π

(−G(t, πt, x)
)

=
|Vx(t−, x)λ(t) + ϕx(t, x)|2νt

2Vxx(t−, x)

+ ess sup
π∈Π

(
−1

2
Vxx(t−, x)

∣∣∣
πt

+
Vx(t−, x)λ(t) + ϕx(t, x)

Vxx(t−, x)
∣∣∣2
νt

)
=

|Vx(t−, x)λ(t) + ϕx(t, x)|2νt

2Vxx(t−, x) . (1.3.11)

Indeed, since Vxx < 0, by Lemma 1.7.2 of Appendix 1.7, (1.3.11) holds.
Thus, for every x ∈ R+, we have

a(t, x) ≤ |Vx(t−, x)λ(t) + ϕx(t, x)|2νt

2Vxx(t−, x) μKc
-a.e.
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Since μK-a.e. a(t, x) ≥ 0 and μKd{ν 
= 0} = 0, we obtain

a(t, x) ≤ |Vx(t−, x)λ(t) + ϕx(t, x)|2νt

2Vxx(t−, x) μK-a.e. (1.3.12)

Conditions (C2) and (C5) imply that inequality (1.3.12) holds μK-a.e. for all x ∈ R.
Let us show now that if a strategy π∗ is optimal, then the corresponding wealth process Xπ∗

is a
solution of Eq. (1.3.7). Let π∗(s, x) be the optimal strategy; denote by

X∗
t (s, x) = x+

t∫

s

π∗u(s, x)dSu

the corresponding wealth process.
By the optimality principle, the process

V (t, x+

t∫

s

π∗u(s, x)dSu)

is a martingale on the interval [s, T ] and the Itô–Ventzell formula implies that μK-a.s.,

a(t,X∗
t (s, x)) + (λt, πt(s, x))νtVx(t−, X∗

t (s, x))

+ (ϕx(t,X∗
t (s, x)), π∗t (s, x))νt +

1
2
|π∗t (s, x)|2νt

Vxx(t−, X∗
t (s, x)) = 0. (1.3.13)

It follows from (1.3.12) and (1.3.13) that μK-a.e.,

Vxx(t−, X∗
t (s, x))

∣∣π∗t (s, x) +
ϕx(t,X∗

t (s, x)) + λ(t)Vx(t−, X∗
t (s, x))

Vxx(t−, X∗
t (s, x))

∣∣∣
νt

≤ 0.

Since Vxx < 0, integrating the latter relation by dKu, we obtain

t∫

s

(
π∗u(s, x) +

ϕx(u,X∗
u(s, x)) + λ(u)Vx(u,X∗

u(s, x))
Vxx(u,X∗

u(s, x))

)′
d〈M〉u

×
(
π∗u(s, x) +

ϕx(u,X∗
u(s, x)) + λ(u)Vx(u,X∗

u(s, x))
Vxx(u,X∗

u(s, x))

)
= 0. (1.3.14)

The Kunita–Watanabe inequality and (1.3.14) imply that the semimartingale
t∫

s

(
π∗u(s, x) +

ϕx(u,X∗
u(s, x)) + λ(u)Vx(u,X∗

u(s, x))
Vxx(u,X∗

u(s, x))

)
dSu

is indistinguishable from zero (since its S2-norm is zero), and we obtain that the wealth process of π∗
satisfies the equation

X∗
t (s, x) = x−

t∫

s

ϕx(u,X∗
u(s, x)) + λ(u)Vx(u,X∗

u(s, x))
Vxx(u,X∗

u(s, x))
dSu, (1.3.15)

which gives Eq. (1.3.7) for s = 0.

Recall that the process Z belongs to the class D if the family of random variables ZτI(τ≤T ) is
uniformly integrable for all stopping times τ .

Under the additional condition
(C∗) (X∗

t (s, x), t ≥ s) is a continuous function of (s, x) P -a.s. for each t ∈ [s, T ],
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we show that the value function V satisfies Eqs. (1.3.1)–(1.3.2).
This condition is satisfied, e.g., if the optimal wealth process (X∗

t (s, x), t ≥ s) is independent of s
and x; this is the case for power, logarithmic, and exponential utility functions.

Theorem 1.3.1. Let V ∈ V1,2. Assume that conditions (B1)–(B3) and (C∗) hold. Then the value
function is a solution of the BSPDE (1.3.1)–(1.3.2), i.e.,

V (t, x) = V (0, x) +
1
2

t∫

0

(ϕx(s, x) + λ(s)Vx(s, x))′

Vxx(s, x)
d〈M〉s

(
ϕx(s, x) + λ(s)Vx(s, x)

)

+

t∫

0

ϕ(s, x)dMs +m(t, x), V (T, x) = U(x). (1.3.16)

Moreover, the strategy π∗ is optimal if and only if the corresponding wealth process Xπ∗
is a solution

of the forward SDE (1.3.7) such that the process V (t,Xπ∗
) is from the class D.

Proof. Let π∗(s, x) be the optimal strategy. By the optimality principle, (V (t,X∗
t (s, x)), t ≥ s) is a

martingale. Therefore, using the Itô-Ventzell formula and taking (1.3.14) into account, we have
t∫

s

[
a(u,X∗

u(s, x)) − g(u,X∗
u(s, x)) +

∣∣∣∣π∗u(s, x) +
Vx(u,X∗

u(s, x))λ(u) + ϕx(u,X∗
u(s, x))

Vxx(u,X∗
u(s, x))

∣∣∣∣
2

νu

]
dKu = 0

for all t ≥ s P -a.s., where

g(s, x) =
1
2
|ϕx(s, x) + λ(s)Vx(s, x)|2νs

Vxx(s, x)
.

It follows from (1.3.14) that μK-a.e.,
∣∣∣∣π∗u(s, x) +

Vx(u,X∗
u(s, x))λ(u) + ϕx(u,X∗

u(s, x))
Vxx(u,X∗

u(s, x))

∣∣∣∣
2

νu

= 0,

and by (1.3.6),
a(s, x) ≤ g(s, x) μK-a.e. (1.3.17)

Thus,
t∫

s

[
a(u,X∗

u(s, x)) − g(u,X∗
u(s, x))

]
dKu = 0, t ≥ s P -a.s.

This implies (a(s, x) − g(s, x))(Ks −Ks−) = 0 for any s ∈ [0, T ]. Therefore,

a(s, x) = g(s, x) μKd
-a.e. (1.3.18)

On the other hand,

T∫

0

1
ε

τε
s∫

s

[
a(u,X∗

u(s, x)) − g(u,X∗
u(s, x))

]
dKc

udK
c
s = 0 P -a.s.,

and by Proposition 1.7.2, we obtain that
T∫

0

[a(s, x) − g(s, x)]dKc
s = 0 P -a.s.
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Now (1.3.17), (1.3.18), and the latter relation imply a(s, x) = g(s, x) μK-a.e., and hence

A(t, x) =
1
2

t∫

0

(ϕx(s, x) + λ(s)Vx(s, x))′

Vxx(s, x)
d〈M〉s

(
ϕx(s, x) + λ(s)Vx(s, x)

)
,

and V (t, x) satisfies (1.3.1)–(1.3.2).
If π̂ is a strategy such that the corresponding wealth process X π̂ satisfies Eq. (1.3.7) and V (t,X π̂

t )
is from the class D, then π̂ is optimal. Indeed, using the Itô–Ventzell formula and Eqs. (1.3.7) and
(1.3.16), we obtain that V (t,X π̂

t ) is a local martingale, and hence it is a martingale, since it belongs
to the class D. Therefore, π̂ is optimal by the optimality principle.

Definition 1.3.1. We say that Y belongs to the class D(Π) if for any x ∈ R and π ∈ Πx, the process

Y

⎛
⎝t, x+

t∫

0

πudSu

⎞
⎠

is from the class D.

Theorem 1.3.2. Let conditions (B1)–(B3) be satisfied. If the pair (Y,X ) is a solution of the forward-
backward equation

Y (t, x) = U(x) − 1
2

T∫

t

(ψx(s, x) + λ(s)Yx(s, x))′

Yxx(s, x)
d〈M〉s

(
ϕx(s, x) + λ(s)Vx(s, x)

)

−
T∫

t

ψ(s, x)dMs + L(T, x) − L(t, x), (1.3.19)

Xt = x−
t∫

0

ψ′
x(s,Xs) + Yx(s,Xs)λ(s)

Yxx(s,Xs)
dSs, (1.3.20)

X ≥ 0 and Y belongs to the class D(Π), then such a solution is unique.

Proof. Using the Itô–Ventzell formula for

Y

⎛
⎝t, x+

t∫

s

πudSu

⎞
⎠ ,

we have

Y

⎛
⎝t, x+

t∫

s

πudSu

⎞
⎠ = Y (s, x) +

t∫

s

b

⎛
⎝u, x+

u∫

s

πvdSv

⎞
⎠ dKu

+

t∫

s

G

⎛
⎝u, πu, c+

u∫

s

πvdSv

⎞
⎠ dKu +Nt −Ns, (1.3.21)

where

G(t, p, x, ω) = Yx(t−, x)p′νtλ(t) + p′νtψx(t, x) +
1
2
Yxx(t−, x)p′νtp.
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Since Y solves (1.3.19), then Eq. (1.3.3) holds, which implies that

Y

⎛
⎝t, x+

t∫

s

πudSu

⎞
⎠

is a local supermartingale for each π ∈ Π.
Since Y is from the class D(Π), the process

Y

⎛
⎝t, x+

t∫

s

πudSu

⎞
⎠

is a supermartingale of class D for any π ∈ Πx, and using the boundary condition, we have

Y (s, x) ≥ E

⎡
⎣U
⎛
⎝x+

T∫

s

πudSu

⎞
⎠ /Fs

⎤
⎦ ,

which implies that
Y (s, x) ≥ V (s, x). (1.3.22)

Now using the Itô–Ventzell formula for Y (t,Xu) and taking into account that Y satisfies (1.3.19) and
X solves (1.3.20), we obtain that Y (t,Xt) is a local martingale, and hence it is a martingale, since
Y (t,Xt) is from the class D.

Therefore, since X0 = x and Y (T, x) = U(x), we have

Y (t, x) = E

⎛
⎝U

⎛
⎝x−

T∫

t

Yx(u,Xu)λu + ψx(u,Xu)
Yxx(u,Xu)

dSu

⎞
⎠ /Ft

⎞
⎠ . (1.3.23)

Since

−λ(u)Yx(u,Xu) + ψx(u,Xu)
Yxx(u,Xu)

∈ Πx,

from (1.3.22) and (1.3.23) we obtain
Y (t, x) = V (t, x); (1.3.24)

hence the solution of (1.3.19) is unique, if it exists.
Relations (1.3.19), (1.3.20), and (1.3.20) imply that X satisfies Eq. (1.3.7). Moreover, according to

Proposition 1.3.1, the solution of (1.3.7) is the optimal wealth process, and hence X = Xπ∗ by the
uniqueness of the optimal strategy for problem (1.1.3) (see Remark 1.2.2).

1.4. Utility Maximization Problem
for Power, Logarithmic, and Exponential Utility Functions

In this section, we calculate the value function and give constructions of optimal strategies for the
utility maximization problem corresponding to the cases of power, logarithmic, and exponential utility
functions.

1.4.1. Power utility. Let U(x) = xp, p ∈ (0, 1). Then (1.1.3) corresponds to the power utility
maximization problem

maximize E

⎛
⎝x+

T∫

0

πudSu

⎞
⎠

p

over all π ∈ Πx, (1.4.1)

where Πx is the class of admissible strategies.
In this case, the value function V (t, x) is of the form xpVt, where Vt is a special semimartingale.

304



Indeed, since Πx is a cone (for any x > 0, the strategy π belongs to Πx if and only if π/x ∈ Π1), we
have

V (t, x) = ess sup
π∈Πx

E

⎛
⎝
⎛
⎝x+

T∫

t

πudSu

⎞
⎠

p

/Ft

⎞
⎠ = xp ess sup

π∈Πx

E

⎛
⎝
⎛
⎝1 +

T∫

t

πu

x
dSu

⎞
⎠

p

/Ft

⎞
⎠ = xpVt,

where

Vt = ess sup
π∈Π1

E

⎛
⎝
⎛
⎝1 +

T∫

t

πudSu

⎞
⎠

p

/Ft

⎞
⎠

is a supermartingale by the optimality principle.
Let Vt = V0 + At +Nt be the canonical decomposition of Vt, where A is a decreasing process and

N is a local martingale. Using the GKW decomposition, we have

Vt = V0 +At +

t∫

0

ϕsdMs + Lt, (1.4.2)

where L is a local martingale with 〈L,M〉 = 0.
It is obvious that all the conditions of Theorem 1.3.1 are satisfied. Note that one can take −A+〈M〉

as a dominated process K and that Vt > 0 for all t, since Me 
= ∅.
Therefore, we have the following consequence of Theorem 1.3.1.

Theorem 1.4.1. If U(x) = xp, p ∈ (0, 1), then the value function V (t, x) has the form xpVt, where Vt

satisfies the following backward stochastic differential equation (BSDE):

Vt = V0 +
q

2

t∫

0

(ϕs + λsVs)′

Vs
d〈M〉s(ϕs + λsVs) +

t∫

0

ϕsdMs + Lt, VT = 1, (1.4.3)

where q = p/(p− 1) and L is a local martingale strongly orthogonal to M . Moreover, the optimal
wealth process is a solution of the linear equation

X∗
t = x− (q − 1)

t∫

0

ϕu + λuVu

Vu
X∗

udSu. (1.4.4)

Therefore,

X∗
t = xEt

(
−(q − 1)

(ϕ
V

+ λ
)
· S
)

and the optimal strategy is of the form

π∗t = −x(q − 1)Et

(
−(q − 1)

(ϕ
V

+ λ
)
· S
)(ϕt

Vt
+ λt

)
.

Now, we consider two cases where Eq. (1.4.3) admits an explicit solution.

Case 1. Let

St(q) = Mt + q

t∫

0

d〈M〉sλs

and Q(q) be a measure defined by dQ(q) = ET (−qλ ·M)dP . Note that S(q) is a local martingale
under Q(q) by the Girsanov theorem.
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Assume that

e
q(q−1)

2
〈λ·M〉T = c+

T∫

0

hudSu(q), (1.4.5)

where c is a constant and h is a predictable S(q)-integrable process such that h · S(q) is a Q(q)-
martingale.

This condition is satisfied if and only if the q-optimal martingale measure coincides with the minimal
martingale measure. For diffusion market models, this condition holds for the so-called “almost
complete” models, where the market price of risk is measurable with respect to the filtration generated
by the price processes of basic securities.

Let condition (1.4.5) hold. Consider the process

Yt =
(
E(Eq

t,T (−λ ·M)/Ft)
) 1

1−q . (1.4.6)

Since
Eq

t (−λ ·M) = Et(−qλ ·M)e
q(q−1)

2
〈λ·M〉t ,

condition (1.4.5) implies

Yt =
(
EQ(q)(e

q(q−1)
2

(〈λ·M〉T−〈λ·M〉t/Ft)
) 1

1−q = e
q
2
〈λ·M〉t

⎛
⎝c+

t∫

0

hudSu(q)

⎞
⎠

1
1−q

.

By the Itô formula,

Yt = Y0 +
q

2

t∫

0

Ysλ
′
sd〈M〉sλs +

q

1 − q

t∫

0

Ysλ
′
s

c+ (h · S(q))s
d〈M〉shs

+
q

2
1

(1 − q)2

t∫

0

Ysh
′
s

(c+ (h · S(q))s)2
d〈M〉shs +

1
1 − q

t∫

0

Yshs

c+ (h · S(q))s
dMs, (1.4.7)

and denoting
1

q − 1
Yshs

c+ (h · S(q))s
by ψs, we obtain

Yt = Y0 +
q

2

t∫

0

(ψs + λsYs)′

Ys
d〈M〉s(ψs + λsYs) +

t∫

0

ψsdMs.

It is obvious from (1.4.6) that YT = 1. Thus, the triple (Y, ψ, L), where ψ =
1

q − 1
Y h

c+ h · S(q)
, L = 0,

and Y is defined by (1.4.6), satisfies Eq. (1.4.3).

Case 2. Assume that
e−

q
2
〈λ·M〉T = c+mT , (1.4.8)

where c is a constant and m is a martingale strongly orthogonal to M .
For diffusion market models, this condition is satisfied when the market price of risk is measurable

with respect to the filtration independent of the asset price process.
Let us consider the process

Yt = E(e−
q
2
(〈λ·M〉T−〈λ·M〉t)/Ft). (1.4.9)

Condition (1.4.7) implies
Yt = e

q
2
〈λ·M〉t(c+mt),
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and by the Itô formula,

Yt = Y0 +
q

2

t∫

0

Ysd〈λ ·M〉s +

t∫

0

e
q
2
〈λ·M〉sdms.

It follows from here that the triple (Y, ψ, L), where ψ = 0, Lt =
∫ t
0 e

q
2
〈λ·M〉sdms and Y is defined by

(1.4.8), satisfies Eq. (1.4.3).

1.4.2. Exponential utility. Let us consider the case of the exponential utility function

U(x) = −e−γ(x−H)

with risk aversion parameter γ ∈ (0,∞), where H is a contingent claim describing a random payoff at
time T . We assume that H is a bounded FT -measurable random variable.

Consider the maximization problem

max
π∈Π

E

⎛
⎝− exp

⎛
⎝−γ

⎛
⎝x+

T∫

0

πudSu −H

⎞
⎠
⎞
⎠
⎞
⎠ , (1.4.10)

which is the maximal expected utility that can be attained starting from the initial capital x, using
some strategy π ∈ Π, and paying out H at time T .

The corresponding value function

V (t, x) = ess sup
π∈Πx

E

⎛
⎝− exp

⎛
⎝−γ

⎛
⎝x+

T∫

t

πudSu −H

⎞
⎠
⎞
⎠ /Ft

⎞
⎠ (1.4.11)

is of the form V (t, x) = −e−γxVt, where

Vt = ess inf
π∈Πx

E

⎛
⎝exp

⎛
⎝−γ

⎛
⎝

T∫

t

πudSu −H

⎞
⎠
⎞
⎠ |Ft

⎞
⎠ (1.4.12)

is a special semimartingale.
Let Vt = V0 + At +Nt be the canonical decomposition of Vt, where A is a decreasing process and

N is a local matingale. Using the GKW decomposition, we have

Vt = V0 +At +

t∫

0

ϕsdMs + Lt, (1.4.13)

where L is a local martingale with 〈L,M〉 = 0.
It is obvious that all the conditions of Theorem 1.3.1 hold. Note that one can take −A+ 〈M〉 as a

dominated process K and that Vt > 0 for all t, since Me 
= ∅.
Therefore, we have the following consequence of Theorem 1.3.1.

Theorem 1.4.2. The value function (1.4.11) has the form −e−γxVt, where Vt satisfies the following
BSDE :

Vt = V0 +
1
2

t∫

0

(ϕs + λsVs)2

Vs
d〈M〉s +

t∫

0

ϕsdMs + Lt (1.4.14)

with the boundary condition
VT = eγH ,
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where L is a local martingale strongly orthogonal to M . Moreover, the optimal wealth process is
expressed as

X∗
t = x+

t∫

0

ϕu + λuVu

γVu
dSu (1.4.15)

and the optimal strategy is of the form

π∗t =
ϕt + λtVt

γVt
.

Now we give explicit solutions of Eq. (1.4.10) in two extreme cases.

Case 1. Assume that

γH − 1
2
〈λ ·M〉T = c+

T∫

0

hudSu, (1.4.16)

where c is a constant and h is a predictable S-integrable process such that h · S is a martingale with
respect to the minimal martingale measure.

This condition is satisfied if and only if the minimal martingale measure coincides with the minimal
martingale measure and H is attainable. For diffusion market models, this condition holds for the
so-called “almost complete” models, i.e., when the market price of risk is measurable with respect to
the filtration generated by the price processes of basic securities.

Similarly to the case of power utility, we can show that the triple (Y, ψ, L), where

Yt = eE
Qmin(γH− 1

2
〈λ·M〉tT /Ft), ψt = Ytht, Lt = 0,

satisfies Eq. (1.4.14).

Case 2. Assume that

eγH− 1
2
〈λ·M〉T = c+mT , (1.4.17)

where c is a constant and m is a martingale strongly orthogonal to M .
For diffusion market models, this condition holds when the market price of risk is measurable with

respect to the filtration independent of the asset price process.
We can show that the triple (Y, ψ, L), where

Yt = eE(γH− 1
2
〈λ·M〉tT /Ft), ψt = 0, Lt =

t∫

0

e
1
2
〈λ·M〉sdms,

satisfies Eq. (1.4.14).

1.4.3. Logarithmic utility. For the logarithmic utility

U(x) = log x, x > 0,

the value function of the corresponding utility maximization problem takes the form

V (t, x) = log x+ Vt,

where Vt is a special semimartingale.
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Indeed, since for any x > 0, the strategy π belongs to Πx if and only if π/x ∈ Π1, we have

V (t, x) = ess sup
π∈Πx

E

⎛
⎝log

⎛
⎝x+

T∫

t

πudSu

⎞
⎠ /Ft

⎞
⎠ = ess sup

π∈Πx

E

⎛
⎝log x

⎛
⎝1 +

T∫

t

πu

x
dSu

⎞
⎠ /Ft

⎞
⎠

log x+ ess sup
π∈Πx

E

⎛
⎝log

⎛
⎝1 +

T∫

t

πu

x
dSu

⎞
⎠ /Ft

⎞
⎠ = log x+ Vt,

where

Vt = ess sup
π∈Π1

E

⎛
⎝log

⎛
⎝1 +

T∫

t

πudSu

⎞
⎠ /Ft

⎞
⎠

is a supermartingale by the optimality principle.
It is also obvious that all the conditions of Theorem 1.3.1 hold. In this case, ϕx(t, x) = 0, Vx(t, x) =

1/x, Vxx(t, x) = −1/x2, and Eq. (1.3.7) gives the following linear BSDE for Vt:

Vt = V0 +
1
2

t∫

0

Vsd〈λ ·M〉s +

t∫

0

ϕsdMs + Lt, VT = 0, (1.4.18)

which admits the explicit solution

Vt =
1
2
E(〈λ ·M〉T − 〈λ ·M〉t/Ft).

Thus, we have the following consequence of Theorem 1.3.1.

Theorem 1.4.3. If U(x) = log x, then the value function of the problem is represented as

V (t, x) = log x+
1
2
E(〈λ ·M〉T − 〈λ ·M〉t/Ft).

Moreover, the optimal wealth process is a solution of the linear equation

X∗
t = x+

t∫

0

λuX
∗
udSu. (1.4.19)

Thus,
X∗

t = xEt(λ · S),
and the optimal strategy is of the form

π∗t = λtX
∗
t = xλtEt(λ · S).

1.5. Minimization of the Hedging Error. Mean-Variance Hedging

In this section, we consider the minimization problem

min
π∈Π

E[U(Xx,π
T )], (1.5.1)

where

Xx,π
t = x+

t∫

0

πudSu

is the wealth process starting from the initial capital x and U is the objective function, which can also
depend on ω. It can be interpreted as a function that measures a hedging error.
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Let Π be the class of predictable S-integrable self-financing trading strategies closed with respect
to bifurcation, i.e., such that for any t ≥ 0, B ∈ Ft, and π1, π2 ∈ Π, the strategy

πs = π̃sI(0≤s<t) + π1
sIBI(s≥t) + π2

sIBcI(s≥t)

belongs to the class Π.
Note that for all known classes of admissible strategies, this condition holds. This condition guar-

antees the fulfillment of the optimality principle.
Let

V (t, x) = ess inf
π∈Π

E

⎛
⎝U

⎛
⎝x+

T∫

t

πudSu

⎞
⎠ /Ft

⎞
⎠ (1.5.2)

be the value function of problem (1.5.1).
Let Πp, p > 1, be the space of all predictable S-integrable processes π such that the stochastic

integral

(π · S)t =

t∫

0

πudSu, t ∈ [0, T ],

lies in the Sp space of semimartingales, i.e.,

E

⎛
⎝

T∫

0

π′sd〈M〉sπs

⎞
⎠

p/2

+ E

⎛
⎝

T∫

0

|πsdAs|
⎞
⎠

p

<∞.

Define Gp
T as the space of terminal values of stochastic integrals, i.e.,

Gp
T (Π) = {(π · S)T : π ∈ Πp}.

For convenience, we give some assertions from [34, Theorem 4.1] (previously proved in [17] for the
case p = 2), which establishes necessary and sufficient conditions for the closedness of the space Gp

T
in Lp.

Proposition 1.5.1. Let S be a continuous semimartingale. Let p > 1 and q be conjugate to p. Then
the following assertions are equivalent :

(1) there is a martingale measure Q ∈ Me, and Gp
T is closed in Lp;

(2) there is a martingale measure Q that satisfies the reverse Hölder condition Rq(P );
(3) there is a constant C such that for all π ∈ Πp, we have∥∥∥∥∥sup

t≤T
(π · S)t

∥∥∥∥∥
Lp(P )

≤ C‖(π · S)T ‖Lp(P ).

(4) there is a constant c such that for every stopping time τ , every A ∈ Fτ , and for every π ∈ Πp

with π = πI]τ,T ], we have

‖IA − (π · S)T ‖Lp(P ) ≥ cP (A)1/p.

Remark 1.5.1. Assertion (4) implies that for every stopping time τ and for every π ∈ Πp, we have

E

⎛
⎝
∣∣∣∣∣∣1 −

T∫

τ

πudSu

∣∣∣∣∣∣

p

/Fτ

⎞
⎠ ≥ cp.

We assume that the function U(x) = U(ω, x) satisfies the following conditions:
(D1) U(x) is nonnegative and EU(x) <∞ for all x;
(D2) U(x) is strictly convex function P -a.s.;
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(D3) the optimization problem (1.5.2) admits a solution, i.e., for any t and x, there is a strategy
π∗(t, x) such that

V (t, x) = E

⎛
⎝U

⎛
⎝x+

T∫

t

π∗s(t, x)dSs

⎞
⎠ |Ft

⎞
⎠ . (1.5.3)

Remark 1.5.2. For (D3), the following condition is sufficient:
(D3′) there exist γ > 0, a positive integrable random variable ξ, and p > 1 such that U(x) ≥ γ|x|p−ξ.

In Proposition 1.7.3 of the Appendix, it is proved that if conditions (D1), (D2), and (D3′), and the
reverse Hölder condition Rq(P ), q = p/(p− 1) hold, then the optimal strategy exists in the class Πp.

Note that the function U(x) = |H − x|p for H ∈ Lp satisfies (D3′) as well as conditions (D1)–(D2).
Now we give the formulations of the main statements, which are similar to the corresponding

assertions of Sec. 1.3.
The optimality principle in this case is of the same form (as Proposition 1.7.1) except that the

notion “supermartingale” must be replaced by the notion “submartingale.” Moreover, in the proof of
the existence of an RCLL modification of submartingale

Ṽ

⎛
⎝t, x+

t∫

0

πudSu

⎞
⎠ ,

we need the following additional condition.
For any real number α, let constants Cα and Bα and an integrable random variable η exist such

that
U(αx) ≤ CαU(x) +Bαη for all x ∈ R. (1.5.4)

This condition is needed to use the Fatou lemma (see the proof of Proposition 1.7.1 here or in [61]).
Note that the function U(x) = |H − x|p for H ∈ Lp also satisfies this condition.

Theorem 1.5.1. Let V ∈ V1,2. Assume that conditions (D1)–(D3) and (C∗) hold. Then the value
function is a solution of the BSPDE

V (t, x) = V (0, x) +
1
2

t∫

0

(ϕx(s, x) + λ(s)Vx(s, x))′

Vxx(s, x)
d〈M〉s

(
ϕx(s, x) + λ(s)Vx(s, x)

)

+

t∫

0

ϕ(s, x)dMs +m(t, x), V (T, x) = U(x). (1.5.5)

Moreover, a strategy π∗ is optimal if and only if the corresponding wealth process Xπ∗
is a solution of

the forward SDE (1.3.7).

The proof is similar to the proof of Theorem 1.3.1. Note that in this case the process V (t,Xπ∗
) is

from the class D as a positive submartingale.

Definition 1.5.1. We say that Y belongs to the class Dp(Π) if:
(i) there is a positive process ct from the class D such that

Y (t, x) ≥ −ct for all x ∈ R,

(ii) the process

Y

⎛
⎝t, x+

t∫

0

πudSu

⎞
⎠

is of class D for every π ∈ Πp, where the class Πp is defined in Sec. 1.2.
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Remark 1.5.3. Note that the value function V (t, x) belongs to the class Dp(Π), since for any π ∈ Πp,

0 ≤ V

⎛
⎝t, x+

t∫

0

πudSu

⎞
⎠ ≤ E

⎛
⎝U

⎛
⎝x+

T∫

0

πudSu

⎞
⎠ |Ft

⎞
⎠ (1.5.6)

and the right-hand-side of (1.5.6) is a uniformly integrable martingale.

Theorem 1.5.2. Let conditions (D1), (D2), (D3′), and the reverse Hölder condition Rq(P ), q =
p/(p− 1) hold. If the pair (Y,X ) is a solution of the forward-backward equation

Y (t, x) = U(x) − 1
2

T∫

t

((ψx(s, x) + λ(s)Yx(s, x))′

Yxx(s, x)
d〈M〉s

(
ϕx(s, x) + λ(s)Vx(s, x)

)

−
T∫

t

ψ(s, x)dMs + L(T, x) − L(t, x), (1.5.7)

Xt = x−
t∫

0

ψ′
x(s,Xs) + Yx(s,Xs)λ(s)

Yxx(s,Xs)
dSs, (1.5.8)

and Y belongs to the class V1,2 ∩Dp(Π), then such a solution is unique. Moreover, Y coincides with
the value function and X with the optimal wealth process.

Proof. The inequality
Y (s, x) ≤ V (s, x) (1.5.9)

is proved similarly to (1.3.22). Let us show the converse inequality.
Now using the Itô–Ventzell formula for Y (t,Xu) and taking into account the fact that Y satisfies

(1.5.7) and X solves (1.5.8), we obtain that Y (t,Xu) is a local martingale, and hence it is a super-
martingale, since Y is bounded from below by the process of class D. Therefore, since X0 = x and
Y (T, x) = U(x), we have

Y (t, x) ≥ E(Y (T,XT )/Ft) = E

⎛
⎝U

⎛
⎝x+

T∫

t

Yx(u,Xu)λu + ψx(u,Xu)
Yxx(u,Xu)

dSu

⎞
⎠ /Ft

⎞
⎠ . (1.5.10)

Applying inequalities (1.5.9) and (1.5.10) for s = 0, we obtain

EU

⎛
⎝x+

T∫

0

Yx(u,Xu)λu + ψx(u,Xu)
Yxx(u,Xu)

dSu

⎞
⎠ ≤ Y (0, x) ≤ V (0, x) ≤ EU(x) <∞. (1.5.11)

Condition (D3′) implies that

E

⎛
⎝x+

T∫

0

Yx(u,Xu)λu + ψx(u,Xu)
Yxx(u,Xu)

dSu

⎞
⎠

p

≤ E

⎛
⎝U

⎛
⎝x+

T∫

0

Yx(u,Xu)λu + ψx(u,Xu)
Yxx(u,Xu)

dSu

⎞
⎠
⎞
⎠+ Eξ <∞.

Therefore, by Proposition 1.5.1,
λ(u)Yx(u,Xu) + ψx(u,Xu)

Yxx(u,Xu)
∈ Πp
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and it follows from (1.5.9) and (1.5.10) that

Y (t, x) = V (t, x), (1.5.12)

hence the solution of (1.5.5) is unique and coincides with the value function.
The relations (1.5.8) and (1.5.12) imply that X satisfies Eq. (1.3.7). Since X = Xπ∗ satisfies (1.3.7),

V (t,X ) is a local martingale and hence it is a martingale, because V = Y ∈ D(Π). By the optimality
principle, X is optimal; moreover, it coincides with optimal wealth process by the uniqueness of the
optimal strategy for problem (1.1.2) (see Remark 1.5.2).

Now let us consider the case where U(x) = (x − H)2, which corresponds to the mean-variance
hedging problem (1.1.2), where H is a FT -measurable random variable describing the net payoff at
time T of some financial instrument.

Assume that

(A∗) there exists a martingale measure that satisfies the reverse Hölder condition R2(P ).

Theorem 1.5.3. Let H be a square integrable FT -measurable random variable, and let the objective
function be of the form U(x) = |H − x|2. Then the value function of problem (1.1.2) admits the
representation

V (t, x) = V0(t) − 2V1(t)x+ V2(t)x2, (1.5.13)

where the processes V0(t), V1(t), and V2(t) satisfy the following system of backward equations:

V2(t) = V2(0) +

t∫

0

(ϕ2(s) + λ(s)V2(s))′

V2(s)
d〈M〉s(ϕ2(s) + λ(s)V2(s))

+

t∫

0

ϕ2(s)dMs + L2(t), V2(T ) = 1, (1.5.14)

V1(t) = V1(0) +

t∫

0

(ϕ2(s) + λ(s)V2(s))′

V2(s)
d〈M〉s(ϕ1(s) + λ(s)V1(s))

+

t∫

0

ϕ1(s)dMs + L1(t), V1(T ) = H, (1.5.15)

V0(t) = V0(0) +

t∫

0

(ϕ1(s) + λ(s)V1(s))′

V2(s)
d〈M〉s(ϕ1(s) + λ(s)V1(s))

+

t∫

0

ϕ0(s)dMs + L0(t), V0(T ) = H2, (1.5.16)

where L0, L1, and L2 are local martingales orthogonal to M .
If a triple (Y0, Y1, Y2), where Y0 ∈ D, Y 2

1 ∈ D, and c ≤ Y2 ≤ C for some constants 0 < c < C,
satisfies system (1.5.14)–(1.5.16), then such solution is unique and coincides with the triple (V0, V1, V2).

Moreover, the optimal wealth process Xπ∗
satisfies the linear equation

Xπ∗
t = x+

t∫

0

ϕ1(s) + λ(s)V1(s)
V2(s)

dSs −
t∫

0

ϕ2(s) + λ(s)V2(s)
V2(s)

Xπ∗
s dSs. (1.5.17)
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Proof. It is obvious that U(x) = |H−x|2 satisfies conditions (D1) and (D2) and condition (D3) follows
from Proposition 1.7.3 of the Appendix, since the function U(x) = |H − x|2 satisfies condition (D3′)
for p = 2 and the space G2

T of stochastic integrals is closed by Proposition 1.5.1. Hence there exists
an optimal strategy π∗(t, x) and

V (t, x) = E

⎡
⎢⎣
∣∣∣∣∣∣H − x−

T∫

t

π∗u(t, x)dSu

∣∣∣∣∣∣

2

|Ft

⎤
⎥⎦ .

Since
∫ T
t π∗u(t, x)dSu coincides with the orthogonal projection of H − x ∈ L2 on the closed subspace

of stochastic integrals, the optimal strategy is linear with respect to x, i.e., π∗u(t, x) = π0
u(t) + xπ1

u(t).
This implies that the value function V (t, x) is of the form (1.5.13), where

V0(t) = E

⎡
⎢⎣
∣∣∣∣∣∣

T∫

t

π0
u(t)dSu −H

∣∣∣∣∣∣

2

|Ft

⎤
⎥⎦ ,

V1(t) = E

⎡
⎣
⎛
⎝1 +

T∫

t

π1
u(t)dSu

⎞
⎠
⎛
⎝

T∫

t

π0
u(t)dSu −H

⎞
⎠ |Ft

⎤
⎦ ,

V2(t) = E

⎡
⎢⎣
∣∣∣∣∣∣

T∫

t

π1
u(t)dSu + 1

∣∣∣∣∣∣

2

|Ft

⎤
⎥⎦ .

(1.5.18)

Obviously, the function U(x) = |x−H|2 satisfies all the conditions of Proposition 2.9.1 and assertion (3)
of Proposition 1.5.1 implies Π̃ = Π2, where the class Π̃ is defined in the Appendix 1.7. Therefore,
according to Proposition 2.9.1 of the Appendix, V (t, x) is an RCLL submartingale for each x ∈ R.
Thus, V0(t) = V (t, 0) is an RCLL submaringale. On the other hand, for any s ≥ t,

E[V2(t)|Fs] = lim
x→∞

1
x2
E[V (t, x)|Fs] ≥ lim

x→∞
1
x2
V (s, x) = V2(s) P -a.s.,

and V2(t) is also a submartingale with RCLL trajectories as the uniform limit of RCLL processes.
Hence V1(t) = 1

2(V0(t) + V2(t) − V (t, 1)) is a special semimartingale.
Since V0 and V2 are submartingales,

V2(t) ≤ E(V2(T )/Ft) ≤ 1, V0(t) ≤ E(H2/Ft),

and V (t, x) = V0(t) − 2V1(t)x+ V2(t)x2 ≥ 0 for all x ∈ R, we have V 2
1 (t) ≤ V0(t)V2(t); hence

V 2
1 (t) ≤ E(H2/Ft).

Since V (t, x) is strictly convex and Vxx(t, x) = 2V2(t), the process V2 is strictly positive. Moreover,
from Proposition 1.5.1 (see Remark 1.5.1), it follows that there is a constant c > 0 such that V2(t) ≥ c.

Thus, V0 and V 2
1 belong to the class D and the process V2 satisfies the two-sided inequality

c ≤ V2(t) ≤ 1.

Let

Vi(t) = V0(0) +Ai(t) +

t∫

0

ϕi(u)dMu +mi(t)

be the canonical decomposition of Vi for i = 0, 1, 2, where mi is a local martingale strongly orthogonal
to M and Ai ∈ Aloc (moreover, A0 and A2 are increasing processes). Taking

K(t) = A0(t) +A2(t) + Var(A1)(t) + 〈M〉t + t,
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we obviously see that condition (C1) is satisfied. It is easy to see that conditions (C2)–(C6) also
hold. By Proposition 1.5.1, X∗

t (s, x) is a solution of the forward equation (1.3.7), which coincides with
the linear equation (1.5.17) in this case and can be explicitly solved in terms of Vi, i = 1, 2. Therefore
condition (C∗) also holds, and we may apply Theorem 1.3.1. Equating the coefficients of the quadratic
trinomial (1.5.14) in Eq. (1.3.8), we obtain that V2, V1, and V0 satisfy Eqs. (1.5.14), (1.5.15), and
(1.5.16), respectively. The boundary conditions for these equations follow from Eq. (1.5.18).

Proof of uniqueness. If a triple (Y0, Y1, Y2) is a solution of system (1.5.14)–(1.5.16), then the function
Y (t, x) = Y0(t)−2Y1(t)x+Y2(t)x2 is a solution of (1.3.1), (1.3.2). By assertion (3) of Proposition 1.5.1,
the process

( ∫ t
0 πudSu

)2 is of class D. Since Y 2
1 (t) ∈ D, the Hölder inequality implies that the process

Y1(t)
( ∫ t

0 πudSu

)
is of class D. Therefore, Y

(
t, x+

∫ t
0 πudSu

)
belongs to the class D for every π ∈ Πx.

It is easy to see that Y2(t) > c implies

Y (t, x) = Y0(t) − 2Y1(t)x+ Y2(t)x2 ≥ −1
c
Y 2

1

for all x ∈ R. Thus, Y belongs to the class D(Π), and Y (t, x) = V (t, x) by Theorem 1.5.2, which
implies Yi = Vi for i = 0, 1, 2.

Remark 1.5.4. In a similar way, one can show that for U(x) = |H −x|p, the optimal strategy is also
linear with respect to x. Moreover if p is even, i.e., p = 2n, then the value function is a polynomial in

x, i.e., V (t, x) =
p∑

j=0
Vj(t)xj and (1.3.1) and (1.3.2) are transformed into a system of backward SDEs

of order 2n+ 1 for the processes Vj(t).

Remark 1.5.5. Equation (1.5.15) is linear with respect to (V1, ϕ1), and V1 is explicitly expressed in
terms of (V2, ϕ2) as follows:

V1(t) = E

(
HEtT

(
−
(
ϕ2

V2
+ λ

)
· S
)
/Ft

)
. (1.5.19)

1.5.1. Comparison of the direct and dual approaches. Now we give the relationship between
Eq. (1.5.14) and the known feedback form solution of problem (1.1.2) expressed in terms of the
variance-optimal martingale measure (see, e.g., [36]). For simplicity, we do this under the assumption
of continuity of the filtration F . To this end, recall the notion of the variance-optimal martingale
measure.

The variance-optimal martingale measure is a signed measure such that its density with respect
to the reference measure P is of minimal L2-norm (see [17, 86] for the precise definition and related
results). According to [17, 86], the variance-optimal martingale measure Q∗ always exists, and it is a
probability measure equivalent to P if S is continuous and if the subset Me

2 of equivalent martingale
measures with square integrable densities is nonempty. Moreover, as was shown in [17], if Q∗ is the
variance-optimal martingale measure, then the density Z∗

T of Q∗ with respect to the basic measure P
can be written as a constant plus a stochastic integral of S, and the density process Z∗

t defined by
E∗(ZT /Ft) admits the same representation

Z∗
t = E∗ZT +

t∫

0

h∗udSu

for a predictable S-integrable process h∗.
Let V H

t = E∗(H/Ft) and

V H
t = E∗H +

t∫

0

ξH
u dSu + LH

t , 〈LH , X〉 = 0, (1.5.20)

315



be the Galtchouk–Kunita–Watanabe decomposition of V H
t with respect to the variance-optimal mar-

tingale measure Q∗.
It was shown in [36] (see also [37, 73, 79, 86]) that the optimal mean-variance hedging strategy is

expressed in the feedback form

π∗t = ξH
t − h∗t

Z∗
t

⎛
⎝V H

t− − c−
t∫

0

π∗udSu

⎞
⎠ .

Integrating both sides with respect to dSu, we obtain the following linear equation for the optimal
wealth process:

Xπ∗
t = x+

t∫

0

[
ξH
s − h∗s

Z∗
s

V H
s

]
dSs +

t∫

0

h∗s
Z∗

s

Xπ∗
s dSs. (1.5.21)

To show that Eqs. (1.5.21) and (1.5.17) are equivalent, we need the following assertion proved
in [57, 61]. Under the above assumptions, the variance-optimal martingale measure is a solution of
the optimization problem

inf
Q∈Me

2

EZ2
T (Q).

Let

Vt = ess inf
Q∈Me

2

E

(
Z2

T (Q)
Z2

t (Q)
/Ft

)

be the value process of the problem.
The following proposition is proved in Part 2. It is a consequnce of Theorem 2.3.1.

Proposition 1.5.2. Assume that the filtration F is continuous and condition (A∗) holds. Then the
value process V is a unique solution of the semimartingale backward equation

Vt = V0 −
t∫

0

(
Vsλ

′
sd〈M〉sλs − 2λ′sd〈M〉sϕs

)
+

1
Vs
d〈M〉s +

t∫

0

ϕsdMs +mt, VT = 1, (1.5.22)

in the class of semimartingales Y satisfying the two-sided inequality

c ≤ Yt ≤ C. (1.5.23)

Moreover, the martingale measure Q∗ is variance-optimal if and only if the corresponding density is
represented as

Z∗
T = ET

⎛
⎝−

·∫

0

λsdMs −
·∫

0

1
Vs
dms

⎞
⎠ . (1.5.24)

or, equivalently, if and only if

Z∗
T = cET

((ϕ
V

− λ
)
· S
)
. (1.5.25)

The following proposition shows that Eqs. (1.5.21) and (1.5.17) are equivalent.

Proposition 1.5.3. Assume that the filtration F is continuous and condition (A∗) holds. Then

V (t) =
1

V2(t)
,

h∗t
Z∗

t

=
ϕ2(t)
V2(t)

− λt, V H(t) =
V1(t)
V2(t)

,

and the optimal wealth process X∗ satisfies Eq. (1.4.9).
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Proof. If we write the Itô formula for 1/V2(t), taking into account the fact that V2(t) satisfies (1.5.14),
we obtain that the semimartingale 1/V2(t) satisfies Eq. (1.5.22) with ϕ = −ϕ2/V

2
2 , m = −1/V 2

2 · L,
and by the uniqueness of solution (since c ≤ V2(t) ≤ 1), we have

V (t) =
1

V2(t)
,

ϕ(t)
V (t)

= −ϕ2(t)
V2(t)

. (1.5.26)

It follows from (1.5.25) that

Z∗
t = E∗(Z∗

T /Ft) = V0Et

((ϕ
V

− λ
)
· S
)

and

h∗t = V0

(
ϕt

Vt
− λt

)
Et

((ϕ
V

− λ
)
· S
)
.

Therefore, (1.5.22) and (1.5.23) imply

h∗t
Z∗

t

=
ϕt

Vt
− λt =

ϕ2(t) + λ(t)V2(t)
V2(t)

. (1.5.27)

Now let us show that
ϕ1(t) + λ(t)V1(t)

V2(t)
= ξH(t) − h∗t

Z∗
t

V H
t .

From (1.5.21), we have

V H(t) = E
(
HEtT

(
−λ ·M − ϕ

V
·m
)
/Ft

)
.

Therefore, (1.5.19), (1.5.22), and the relation

ET

(
−λ ·M − ϕ

V
·m
)

= cET

((ϕ
V

− λ
)
· S
)

imply

V H(t) = cV1(t)
Et(( ϕ

V − λ) · S)
Et(−λ ·M − ϕ

V ·m)
= cV1(t)

E∗(ET (( ϕ
V − λ) · S)/Ft)

Et(−λ ·M − ϕ
V ·m)

= V1(t)V (t) =
V1(t)
V2(t)

,

and hence V1(t) = V H(t)V2(t).
Using the formula of integration by parts and equating the martingale parts of V1(t) and V H(t)V2(t),

we obtain that μK-a.e.,
ϕ1(t) = ϕ2(t)V H(t) + ξH(t)V2(t).

Therefore, (1.5.26), (1.5.27), and the latter equality imply

ϕ1(t) + λ(t)V1(t)
V2(t)

=
ϕ2(t)V H(t) + ξH(t)V2(t) + λ(t)V1(t)

V2(t)

= ξH(t) − V H(t)
ϕ(t)
V (t)

+ λ(t)V H(t) = ξH(t) − V H
t

h∗t
Z∗

t

,

and hence (1.5.21) and (1.5.17) are equivalent.

Remark 1.5.6. Proposition 1.5.2 holds without assumption on the continuity of the filtration. To
this end, one needs to apply [60, Theorem 1] instead of Proposition 1.5.1.

Remark 1.5.7. The condition V ∈ V1,2 also holds in several other particular cases (e.g., in the case
of exponential hedging where U(x) = exp(H−x)), but it is important to derive the required properties
of the value function from the assumptions on the basic objects U and X, which we intend to do in
the future.
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Now let us consider the optimization problem

minimize E

⎛
⎝c+

T∫

0

πsdSs −H

⎞
⎠

2

(1.5.28)

over all c ∈ R and π ∈ Π. Then for any c ∈ R,

E

⎛
⎝c+

T∫

0

πsdSs −H

⎞
⎠

2

≥ E

⎛
⎝c+

T∫

0

π∗s(c)dSs −H

⎞
⎠

2

= V (0, c) = V0(0)−2V1(0)+c2V2(0). (1.5.29)

The infinum on the right-hand side of (1.5.29) is attained for c = V1(0)/V2(0). It follows from
Proposition 1.5.2 that

V1(0)
V2(0)

= V H
0 = E∗H,

where E∗ is the expectation with respect to the variance-optimal martingale measure.
Therefore,

E

⎛
⎝c+

T∫

0

πsdSs −H

⎞
⎠

2

≥ E

⎛
⎝E∗H +

T∫

0

πsdSs −H

⎞
⎠

2

for all c and π. Thus, if (c∗, π∗) is a solution of (1.5.28), then c∗ = E∗H, which was proved by
Schweizer in [86].

1.6. Stochastic Volatility Models

The main goal of this section is to establish the connection between the semimartingale backward
equation for the value process and the classical Bellman equation for the value function related to
the utility maximization problem in the case of Markov diffusion processes. For Markov diffusion
models, the value process can be represented as a space-transformation of an asset price process by
the value function. The problem is to establish the differentiability properties of the value function
from the fact that the value process satisfies the corresponding BSDE. The role of the bridge between
these equations is played by the statements describing all invariant space-transformations of diffusion
processes studied by Chitashvili and Mania [8] and formulated here in the Appendix in a suitable case
adapted to financial market models. This approach allows us to prove that there exists a solution (in
a certain sense) of the Bellman equation and that this solution is differentiable (in a generalized sense)
under mild assumptions on the model coefficients. Although, in our case, the generalized derivative
in t and the second-order generalized derivatives in x do not separately exist in general (we prove the
existence of a generalized L-operator), these derivatives do not enter the construction of the optimal
strategy explicitly given in terms of the first-order derivatives of the value function. It should be
noted that the theory of viscosity solutions is usually applied to such problems (see, e.g., El Karoui et
al. (1997)), but the differentiability of the value function is in general beyond the framework of this
method.

We assume that the dynamics of the asset price process is determined by the following system of
stochastic differential equations:

dSt = diag(St)(μ(t, St, Rt)dt+ σl(t, St, Rt)dW l
t ), (1.6.1)

dRt =b(t, St, Rt)dt+ δ(t, St, Rt)dW l
t + σ⊥(t, St, Rt)dW⊥

t , (1.6.2)

where W = (W 1, . . . ,Wn) is the n-dimensional standard Brownian motion defined on a complete
probability space (Ω, F, P ) equipped with the P - augmented filtration generated by W , F = (Ft, t ∈
[0, T ]). The d- and (n − d)-dimensional Brownian motions are denoted by W l = (W 1, . . . ,W d) and
W⊥ = (W d+1, . . . ,Wn), respectively.
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Assume that the following conditions hold.
(S1) the coefficients μ, b, δ, σl, and σ⊥ are measurable and bounded;
(S2) the (n× n)-matrix function σσ′ is uniformly elliptic, i.e., there is a constant c > 0 such that

(σ(t, s, r)λ, σ(t, s, r)λ) ≥ c|λ|2

for all t ∈ [0, T ], s ∈ R
d
+, r ∈ R

n−d, and λ ∈ R
n, where σ is defined by

σ(t, s, r) =
(
σl(t, s, r) 0
δ(t, s, r) σ⊥(t, s, r),

)
;

(S3) system (1.6.1), (1.6.2) admits a unique strong solution.
Straightforward calculations yield that in this case

λ = diag(S)−1(σlσl′)−1μ,

where σl′ denotes the transposition of σl,

d〈M〉t
dt

= diag(St)(σlσl′)(t, St, Rt) diag(St)

is the νt process, θ = (σl)−1μ is the market price of risk, and

〈λ ·M〉t =

t∫

0

‖θs‖2ds

is the mean variance tradeoff.
By the results of Krylov (1980), for sufficiently smooth coefficients μ, σ, b, and δ, the value function

V (t, x) can be represented as v(t, x, St, Rt) with a sufficiently smooth function v(t, x, s, r), t ∈ [0, T ],
x ∈ R+, s ∈ R

d
+, r ∈ R

n−d. Hence, by Eq. (1.3.1) and the Itô formula, we obtain that v(t, x, s, r)
satisfies the partial differential equation

Lv(t, x, s, r) + vs(t, x, s, r)′ diag(s)μ(t, s, r) + vr(t, x, s, r)′b(t, s, r)

=
1
2
|vsx(t, x, s, r) + diag(s)−1σl′(t, s, r)−1δ′(t, s, r)vrx(t, x, s, r) + λ′(t, s, r)vx(t, x, s, r)|2νt

vxx(t, x, s, r)
, (1.6.3)

v(T, x, s, r) = U(x), (1.6.4)

which coincides with the Bellman equation of the optimization problem (1.1.3), (1.6.1), (1.6.2) for a
controlled Markov process. Moreover, the optimal strategy is

π∗(t, x, s, r) =
vsx(t, x, s, r) + diag(s)−1σl′(t, s, r)−1δ′(t, s, r)vrx(t, x, s, r) + λ′(t, s, r)vx(t, x, s, r)

vxx(t, x, s, r)
.

In this section, we study the solvability of (1.6.3), (1.6.4) in the particular cases of utility functions
but with weaker conditions on the coefficients.

First, we consider the case of a power utility.

Theorem 1.6.1. Let conditions (S1)–(S3) be satisfied. Then the value function v(t, s, r) admits all
first-order generalized derivatives vs and vr, and the generalized L-operator

Lv = vt +
1
2

tr(diag(s)σlσl′(t, s, r) diag(s)vss + tr(δσl′(t, r, s) diag(s)vsr)

+
1
2

tr((δδ′(t, s, r) + σ⊥σ⊥
′
(t, s, r))vrr)
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(in the sense of Definition 1.7.1 of the Appendix ) is a unique bounded solution of the equation

Lv(t, s, r) + vs(t, s, r)′ diag(s)μ(t, s, r) + vr(t, s, r)′b(t, s, r)

=
q

2
|vs(t, s, r) + diag(s)−1σl′(t, s, r)−1δ′(t, s, r)vr(t, s, r) + λ(t, s, r)v(t, s, r)|2νt

v(t, s, r)
dt ds dr-a.e. (1.6.5)

with the boundary condition

v(T, s, r) = 1. (1.6.6)

Moreover, the optimal strategy is defined as

π∗(t, x, s, r) = (1 − q)
(
λ(t, s, r) +

ϕ(t, s, r)
v(t, s, r)

)
x

and the optimal wealth process is of the form

X∗
t = xEt

(
(1 − q)

(ϕ
v

+ λ
)
· S
)
,

where

ϕ(t, s, r) = vs(t, s, r) + diag(s)−1σl′(t, s, r)−1δ′(t, s, r)vr(t, s, r).

Proof. Existence. Since (S,R) is a Markov process, the feedback controls are sufficient, and the value
process is expressed by

Vt = v(t, St, Rt) a.s., (1.6.7)

where

v(t, s, r) = sup
π∈Π1

E

⎛
⎝
⎛
⎝1 +

T∫

t

πudsu

⎞
⎠

p

|St = s,Rt = r

⎞
⎠

(one can show this fact, e.g., similarly to [8]).
Since the value process satisfies Eq. (1.4.3), it is an Itô process. From

E(−λ ·M) = E
⎛
⎝−

·∫

0

θudw
l
u

⎞
⎠

and the boundedness of θ it follows that E(−λ ·M) satisfies the reverse Hölder inequality. Thus, by
the Hölder inequality,

Vt = ess sup
π∈Π1

E

⎛
⎝
⎛
⎝1 +

T∫

t

πudSu

⎞
⎠

p

/Ft

⎞
⎠

is bounded, and its martingale part is in BMO by [56]. Hence the finite variation part of Vt is of
integrable variation, and from (1.6.7) we see that v(t, St, Rt) is an Itô process of the form (1.7.14)
(Appendix). Therefore, Proposition 1.7.4 of the Appendix implies that the function v(t, s, r) admits a
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generalized L-operator and all first-order generalized derivatives, and it can be represented as follows:

v(t, St, Rt) = v0 +

t∫

0

(vs(u, Su, Ru)′ diag(Su)σl(u, Su, Ru)

+ vr(u, Su, Ru)′δ(u, Su, Ru))dW l
s +

t∫

0

vr(u, Su, Ru)′σ⊥(u, Su, Ru)dW⊥
s

+

t∫

0

Lv(u, Su, Ru)ds+

t∫

0

(
vs(u, Su, Ru)′ diag(Xs)μ(u, Su, Ru)

+ vr(u, Su, Ru)b(u, Su, Ru)
)
du, (1.6.8)

where LV is the generalized L-operator.
On the other hand, the value process is a solution of (1.4.3), and by the uniqueness of the canonical

decomposition of semimartingales, comparing the martingale parts of (1.6.8) and (1.4.3), we have that
dt× dP -a.e.

ϕt = vs(t, St, Rt) + diag(St)−1σl′(t, St, Rt)−1δ′(t, St, Rt)vr(t, St, Rt), (1.6.9)

ϕ⊥
t = σ⊥

′
(t, St, Rt)vr(t, St, Rt). (1.6.10)

Then, equating the processes of bounded variation of the equations and taking into account (1.6.8)
and (1.6.9), we derive that

t∫

0

(Lv(u, Su, Ru) + vs(u, Su, Ru)′ diag(Su)μ(u, Su, Ru) + vr(u, Su, Ru)b(u, Su, Ru)
)
du

=
q

2

t∫

0

|ϕu + λ(u, Su, Ru)v(u, Su, Ru)|2νu

v(u, Su, Ru)
du, (1.6.11)

which gives that v(t, s, r) solves the Bellman equation (1.6.5).
Uniqueness. Let ṽ(t, s, r) be a bounded positive solution of (1.6.5), (1.6.6) from the class V L.

Then using the generalized Itô formula (Proposition 1.7.1 of the Appendix) and Eq. (1.6.5), we obtain
that ṽ(t, St, Rt) is a solution of (1.4.3) and hence ṽ(t, St, Rt) coincides with the value process v by
Theorem 1.4.1. Therefore, ṽ(t, St, Rt) = v(t, St, Rt)-a.s. and ṽ = v, dt dx dy-a.e.

Now we consider extreme cases for the stochastic volatility models. In the first extreme case, we
assume that the coefficients μ and σl do not contain the variable r. Hence θ and λ are also independent
of the variable r and Eq. (2.4.19) takes the form

dSt = diag(St)(μ(t, St)dt+ σl(t, St)dW l
t ). (1.6.12)

Let S(q) be the Itô process governed by SDE

dSt(q) = diag(St(q))σl(t, St(q))(dW l
t + qθ(t, St(q))dt), (1.6.13)

where dW l
t + qθ(t, St)dt is the Brownian motion with respect to measure

dQ(q) = ET (−q
·∫

0

θudw
l
u)dP.
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Thus, by Theorem 1.4.1, the value process is represented as

Vt = v(t, St(q)) = (ṽ(t, St(q))
1

1−q ,

where

ṽ(t, s) = EQ(q)

⎛
⎝exp

⎛
⎝q(q − 1)

2

T∫

t

|θu|2du
⎞
⎠ |St(q) = s

⎞
⎠ .

Therefore, we have the following assertion.

Corollary 1.6.1. Let conditions (S1)–(S3) hold for the coefficients of system (1.6.13). Then the value
process can be represented as (ṽ(t, St(q))

1
1−q , where ṽ(t, s) is the classical solution of the linear partial

differential equation

ṽt(t, s) +
1
2

tr(diag(s)σlσl′(t, s) diag(s)ṽss(t, s)) +
q(q − 1)

2
|θ(t, s)|2ṽ(t, s) = 0, (1.6.14)

ṽ(T, s) = 1. (1.6.15)

The second extreme case corresponds to the stochastic volatility model of the form

dSt = diag(St)(μ(t, St, Rt)dt+ σl(t, St, Rt)dW l
t ),

dRt = b(t, Rt)dt+ σ⊥(t, Rt)dW⊥
t .

(1.6.16)

Corollary 1.6.2. Let conditions (S1)–(S3) hold for the coefficients of system (1.6.16) and θ be in-
dependent of the variable s. Then the value process of the optimization problem (1.4.1) has the form
Vt = v(t, Rt), where

v(t, r) = E

⎛
⎝exp

⎛
⎝−q

2

T∫

t

|θ(u,Ru)|2du
⎞
⎠ |Rt = r

⎞
⎠

satisfies the linear partial differential equation

vt(t, r) +
1
2

tr(σ⊥σ⊥
′
(t, r)vrr(t, r)) + vr(t, r)′b(t, r) − q

2
|θ(t, r)|2v(t, r) = 0, (1.6.17)

v(T, r) = 1. (1.6.18)

A similar result can be obtained for the exponential utility function.

Proposition 1.6.1. Let conditions (S1)–(S3) hold and H = g(ST , RT ) for a continuous bounded
function g(s, r). Then the value function v(t, s, r) for problem (1.4.10) admits all first-order generalized
derivatives vs and vr and the generalized L-operator is a unique bounded solution of the equation

Lv(t, s, r) + vs(t, s, r)′ diag(s)μ(t, s, r) + vr(t, s, r)′b(t, s, r)

=
1
2
|vs(t, s, r) + diag(s)−1σl′(t, s, r)−1δ′(t, s, r)vr(t, s, r) + λ(t, s, r)v(t, s, r)|2νt

v(t, s, r)
dt ds dr-a.e.

(1.6.19)

with the boundary condition
v(T, s, r) = e−γg(s,r). (1.6.20)

Moreover, the optimal strategy is defined as

π∗(t, x, s, r) =
1
γ

(
λ(t, s, r) +

ϕ(t, s, r)
v(t, s, r)

)
x,

where
ϕ(t, s, r) = vs(t, s, r) + diag(s)−1σl′(t, s, r)−1δ′(t, s, r)vr(t, s, r)

and the optimal wealth process is defined by (1.4.15).
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In the case of logarithmic utility, from Theorem 1.4.2 and the Feynmann–Kac formula, we immedi-
ately obtain the following assertion.

Proposition 1.6.2. Let conditions (S1)–(S3) hold and U(x) = lnx. Then the value function can be
represented as v(t, St, Rt), where v(t, s, r) is a unique solution of the linear partial differential equation

Lv(t, s, r) + vs(t, s, r)′ diag(s)μ(t, s, r) + vr(t, s, r)′b(t, s, r) + |θ(t, s, r)|2v(t, s, r) = 0, (1.6.21)

v(T, s, r) = 1 (1.6.22)

and the optimal strategy is π∗(t, x, s, r) = λ(t, s, r)x.

Now we specify the result presented in Theorem 1.5.1 in the case of the stochastic volatility model
given by (2.4.19) and (2.4.20). For simplicity, we consider the case where δ = 0 and assume that
H = g(ST , RT ) for some continuous bounded g. In this case, the value process has the form

V (t) = v2(t, St, Rt)x2 − 2v1(t, St, Rt)x+ v0(t, St, Rt).

The following assertion can be proved similarly to Theorem 1.4.3.

Theorem 1.6.2. Let conditions (S1)–(S3) hold. Then the value function v(t, s, r) of problem (1.1.2)
admits all first-order generalized derivatives vs and vr, and the generalized L-operator (in the sense
of Definition 1.7.1 of the Appendix ) is a unique solution of the system of partial differential equations

Lv2(t, s, r) + v2s(t, s, r)′ diag(s)μ(t, s, r) + v2r(t, s, r)′b(t, s, r)

=
|v2s(t, s, r) + λ(t, s, r)v2(t, s, r)|2ν(t,s,r)

v2(t, s, r)
dt ds dr-a.e., (1.6.23)

v2(T, s, r) = 1, (1.6.24)

Lv1(t, s, r) + v1s(t, s, r)′ diag(s)μ(t, s, r) + v1r(t, s, r)′b(t, s, r)

=

(
v1s(t, s, r) + λ(t, s, r)v1(t, s, r), v2s(t, s, r) + λ(t, s, r)v2(t, s, r)

)
ν(t,s,r)

v2(t, s, r)
, (1.6.25)

v1(T, s, r) = g(s, r), (1.6.26)

Lv0(t, s, r) + v0s(t, s, r)′ diag(s)μ(t, s, r) + v0r(t, s, r)′b(t, s, r)

=
|v1s(t, s, r) + λ(t, s, r)v1(t, s, r)|2ν(t,s,r)

v2(t, s, r)
, (1.6.27)

v0(T, s, r) = g(s, r)2. (1.6.28)

Moreover, the optimal strategy has the form

π(t, x, s, r) =
v1s(t, s, r) + λ(t, s, r)v1(t, s, r)

v2(t, s, r)
− v2s(t, s, r) + λ(t, s, r)v2(t, s, r)

v2(t, s, r)
x.

1.7. Appendix

A. Let us show that the family

Λπ
t = E

⎛
⎝U

⎛
⎝x+

T∫

0

πudSu

⎞
⎠ |Ft

⎞
⎠ , π ∈ Πx(π̃, t, T ) (1.7.1)

satisfies the ε-lattice property (with ε = 0) for any t ∈ [0, T ] and π̃. Π(π̃, t, T ) is the set of predictable
S-integrable processes π from Πx such that

πs = π̃sI(0≤s<t).

We write Π(t, T ) instead of Π(0, t, T ) for the class of strategies corresponding to π̃ = 0 up to time t.
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We need to show that for any π1, π2 ∈ Π(π̃, t, T ), there exists a strategy π ∈ Π(π̃, t, T ) such that

Λπ
t = max(Λπ1

t ,Λπ2

t ). (1.7.2)

For any π1 and π2, define the set

B = {ω : Λπ1

t ≤ Λπ2

t },
and let

πs = π̃sI(0≤s<t) + π1
sIBI(s≥t) + π2

sIBcI(s≥t).

Obviously, π ∈ Πx (respectively, π ∈ Πp) if π̃, π1, π2 ∈ Πx (respectively, Πp).
Since B is Ft−measurable, we have

Λπ
t = E

⎛
⎝U

⎛
⎝x+

T∫

0

πudSu

⎞
⎠ |Ft

⎞
⎠ = E

⎛
⎝U

⎛
⎝x+

t∫

0

π̃udSu + IB

T∫

t

π1
udSu + IBc

T∫

t

π2
udSu

⎞
⎠ |Ft

⎞
⎠

= IBE

⎛
⎝U

⎛
⎝x+

t∫

0

π̃udSu +

T∫

t

π1
udSu

⎞
⎠ |Ft

⎞
⎠+ IBcE

⎛
⎝U

⎛
⎝x+

t∫

τ

π̃udSu +

T∫

t

π2
udSu

⎞
⎠ |Ft

⎞
⎠

= IBE

⎛
⎝U

⎛
⎝x+

T∫

0

π1
udSu

⎞
⎠ |Ft

⎞
⎠+ IBcE

⎛
⎝U

⎛
⎝x+

T∫

0

π2
udSu

⎞
⎠ |Ft

⎞
⎠

= E

⎛
⎝U

⎛
⎝x+

T∫

0

π1
udSu

⎞
⎠ |Ft

⎞
⎠ ∨E

⎛
⎝U

⎛
⎝x+

T∫

0

π2
udSu

⎞
⎠ |Ft

⎞
⎠ ,

and hence (1.7.2) is satisfied.

Proposition 1.7.1 (optimality principle). Let condition (B1) hold.
(a) For all x ∈ R, π ∈ Π, and s ∈ [0, T ], the process⎛

⎝V
⎛
⎝t, x+

t∫

s

πudSu

⎞
⎠ , t ≥ s

⎞
⎠

is a supermartingale, admitting an RCLL modification.
(b) π∗(s, x) is optimal if and only if⎛

⎝V
⎛
⎝t, x+

t∫

s

π∗udSu

⎞
⎠ , t ≥ s

⎞
⎠

is a martingale.
(c) For all s < t,

V (s, x) = ess sup
π∈Π(s,T )

E

⎛
⎝V

⎛
⎝t, x+

t∫

s

πudSu

⎞
⎠ |Fs

⎞
⎠ . (1.7.3)

Proof. (a) For simplicity, we take s to be equal to zero. Let us show that

Yt = V

⎛
⎝t, x+

t∫

0

π̃udSu

⎞
⎠
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is a supermartingale for all x and π̃. Since

Yt = ess sup
π∈Π(t,T )

E

⎛
⎝U

⎛
⎝x+

t∫

0

π̃udSu +

T∫

t

πudSu

⎞
⎠ |Ft

⎞
⎠

using the lattice property of family (1.7.1) from [26, Lemma 16.A.5], we have

E(Yt|Fs) = E

⎛
⎝ ess sup

π∈Π(t,T )
E

⎛
⎝U

⎛
⎝x+

t∫

0

π̃udSu +

T∫

t

πudSu

⎞
⎠ |Ft

⎞
⎠ |Fs

⎞
⎠

= E

⎛
⎝ ess sup

π∈Π(π̃,t,T )
E

⎛
⎝U

⎛
⎝x+

T∫

0

πudSu

⎞
⎠ |Ft

⎞
⎠ |Fs

⎞
⎠ = ess sup

π∈Π(π̃,t,T )
E

⎛
⎝U

⎛
⎝x+

T∫

0

πudSu

⎞
⎠ |Fs

⎞
⎠ .

(1.7.4)

Obviously, Π(π̃, t, T ) ⊆ Π(π̃, s, T ) for s ≤ t, which implies the inequality

ess sup
π∈Π(π̃,t,T )

E

⎛
⎝U

⎛
⎝x+

T∫

0

πudSu

⎞
⎠ |Fs

⎞
⎠

≤ ess sup
π∈Π(π̃,s,T )

E

⎛
⎝U

⎛
⎝x+

T∫

0

πudSu

⎞
⎠ |Ft

⎞
⎠ = V

⎛
⎝s, x+

s∫

0

π̃udSu

⎞
⎠ . (1.7.5)

Thus, (1.7.4) and (1.7.5) imply E(Yt/Fs) ≤ Ys.
(b) If

V

⎛
⎝t, x+

t∫

0

π∗udSu

⎞
⎠

is a martingale, then

inf
π∈Π

EU

⎛
⎝x+

T∫

0

πudSu

⎞
⎠ = V (0, x) = EV (0, x) = EV

⎛
⎝T, x+

T∫

0

π∗udSu

⎞
⎠ = EU

⎛
⎝x+

T∫

0

π∗udSu

⎞
⎠ ,

and hence π∗ is optimal.
Conversely, if π∗ is optimal, then

EV (0, x) = sup
π∈Π

EU

⎛
⎝x+

T∫

0

πudSu

⎞
⎠ = EU

⎛
⎝x+

T∫

0

π∗udSu

⎞
⎠ = EV

⎛
⎝T, x+

T∫

0

π∗udSu

⎞
⎠ .

Since

V

⎛
⎝t, x+

t∫

0

π∗udSu

⎞
⎠

is a supermartingale, the latter equality implies that this process is a martingale (this follows from [51,
Lemma 6.6]).

(c) Since

Yt = V

⎛
⎝t, x+

t∫

s

π̃udSu

⎞
⎠
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is a supermartingale, for any π̃ ∈ Π(s, T ), x ∈ R, and t ≥ s, we have

V (s, x) ≥ E

⎛
⎝V

⎛
⎝t, x+

t∫

s

π̃udSu

⎞
⎠ |Fs

⎞
⎠ ,

and hence

V (s, x) ≤ ess sup
π̃∈Π(s,T )

E

⎛
⎝V

⎛
⎝t, x+

t∫

s

π̃udSu

⎞
⎠ |Fs

⎞
⎠ . (1.7.6)

On the other hand, for any π̃,

E

⎛
⎝V

⎛
⎝t, x+

t∫

s

π̃udSu

⎞
⎠ |Fs

⎞
⎠ = E

⎛
⎝ ess sup

π∈Π(t,T )
E

⎛
⎝U

⎛
⎝x+

t∫

s

π̃udSu +

T∫

t

πudSu

⎞
⎠ |Ft

⎞
⎠Fs

⎞
⎠

≥ E

⎛
⎝E

⎛
⎝U

⎛
⎝x+

T∫

s

π̃udSu

⎞
⎠ |Ft

⎞
⎠Fs

⎞
⎠ = E

⎛
⎝U

⎛
⎝x+

T∫

s

π̃udSu

⎞
⎠ |Fs

⎞
⎠ .

Taking esssup of both parts, we obtain

ess sup
π̃∈Π(s,T )

E

⎛
⎝V

⎛
⎝t, x+

t∫

s

π̃udSu

⎞
⎠ |Fs

⎞
⎠ ≥ ess sup

π̃∈Π(s,T )
E

⎛
⎝U

⎛
⎝x+

T∫

s

π̃udSu

⎞
⎠ |Fs

⎞
⎠ = V (s, x). (1.7.7)

Thus (1.7.3) follows from (1.7.6) and (1.7.7).
Let us show now that the process

Ṽ

⎛
⎝t, x+

t∫

0

π̃udSu

⎞
⎠

admits an RCLL modification for all x ∈ R and π ∈ Π̃. According to [51, Theorem 3.1], it suffices to
prove that the function

EṼ

⎛
⎝t, x+

t∫

0

π̃udSu

⎞
⎠ , t ∈ [0, T ],

is right-continuous for every x ∈ R.
Let (tn, n ≥ 1) be a sequence of positive numbers such that tn ↓ t as n→ ∞. Since

Ṽ

⎛
⎝t, x+

t∫

0

π̃udSu

⎞
⎠

is a supermartingale, we have

EṼ

⎛
⎝t, x+

t∫

0

π̃udSu

⎞
⎠ ≥ lim

n→∞EṼ

⎛
⎝tn, x+

tn∫

0

π̃udSu

⎞
⎠ . (1.7.8)

Let us show the converse inequality. For s = 0, (1.7.4) takes the form

EṼ

⎛
⎝t, x+

t∫

0

π̃udSu

⎞
⎠ = max

π∈Π̃(π̃,t,T )
EU

⎛
⎝x+

T∫

0

πudSu

⎞
⎠ . (1.7.9)
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Therefore, for any ε > 0, there exists a strategy πε such that

EṼ

⎛
⎝t, x+

t∫

0

π̃udSu

⎞
⎠ ≤ EU

⎛
⎝x+

t∫

0

π̃udSu +

T∫

t

πε
udSu

⎞
⎠+ ε. (1.7.10)

Let us define the sequence (πn, n ≥ 1) of strategies

πn
s = π̃sI(s<tn) + πε

sI(s≥tn).

Using inequality (1.7.10), the continuity of U (it follows from (B1) and (B2)), the convergence of the
stochastic integrals, and the Fatou lemma, we have

EṼ

⎛
⎝t, x+

t∫

0

π̃udSu

⎞
⎠ ≤ EU

⎛
⎝x+

t∫

0

π̃udSu +

T∫

t

πε
udSu

⎞
⎠+ ε

= E

⎛
⎝lim

n
U

⎛
⎝x+

tn∫

0

π̃udSu +

T∫

tn

πε
udSu

⎞
⎠
⎞
⎠+ ε

≥ lim
n→∞

E

⎛
⎝E

⎛
⎝U

⎛
⎝x+

tn∫

0

π̃udSu +

T∫

tn

πε
udSu

⎞
⎠ /Ftn

⎞
⎠
⎞
⎠+ ε

≥ lim
n→∞

E

⎛
⎝ ess sup

π∈Π̃(π̃,tn,T )

E

⎛
⎝U

⎛
⎝x+

tn∫

0

π̃udSu +

T∫

tn

πudSu

⎞
⎠ /Ftn

⎞
⎠
⎞
⎠+ ε

= lim
n→∞

EṼ

⎛
⎝tn, x+

tn∫

0

π̃udSu

⎞
⎠+ ε. (1.7.11)

Since ε is an arbitrary positive number, from (1.7.11) we obtain

EṼ

⎛
⎝t, x+

t∫

0

π̃udSu

⎞
⎠ ≤ lim

n→∞
EṼ

⎛
⎝tn, x+

tn∫

0

π̃udSu

⎞
⎠ , (1.7.12)

which, together with (1.7.9), implies that the function

EṼ

⎛
⎝t, x+

t∫

0

π̃udSu

⎞
⎠ , t ∈ [0, T ],

is right-continuous.

B. Let (K(t), t ∈ R) be a strictly increasing continuous function. Define

τs(ε) = inf{t ≥ s : Kt −Ks ≥ ε}, σs(ε) = inf{t ≥ 0 : Kt −Ks ≥ −ε}.
Obviously, Kτs(ε) = Ks + ε and Kσs(ε) = Ks − ε.

Lemma 1.7.1. For any K-integrable function F ,

∫

R

1
ε

τε
s∫

s

∣∣F (t) − F (s)
∣∣dK(t)dK(s) → 0 as ε→ 0.
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Proof. First, assume that F is continuous and F (t) = 0 if |t| > T for some T > 0. Then

∫

R

1
ε

τε
s∫

s

∣∣F (s) − F (t)
∣∣dKtdKs ≤

∫

R

max
t≤s≤τε

t

∣∣F (s) − F (t)
∣∣dKt

≤ max
0≤s−t≤τε

t −t

∣∣F (s) − F (t)
∣∣ as ε→ 0

since F is uniformly continuous on [−T, T ] and τ ε
t − t→ 0 as ε→ 0.

On the other hand,

∫
R

1
ε

∫ τε
s

s

∣∣F (s) − F (t)
∣∣dKtdKs ≤ |F |L1(R,dK) +

∫
R

1
ε

∫ τε
s

s |F (t)|dKtdKs

|F |L1(R,dK) +
∫

R

1
ε

t∫

σε
t

|F (t)|dKsdKt ≤ 2|F |L1(R,dK), (1.7.13)

since by the Fubini theorem

∫

R

τε
s∫

s

|F (t)|dKtdKs =
∫

R

∫

R

1(s≤t≤τε
s )|F (t)|dKsdKt

=
∫

R

t∫

σε
t

|F (t)|dKsdKt ≤
∫

R

|F (t)|(Kt −Kσε
t
)dKt ≤ ε|F |L1(R,dK).

Using inequality (1.7.13), we can approximate each function F ∈ L1(R, dK) by compactly supported
continuous functions.

Corollary 1.7.1. For F ∈ L1(R, dK),

∫

R

∣∣∣∣∣∣∣
1
ε

τε
s∫

s

F (t)dKt − F (s)

∣∣∣∣∣∣∣
dKs → 0 as ε→ 0.

If
τε
t∫

t

F (s)dKs = 0 dK-a.s.,

then Ft = 0 dK-a.s.

Proposition 1.7.2. Let (f(t, x), (t, x) ∈ R
2) and (X(t, s), t ≥ s) be measurable functions such that the

family x→ f(·, x) is continuous in L1(R, dK), and let X(s, t) be a continuous function on {(t, s); t ≥ s}
with X(s, s) = x for all s ∈ R and some x ∈ R. Then

∫

R

∣∣∣∣∣∣∣
1
ε

τε
s∫

s

f(t,X(t, s))dKt − f(s, x)

∣∣∣∣∣∣∣
dKs → 0 as ε→ 0.
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Proof. Denote by bεt the expression max
σε

t≤s≤t
|X(t, s) − x|. Then

∫

R

1
ε

τε
s∫

s

∣∣f(t,X(t, s)) − f(s, x)
∣∣dKtdKs ≤

∫

R

1
ε

t∫

σε
t

∣∣f(t,X(t, s)) − f(t, x)
∣∣dKsdKt

+
∫

R

1
ε

τε
s∫

s

∣∣f(t, x) − f(s, x)
∣∣dKtdKs.

The first term in the latter expression can be estimated by∫

R

max
|x−y|≤bε

t

∣∣f(t, x) − f(t, y)
∣∣dKt.

Since X(·, ·) is continuous, bεt → 0 uniformly on each [−T, T ] as ε → 0, and by the continuity of the
family f(·, x) ∈ L1, we obtain that the first summand tends to zero. The second summand tends to
zero by Lemma 1.7.1.

Remark 1.7.1. If the functions f and K are defined on the subsets [0, T ]×R and [0, T ], respectively,
then we can consider the functions

f̃(t, x) =

{
f(t, x), (t, x) ∈ [0, T × R,

0, (t, x) ∈ [0, T ] × R,
K̃(t) =

⎧⎪⎨
⎪⎩
K(t), t ∈ [0, T ],
t+K(0), t < 0,
K(T ) + t− T, t > T

and further we can use Proposition 1.7.2.

C. Assume that the following condition holds:
(D3′) there exist γ > 0, a positive integrable random variable ξ, and p > 1 such that U(x) ≥ γ|x|p−ξ.

Note that the function U(x) = |H − x|p for H ∈ Lp satisfies (D3′), as well as conditions (D1)–(D2)
of Sec. 1.5.

Proposition 1.7.3. Assume that one of the assertions of Proposition 1.2.1 and conditions (D1),
(D2), and (D3′) are satisfied. Then for any t and x, the problem

ess inf
π∈Π

E

⎛
⎝U

⎛
⎝x+

T∫

t

πsdSs

⎞
⎠ /Ft

⎞
⎠

admits a unique solution with a p-integrable wealth process.

Proof. By the lattice property (see Sec. 1.7), we can choose a sequence π̃n ∈ Π such that

E

⎛
⎝U

⎛
⎝x+

T∫

t

π̃n
s dSs

⎞
⎠ /Ft

⎞
⎠ ↓ V (t, x) P -a.s.

By condition (B1), one can choose a sequence π̃n such that

E

⎛
⎝U

⎛
⎝x+

T∫

t

π̃n
s dSs

⎞
⎠ /Ft

⎞
⎠ ≤ E(U(x)/Ft)

for all n ≥ 1. Thus

EU

⎛
⎝x+

T∫

t

π̃n
s dSs

⎞
⎠→ EV (t, x) as n→ ∞.
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By condition (B3′), there exists R > 0 such that

γE

∣∣∣∣∣∣x+

T∫

t

π̃n
s dSs

∣∣∣∣∣∣

p

≤ EU

⎛
⎝x+

T∫

t

π̃n
s dSs

⎞
⎠+ Eξ ≤ R.

Hence x+
∫ T
t π̃n

s dSs is a bounded sequence in the space Lp, and we can assume that it weakly converges.
By the Masure lemma (see, e.g., [25]), there exists a sequence of strategies

πn =
q(n)∑
k=n

αknπ̃
kn,

where

q(n) > n,

q(n)∑
k=n

αkn = 1, αkn ≥ 0,

such that
T∫

t

πn
s dSs →

T∫

t

π∗s dSs

in Lp for some π∗ ∈ Π. We can assume also that
T∫

t

πn
s dSs →

T∫

t

π∗s dSs P -a.s.

By the convexity of U , we have

E

⎡
⎣U
⎛
⎝x+

T∫

t

πn
s dSs

⎞
⎠ /Ft

⎤
⎦ ≤ E

⎡
⎣U
⎛
⎝x+

T∫

t

π̃n
s dSs

⎞
⎠ /Ft

⎤
⎦ .

Therefore,

lim
n→∞E

⎡
⎣U
⎛
⎝x+

T∫

t

πn
s dSs

⎞
⎠ |Ft

⎤
⎦ ≤ lim

n→∞E

⎡
⎣U
⎛
⎝x+

T∫

t

π̃n
s dSs

⎞
⎠ |Ft

⎤
⎦ = V (t, x).

On the other hand, the Fatou lemma implies that

E

⎡
⎣U
⎛
⎝x+

T∫

t

π∗sdSs

⎞
⎠ |Ft

⎤
⎦ ≤ lim

n→∞
E

⎡
⎣U
⎛
⎝x+

T∫

t

πn
s dSs

⎞
⎠ |Ft

⎤
⎦ P -a.s.

Therefore, π∗ is optimal and π∗ is unique by Remark 1.2.3.

Finally, we prove the following lemma used in the proof of Proposition 1.3.1.

Lemma 1.7.2. Let bt be a predictable process and S be a continuous semimartingale. Denote by Πx

the space of all predictable S-integrable processes π such that for all t ∈ [0, T ],

x+

t∫

0

πudSu ≥ 0.

Then P -a.s. for all t ∈ [0, T ],
ess inf
π∈Πx

|πt − bt| = 0.
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Proof. Taking bnt = btI(|bt|≤n), we have

ess inf
π∈Πx

|πt − bt| ≤ ess inf
π∈Πx

|πt − bnt | + |bnt − bt|.

Therefore, without loss of generality, we may assume that b is S-integrable. Let τ be a predictable
stopping time. Denote by (τn, n ≥ 1) the predicted sequence of stopping times.

For each n ≥ 1, let us define the strategy

πn
t = btI(τn,τ ](t)Et

(
1
x
bI(τn,τ ] · S

)
.

Obviously, πn belongs to Πx for all n ≥ 1.
Indeed,

x+

t∫

0

πudSu = x+ x

t∫

0

Eu

(
1
x
bI(τn,τ ] · S

)
1
x
buI(τn,τ ](u)dSu = xEt

(
1
x
bI(τn,τ ] · S

)
≥ 0.

Since πn
τ = bτEτ ( 1

xbI(τn,τ ] · S) and S is continuous, we have that P -a.s.,

πn
τ → bτ as n→ ∞.

Denote by γt the expression ess inf
π∈Πx

|πt − bt|. Then

γτ =
(
ess inf
π∈Πx

|πt − bt|
)
τ
≤ (|πn

t − bt|
)
τ

= |πn
τ − bτ | → 0

as n→ ∞. By the arbitrariness of n and τ , we obtain that P -a.s., γτ = 0 for any predictable stopping
time τ . Therefore γt is indistinguishable from zero.

Corollary 1.7.2. Let K be an increasing process. Then

ess inf
π∈Πx

|πt − bt| = 0 μK-a.e.

D. Now we introduce some notions, which allow us to present an application of Theorem 1.3.1 to the
Markov case.

Consider the system of stochastic differential equations (2.4.19), (2.4.20) and assume that condi-
tions (B1) and (B2) are satisfied. Under these conditions, there exists a unique weak solution of
(2.4.19), (2.4.20), which is a Markov process, and its transition probability function admits a den-
sity p(s, (x0, y0), t, (x, y)) with respect to the Lebesgue measure. We use the notation p(t, x, y) =
p(0, (x0, y0), t, (x, y)) for the fixed initial condition S0 = x0, R0 = y0.

Introduce the measure μ on the space ([0, T ] × R
d
+ × R

n−d,B([0, T ] × R
d
+ × R

n−d)):

μ(dt, dx, dy) = p(t, x, y)dt dx dy.

Let C1,2 be the class of functions f continuously differentiable at t and twice differentiable at x, y on
[0, T ] × R

d
+ × R

n−d. For functions f ∈ C1,2, the L operator is defined as

Lf = ft + tr
(

1
2

diag(x)σlσl′ diag(x)fxx

)
+ tr(δσl′ diag(x)fxy) + tr

(
1
2
(δδ′ + σ⊥σ⊥

′
)fyy

)
,

where ft, fxx, fxy, and fyy are partial derivatives of the function f , for which we use the matrix
notation.

Definition 1.7.1. We say that a function f = (f(t, x, y), t ≥ 0, x ∈ R
d
+, y ∈ R

n−d) belongs to the
class V L

μ if there exists a sequence of functions (fn, n ≥ 1) from C1,2 and measurable μ-integrable
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functions fxi(i ≤ d), fyj (d < j ≤ n) and (Lf) such that

E sup
s≤T

∣∣fn(s, Ss, Rs) − f(u, Su, Ru)
∣∣→ 0 as n→ ∞,

∫∫

[0,T ]×R
d
+×Rn−d

(
fn

xi
(s, x, y) − fxi(s, x, y)

)2
x2

iμ(ds, dx, dy) → 0, i ≤ d,

∫∫

[0,T ]×R
d
+×Rn−d

(
fn

yj
(s, x, y) − fyj (s, x, y)

)2
μ(ds, dx, dy) → 0, d < j ≤ n,

∫∫

[0,T ]×R
d
+×Rn−d

∣∣Lfn(s, x, y) − (Lf)(s, x, y)
∣∣μ(ds, dx, dy) → 0

as n→ ∞.

Now we formulate the statement proved by Chitashvili and Mania [8] in the case convenient for our
purposes.

Proposition 1.7.4. Let conditions (B1)–(B2) hold and f(t, St, Rt) be a bounded process. Then the
process (f(t, St, Rt), t ∈ [0, T ]) is an Itô process of the form

f(t, St, Rt) = f(0, S0, R0) +

t∫

0

g(s, ω)dWs +

t∫

0

a(s, ω)ds a.s.

with

E

t∫

0

g2(s, ω)ds <∞, E

t∫

0

|a(s, ω)|ds <∞ (1.7.14)

if and only if f belongs to V L
μ . Moreover the process f(t, St, Rt) admits the decomposition

f(t, St, Rt) = f(0, S0, R0) +
d∑

i=1

t∫

0

fxi(s, Ss, Rs)dSi
s

+
n∑

j=d+1

t∫

0

fyj (s, Ss, Rs)dRj
s +

t∫

0

(Lf)(s, Ss, Rs)ds. (1.7.15)

Remark 1.7.2. For continuous functions f ∈ V L
μ , the condition

sup
(t,x,y)∈D

∣∣fn(t, x, y) − f(t, x, y)
∣∣→ 0 as n→ ∞ (1.7.16)

for every compact set D ∈ [0, T ]×R
d
+×R

n−d can be used instead of the first relation in Definition 1.7.1.
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Part 2

SEMIMARTINGALE BACKWARD EQUATION

RELATED TO DUAL PROBLEMS

2.1. Introduction

The well-known tool in studying the optimization problem (1.1.3) is the use of the duality relation-
ships between the optimal strategies and the optimal martingale measures (see, e.g., [46]).

Let us denote by Ũ : (0,∞) → R the conjugate function of the utility U(x), i.e.,

Ũ(y) = sup
x>0

[U(x) − xy].

It is well known that if U is a utility function, then Ũ is a continuously differentiable, decreasing, and
strictly convex function satisfying Ũ ′(0) = −∞, Ũ ′(∞) = 0, Ũ(0) = U(∞), Ũ(∞) = U(0), and

U(x) = inf
y>0

[
Ũ(y) + xy

]
, x > 0.

Moreover, the derivative of U is the inverse function of the derivative of Ũ .
Note that for log x, xp/p, and −e−γx, the corresponding convex conjugate functions are − log y− 1,

−p− 1
p

y
p

p−1 , and
y

γ

(
log

y

γ
− 1
)

, respectively.

The function Ũ(y) is the Legendre transform of −U(−x), which is a useful tool in solving the utility
maximization problems (see, e.g., [4] for the application in finance).

The dual problem to (1.1.3) is given by

Ṽ (0, y) = inf
Q∈Me

EŨ(yZQ
T ), (2.1.1)

where ZQ
T is the Radon–Nikodym density of Q relative to the measure P .

It was shown in [46] that if Ṽ (0, y) <∞ for each y > 0 and the dual minimizer Q∗(y) ∈ Me (called
the minimax martingale measure) exists, then the optimal solution π∗(x) to (1.1.3) also exists, and
letting y = Vx(0, x), we have the following duality relation between π∗(x) and the dual minimizer
Q∗(y):

x+ (π∗(x) · S)T = −Ũy(yZ
Q∗
T ), yZQ∗

T = Ux(x+ (π∗(x) · S)T ). (2.1.2)
Thus, the solution of the primal problem (1.1.3) of utility maximization reduces to the solution of the
dual problem (1.1.3), but the dual problem needs to be solved constructively. If the market considered
is complete (or “almost complete”), then the martingale measure is unique (respectively, the minimax
martingale measure coincides with the minimal martingale measure), and the dual problem is easier
to solve than the corresponding primal problem. The solution of the dual problem for more general
incomplete market models is quite complicated.

Let us introduce the value function of the dual problem defined by

Ṽ (t, y) = ess inf
Q∈Me

E[Ũ(yEtT (MQ))|Ft].

Similarly to (2.1.2), the optimal wealth process

X∗
t = x+

t∫

0

π∗sdSu

and the optimal martingale measure Y ∗
t = yEt(MQ∗) satisfy the following duality relations (see [46]):

X∗
t = −Ṽy(t, Z∗

t ), Z∗
t = Vx(t,X∗

t ). (2.1.3)
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Using the same approach as in Part 1, we can also derive the backward stochastic PDE for the
value function of the dual problem. This equation is more complicated than Eq. (1.1.6). Therefore, in
addition, we assume the continuity of the filtration, since without this assumption, the equation for Ṽ
is very complicated (whereas the form of Eq. (1.1.6) is the same with and without assumption of the
continuity of the filtration). Since the dual optimizer contains an orthogonal (to M) martingale part
in general, we need stronger regularity assumptions on Ṽ (t, y) for the application of the Itô-Venzell
formula. The BSPDE for the function Ṽ (t, y) is

Ṽ (t, y) = Ṽ (0, y) − y2

2

t∫

0

Ṽyy(s, y)λ2
sd〈M〉s + y

t∫

0

ϕ̃y(s, y)λsd〈M〉s

+

t∫

0

1
Ṽy(s, y)

d〈Ly(·, y)〉s +

t∫

0

ϕ̃(s, y)dMs + L̃(t, y) (2.1.4)

with the boundary condition
Ṽ (T, y) = Ũ(y),

where L̃(t, y) is a local martingale orthogonal to M for all y. Moreover, the density of the optimal
martingale measure Z∗ is a unique solution of the forward semimartingale equation

Z∗
t = y −

t∫

0

λsZ
∗
sdMs +

t∫

0

1
Ṽyy(s, Z∗

s )
L̃(y)(ds, Z

∗
s ), (2.1.5)

where
∫ t
0 L̃(y)(ds, Z∗

s ) is the stochastic line integral with respect to the family of local martingales
(Ly(t, y), y ∈ R

+) (see [8, 31] for the definition of stochastic line integrals). Thus, we see that for
conjugate functions of general utility functions, Eqs. (2.1.4) and (2.1.5) are complicated. Therefore,
we do not give here the derivation of Eqs. (2.1.4) and (2.1.5) (and do not specify conditions sufficient
to this end) and in this part, we study only dual problems of utility maximization and hedging for
power and exponential functions, which are problems of finding the p-optimal and the minimal entropy
martingale measures. The main results of the next sections were published in [57–59, 61].

2.2. p-Optimal Martingale Measures

Assume that the dynamics of the discounted prices of some traded assets is described by an R
d-

valued continuous semimartingale X = (Xt, t ∈ [0, T ]) defined on a filtered probability space (Ω, F ,
F = (Ft, t ∈ [0, T ]), P ) satisfying the usual conditions, where F = FT and T < ∞ is a fixed time
horizon. The process X is adapted to the filtration F and admits the decomposition

Xt = X0 + Λt +Mt, (2.2.1)

where M is a continuous local martingale and Λ is a continuous process of finite variation. For the
absence of “arbitrage” in this market, it is necessary to assume that X satisfies the structure condition;
this means that there exists a predictable R

d-valued process λ = (λt, t ∈ [0, T ]) such that

dΛt = d〈M〉tλt a.s. for t ∈ [0, T ], KT =

T∫

0

λ′sd〈M〉sλs <∞ a.s.,

where ′ denotes the transposition. The process K is called the mean-variance tradeoff process of X
(see [84, 85] for the interpretation of the process K).

By Mabs we denote the set of measures Q absolutely continuous with respect to P on FT such that
X is a local martingale under Q. Let Me be the set of equivalent martingale measures, i.e., a subset
of Mabs containing probability measures that are equivalent to P . Let Zt(Q) be the density process
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of Q relative to the basic measure P . For any Q ∈ Me, there is a P -local martingale MQ such that
ZQ = E(MQ) = (Et(MQ), t ∈ [0, T ]). If the local martingale Ẑt = Et(−λ ·M), t ∈ [0, T ]) is a strictly
positive martingale, then dP̂ /dP = ẐT defines an equivalent probability measure called the minimal
martingale measure for X.

Let

Me
p =
{
Q ∈ Me : Eη

(
dQ

dP

)p

<∞
}
,

where η is a nonnegative FT -measurable random variable.
Throughout this section, we make the following assumptions:
(A) there is an equivalent martingale measure Q̃ such that

EηEp
T (M Q̃) <∞;

(B) all P -local martingales are continuous;
(C) there is a constant k1 such that η ≥ k1 > 0.

Remark 2.2.1. Condition (A) is natural and is related to some kind of nonarbitrage condition if η = 1
(see [18] for the definition of “arbitrage” and related results). We note that since X is continuous,
the existence of an equivalent martingale measure implies that the structure condition holds. In
particular, Assumption (B) means the continuity of filtration F , and it is restrictive, but it is satisfied
if the filtration F is generated by a Brownian motion, or, more generally, if F admits the integral
representation property relative to some vector-valued continuous martingale. Also, we note that the
main results are true if we replace condition (C) by Eη

1
1−p <∞, p > 1.

Sometimes, we replace condition (A) by the following stronger condition:
(A∗) the random variable η is bounded, i.e.,

η ≤ k2 (2.2.2)

for some constant k2 > k1, and there exists the minimal martingale measure satisfying the
reverse Hölder inequality Rp(P ), i.e., there is a constant C such that

E(Ep
τ,T (−λ ·M)|Fτ ) ≤ C

for any stopping time τ .
Here and in what follows, we use the notation

Eτ,T (N) =
ET (N)
Eτ (N)

= ET (N −N.∧τ )

for a continuous local martingale N .
We consider the following optimization problems:

min
Q∈Me

p

EηEp
T (MQ), p ≥ 1, (2.2.3)

max
Q∈Me

EηEp
T (MQ), 0 < p ≤ 1. (2.2.4)

Let

Vt(p) = ess inf
Q∈Me

p

E(ηEp
tT (MQ)|Ft), p ≥ 1, (2.2.5)

V t(p) = ess sup
Q∈Me

p

E(ηEp
tT (MQ)|Ft), 0 < p ≤ 1, (2.2.6)

be the value processes of problems (2.2.3) and (2.2.4), respectively.
For p = 1, the processes Vt(p) and V t(p) represent the lower and upper prices of a contingent claim

η at the moment t.
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For η = 1, (2.2.3) is the problem of finding the p-optimal martingale measure, in particular, for
p = 2 the solution of problem (2.2.3) gives the variance optimal martingale measure, which plays an
essential role in the mean variance hedging problem (see, e.g., [16, 33, 73, 78, 86]).

It is well known that the p-optimal martingale measure Q∗ exists in the class Mabs, and it was
shown in [18] (in [34] for the case p > 1) that Q∗ is equivalent to P if condition (A) is satisfied and X
is continuous. It was proved in [18] (this fact was already observed in [20, 83, 86] to various extents of
generality) that if X is a locally bounded semimartingale, and if the measure Q∗ is variance optimal,
then the corresponding density Z∗ is represented as

Z∗
T = c+

T∫

0

h′sdXs

for a constant c and an X-integrable process h, where the process

t∫

0

h′sdXs, t ∈ [0, T ],

is a Q-martingale for any Q ∈ Me
2.

We derive the corresponding fact for p > 1 (under assumptions (A) and (B)) using the semi-
martingale backward equation for the value process. Moreover, we obtain an explicit expression of
the integrand h in terms of the value process Vt(p) and show that Vt(p) uniquely solves a suitable
semimartingale backward equation.

Now we formulate the main statement of this part, which is a combination of Theorem 2.3.1 and
Corollary 2.3.2 of Proposition 2.3.3.

Let Y be a semimartingale with the decomposition

Yt = Y0 +Bt + Lt, B ∈ Aloc, L ∈ M2
loc, (2.2.7)

and let

Lt =

t∫

0

ψ′
sdMs + L̃t, 〈L̃,M〉 = 0, (2.2.8)

be the Galtchouk–Kunita–Watanabe decomposition of L with respect to the martingale M .
If conditions (A∗), (B), and (C) are satisfied, then the value process V (p) is a unique solution of

the semimartingale backward equation

Yt = Y0 − p(p− 1)
2

t∫

0

Ysλ
′
sd〈M〉sλs + p

t∫

0

λ′sd〈M〉sψs

+
p

2(p− 1)

t∫

0

1
Ys
d〈L̃〉s +

t∫

0

ψsdMs + L̃t, t < T, (2.2.9)

with the boundary condition
YT = η (2.2.10)

in the class of processes Y satisfying the two-sided inequality

c ≤ Yt ≤ C for all t ∈ [0, T ] a.s., (2.2.11)

for some positive constants c < C.
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Moreover, the martingale measure Q∗ is p-optimal if and only if its density Z∗ = ET (MQ∗
) is

expressed as

Ep−1
T (MQ∗

) = Y0 +

T∫

0

Es

(
ψ

Y
+ (1 − p)λ ·X

)(
ψs

Ys
+ (1 − p)λs

)′
dXs. (2.2.12)

We also show that the value process satisfies (2.2.9), (2.2.10) if we replace (A∗) by condition (A)
(Theorem 2.3.1a), but in this case, the class of processes in which this solution is unique is not explicitly
described.

The same problem was studied by Laurent and Pham [49], in the case p = 2 and η = e−
∫ T
0 rsds,

where the process r is the instantaneous interest rate. Using the dynamic programming approach, they
obtain a characterization of the variance-optimal martingale measure in terms of the value function
of a stochastic control problem (equivalent to (2.2.3)) in the case of Brownian filtration.

Note that one can use the processes Vt(p) and V t(p) to calculate upper and lower prices of contingent
claims, since as proved in [57]

lim
p↓1

Vt(p) = ess inf
Q∈Me

E(ηEtT (MQ)|Ft), lim
p↑1

V t(p) = ess sup
Q∈Me

E(ηEtT (MQ)|Ft).

2.3. Backward Semimartingale Equation for the Value Process
Related to the p-Optimal Martingale Measure

We say that the process B strongly dominates the process A and write A ≺ B if the difference
B −A ∈ A+

loc, i.e., is a locally integrable increasing process.
Let (AQ, Q ∈ Q) be a family of processes of finite variations, zero at time zero. Denote by

ess infQ∈Q(AQ) the largest process of finite variation, zero at time zero, which is strongly dominated
by the process (AQ

t , t ∈ [0, T ]) for every Q ∈ Q, i.e., this is “ess inf of the family (AQ, Q ∈ Q) relative
to the partial order ≺.

We will use the following assertion proved by Delbaen and Schachermayer [17] in the case p = 2.

Proposition 2.3.1. If U = (Ut, t ∈ [0, T ]) is a nonnegative p-integrable martingale (p > 1) with
U0 > 0 and if the stopping time τ = inf{t : Ut = 0} is predictable and announced by a sequence of
stopping times (τn, n ≥ 1), then

E

(
Up

T

Up
τn

|Fτn

)
→ ∞, n→ ∞,

on the Fτ−-measurable set {Uτ = 0}.
If p < 1 and U is a uniformly integrable martingale, then

E

(
Up

T

Up
τn

|Fτn

)
→ 0, n→ ∞,

on the set {Uτ = 0}.
Proof. For p > 1, the proof is the same as in [17]. In the case 0 < p < 1, one can prove this assertion
using arguments similar to [17]. Using the Hölder inequality, we have

E

(
Up

T

Up
τn

|Fτn

)
= E

(
Up

T

Up
τn

I(Uτ �=0)|Fτn

)
≤ E1−p(I(Uτ �=0)|Fτn)

and the Lévy theorem implies that E1−p(I(Uτ=0)|Fτn) tends to zero on the set (Uτ = 0).

Since X is continuous, any element Q of Me is given by the density Zt(Q), which is expressed as
an exponential martingale of the form

Et(−λ ·M +N),
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where N is a local martingale strongly orthogonal to M .
By N (X) we denote the class of local martingales N strongly orthogonal to M such that the process

(Et(−λ ·M +N), t ∈ [0, T ]) is a martingale under P .
Let Np(X) be the subclass of N (X) of local martingales N such that the process (Et(−λ ·M +N),

t ∈ [0, T ]) is a strictly positive P -martingale with EηEp
T (−λ ·M +N) <∞. Then

Me
p =
{
Q ∼ P :

dQ

dP
| FT = ET (−λ ·M +N), N ∈ Np(X)

}
. (2.3.1)

The following assertion can be proved in the standard manner (see, e.g., [26, 49]).

Proposition 2.3.2 (optimality principle). (a) There exists an RCLL semimartingale, still denoted
by Vt(p), such that for each t ∈ [0, T ],

Vt(p) = ess inf
Q∈Me

p

E(ηEp
tT (MQ)|Ft) a.s.

Vt(p) is the largest RCLL process equal to η at time T such that Vt(p)Ep
t (MQ) is a submartingale

for every Q ∈ Me
p.

(b) The following properties are equivalent :
(i) Q∗ is p-optimal, i.e.,

V0(p) = inf
Q∈Me

p

EηEp
T (MQ) = EηEp

T (MQ∗
);

(ii) Q∗ is p-optimal for all conditional criteria, i.e., for all t ∈ [0, T ],

Vt(p) = E(ηEp
tT (MQ∗

)|Ft) a.s.;

(iii) Vt(p)Ep
t (MQ∗

) is a P -martingale.

We recall that the process X belongs to the class D if the family of random variables XτI(τ≤T ) for
all stopping times τ is uniformly integrable.

Let S (respectively, S+) be the class of semimartingales (respectively, strictly positive semimartin-
gales).

Definition 2.3.1. We say that Y belongs to the class Dp if Y is an RCLL process such that for every
Q ∈ Me

p the process Ep
t (MQ)Yt is in D.

Remark 2.3.1. Since for every Q ∈ Me
p, the process Ep

t (MQ) belongs to the class D as a positive
submartingale (see [19]), then any bounded positive process Y belongs to the class Dp.

Definition 2.3.2. By S(X) we denote the class of strictly positive semimartingales Y such that
Y ∈ Dp and − 1

(p−1)Y · L̃ ∈ N (X), i.e., such that
(
Et

(
−λ ·M − 1

(p− 1)Y
· L̃
)
, t ∈ [0, T ]

)

is a martingale, where L̃ is the local martingale introduced in (2.2.8).

Let us consider the optimization problem (2.2.3). One can rewrite the value process V (p) of this
problem in the form

Vt(p) = ess inf
N∈Np(X)

E(ηEp
tT (−λ ·M +N)|Ft), (2.3.2)

Since Me 
= ∅, the process V (p) is a semimartingale with respect to the measure P ; let

Vt(p) = mt +At, m ∈M2
loc, A ∈ Aloc, (2.3.3)

be the canonical decomposition of V (p).
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Let

mt =

t∫

0

ϕsdMs + m̃t, 〈m̃,M〉 = 0, (2.3.4)

be the Galtchouk–Kunita–Watanabe decomposition of m with respect to M .

Theorem 2.3.1. Let conditions (A), (B), and (C) be satisfied. Then the following assertions hold.
(a) The value process V (p) is a solution of the semimartingale backward equation

Yt = Y0 − ess inf
N∈Np(X)

⎡
⎣1

2
p(p− 1)

t∫

0

Ysd〈−λ ·M +N〉s + p〈λ ·M +N,L〉t
⎤
⎦+ Lt, t < T, (2.3.5)

with the boundary condition
YT = η. (2.3.6)

This solution is unique in the class S(X) of semimartingales. Moreover, the martingale measure
Q∗ is p-optimal if and only if it is given by the density dQ∗ = ET (MQ∗

)dP , where

MQ∗
t = −

t∫

0

λ′sdMs − 1
p− 1

t∫

0

1
Vs(p)

dm̃s. (2.3.7)

(b) If, in addition, condition (A∗) is satisfied, then the value process V is a unique solution of the
semimartingale backward equation (2.3.5), (2.3.6) in the class of semimartingales Y satisfying
the two-sided inequality

c ≤ Yt ≤ C for all t ∈ [0, T ] a.s. (2.3.8)

for some positive constants c < C.

Proof. (a) Existence. According to (2.3.2), Ep
t (MQ)Vt(p) is a P -submartingale for every Q ∈ Me

p.
Therefore, by assumption (A) (since there exists Q ∈ Me

p with E(MQ) strictly positive), V (p) is a
P -semimartingale with decomposition (2.3.3).

Using the relation

Ep(MQ) = E
(
pMQ +

p(p− 1)
2

〈MQ〉
)

and the Itô formula for Ep
t (MQ)Vt(p), we have

Ep
t (MQ)Vt(p) = V0(p) +

t∫

0

Ep
s (MQ)dVs(p)

+

t∫

0

Vs−(p)Ep
s (MQ)d(pMQ

s +
p(p− 1)

2
[MQ]s) + p

t∫

0

Ep
s (MQ)d[V (p),MQ]s

= V0(p) +

t∫

0

Ep
s (MQ)d(As +

p(p− 1)
2

(V−(p) · 〈MQ〉)s + p〈MQ,m〉s)

+

t∫

0

Ep
s (MQ)dms + p

t∫

0

Vs−(p)Ep
s (MQ)dMQ

s . (2.3.9)
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Since Ep
t (MQ)Vt(p) is a P -submartingale for all Q ∈ Me

p and Et(MQ) is strictly positive, we obtain
from (2.3.9) that

At +
p(p− 1)

2

t∫

0

Vs(p)d〈MQ〉s + p〈MQ,m〉t ∈ A+
loc (2.3.10)

for every Q ∈ Me
p.

It is well known that for convex coercive continuous functions defined on a closed convex subset
of a reflexive Banach space, the infimum is attained (see [25]). Since the set of densities ZT (Q) of
absolutely continuous local martingale measures Q with EηZp

T (Q) < ∞ is a closed convex subset of
Lp(η · P ) and ‖ · ‖p

Lp(η·P ) is a convex coercive function, the optimal martingale measure Q∗ exists.
Note that the class of densities (Z(Q), Q ∈ Me

p) is not closed in general. Therefore, we only have that
Q∗ ∈ Mabs

p , where

Mabs
p =

{
Q ∈ Mabs : Eη

(
dQ

dP

)p

<∞
}
.

Let us show that the existence of an equivalent martingale measure Q̃ with EηEp
T (M Q̃) < ∞ implies

that Q∗ is equivalent to P . We prove this fact using the idea of Delbaen and Schachermayer [17].
Since Q∗ is optimal, we have

EηZp
T (Q∗) ≤ EηEp

T (M Q̃), (2.3.11)

where we denote by Zt(Q∗) the density process of Q∗ relative to the measure P .
Following [17], we define the stopping times

τn = inf{t : Zt(Q∗) ≤ 1/n}, τ = inf{t : Zt(Q∗) = 0}. (2.3.12)

Inequality (2.3.11) implies that for every n ≥ 1,

E

[
η
Zp

T (Q∗)
Zp

τn(Q∗)
|Fτn

]
≤ E

[
η
Ep

T (M Q̃)

Ep
τn(M Q̃)

|Fτn

]
a.s. (2.3.13)

Indeed, if the measure of the set B defined by

B =

{
ω : E

[
η
Zp

T (Q∗)
Zp

τn(Q∗)
|Fτn

]
> E

[
η
Ep

T (M Q̃)

Ep
τn(M Q̃)

|Fτn

]}
(2.3.14)

is strictly positive, then constructing a new (absolutely continuous) martingale measure Q̂ by dQ̂ =
ẐTdP ,

ẐT = IBZτn(Q∗)
ET (M Q̃)

Eτn(M Q̃)
+ IBcZT (Q∗)

we have

Eη(ẐT )p = EηZp
τn

(Q∗)

[
IB

ET (M Q̃)

Eτn(M Q̃)
+ IBc

ZT (Q∗)
Zτn(Q∗)

]p

= EZp
τn

(Q∗)

[
IBE

(
η
Ep

T (M Q̃)

Ep
τn(M Q̃)

|Fτn

)
+ IBcE

(
η
Zp

T (Q∗)
Zp

τn(Q∗)

)
|Fτn)

]
< EηZp

T (Q∗),

which contradicts the optimality of Q∗. Now by Proposition (2.3.1) and condition (C), the left-hand
side of (2.3.13) tends to infinity on the set Zτ (Q∗) = 0 as n→ ∞. On the other hand, since the measure
Q̃ is equivalent to P , the limit of the right-hand side of (2.3.13) is finite. Thus, P (Zτ (Q∗) = 0) = 0,
and hence Q∗ is an equivalent local martingale measure.
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Therefore, by the optimality principle (see Proposition 2.3.2) the process Vt(p)Ep
t (MQ∗

) is a mar-
tingale and using the Itô formula (2.3.9) for Vt(p)Ep

t (MQ∗
), we obtain

At +
p(p− 1)

2

t∫

0

Vs(p)d〈MQ∗〉s + p〈MQ∗
,m〉t = 0. (2.3.15)

The last equation, together with relation (2.3.10), implies

At = − ess inf
Q∈Me

p

⎡
⎣p(p− 1)

2

t∫

0

Vs(p)d〈MQ〉s + p〈MQ,m〉t
⎤
⎦ , (2.3.16)

and hence the value process V (p) satisfies Eq. (2.3.5) (obviously, V (p) also satisfies the boundary
condition Vt(p) = η). We note that (2.3.15) implies that the process At and hence Vt(p) is continuous.

Now let us show that the optimal martingale measure Q∗ is given by (2.3.7) and that the value
process V (p) belongs to the class S(X) of semimartingales. From (2.3.16) and (2.3.1), we have

At = −p(p− 1)
2

t∫

0

Vs(p)d〈λ·M〉s+p
t∫

0

d〈λ·M,m〉s− ess inf
N∈Np(X)

⎛
⎝p(p− 1)

2

t∫

0

Vs(p)d〈N〉s + p〈N,m〉t
⎞
⎠

= −p(p− 1)
2

t∫

0

Vs(p)d〈λ ·M〉s + p

t∫

0

d〈λ ·M,m〉s

− ess inf
N∈Np(X)

[〈√
p(p− 1)

2

t∫

0

√
Vs(p)dNs +

√
p

2(p− 1)

t∫

0

1√
Vs(p)

dm̃s

〉

t

− p

2(p− 1)

t∫

0

1
Vs(p)

d〈m̃〉s
]

= −p(p− 1)
2

t∫

0

Vs(p)d〈λ ·M〉s + p

t∫

0

d〈λ ·M,ϕ ·M〉s +
p

2(p− 1)

t∫

0

1
Vs(p)

d〈m̃〉s, (2.3.17)

since

ess inf
N∈Np(X)

〈√
p(p− 1)

2

t∫

0

√
Vs(p)dNs +

√
p

2(p− 1)

t∫

0

1√
Vs(p)

dm̃s

〉

t

= 0. (2.3.18)

Indeed, it is obvious that for any stopping time τn defined by

τn = inf{t : Et(Ñ) ≥ n},
where

Ñt = − 1
p− 1

t∫

0

1
Vs(p)

dm̃s, (2.3.19)

the stopped martingale Ñ τn
t belongs to the class Np(X) and τn ↑ T . Therefore,

ess inf
N∈Np(X)

⎡
⎣
〈√

p(p− 1)
2

t∫

0

√
Vs(p)dNs +

√
p

2(p− 1)

t∫

0

1√
Vs(p)

dm̃s

〉

t

⎤
⎦ ≤ p

2(p− 1)

t∫

t∧τn

1
Vs(p)

d〈m̃〉s

(2.3.20)
for each n ≥ 1, and (2.3.17) holds since the right-hand side of the latter relation tends to zero as
n→ ∞.

We observe that by the Jensen inequality, from condition (C) we have the inequality Vt(p) ≥ k1, so
that all integrals in (2.3.17) are well defined.
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By the optimality principle, Vt(p)Ep
t (MQ∗

) is a martingale. Since V (p) solves Eq. (2.3.5), this
implies that

ess inf
Q

⎡
⎣p(p− 1)

2

t∫

0

Vs(p)d〈MQ〉s + p〈MQ,m〉t
⎤
⎦ =

p(p− 1)
2

t∫

0

Vs(p)d〈MQ∗〉s + p〈MQ∗
,m〉t. (2.3.21)

Since MQ∗
is represented in the form −λ ·M +N∗ for some N∗ ∈ Np(X), it follows from (2.3.17) and

(2.3.19) that the processes N∗ and Ñ and hence the processes

MQ∗
, −

t∫

0

λsdMs − 1
p− 1

t∫

0

1
Vs(p)

dm̃s

are indistinguishable.
Therefore,, the p-optimal martingale measure is unique and admits representation (2.3.7).
By definition of V (p), we have that for any Q ∈ Me

p,

Vτ (p)Ep
τ (MQ) ≤ E(ηEp

T (MQ)|Fτ ). (2.3.22)

Therefore, for any Q ∈ Me
p, the process Vt(p)Ep

t (MQ) is a submartingale of class D as a positive
process majorized by a uniformly integrable martingale (see [19]) and V (p) ∈ Dp by Definition 2.3.1.

Finally, since Q∗ ∈ Me
p and the processes MQ∗

and −λ ·M − 1
p−1

1
V (p) · m̃ are indistinguishable, we

have that Et(−λ ·M − 1
(p−1)V · m̃) is a martingale and hence V (p) ∈ S(X).

Uniqueness. Let Y be a solution of (2.3.5), (2.3.6) of class S(X). This means that Y is a semi-
martingale with decomposition (2.2.7), (2.2.8) such that YT = η,

Bt = − ess inf
Q∈Me

p

⎛
⎝p(p− 1)

2

t∫

0

Ysd〈MQ〉s + p〈MQ, L〉t
⎞
⎠ , (2.3.23)

and (Et(−λ ·M − 1
(p−1)Y · L̃), t ∈ [0, T ]) is a martingale.

Since (2.3.21) implies that

Bt +
p(p− 1)

2

t∫

0

Ysd〈MQ〉s + p〈MQ, L〉t ∈ A+
loc,

using decomposition (2.3.7) and the Itô formula for Ep
t (MQ)Yt we obtain that the process Ep

t (MQ)Yt

is a local submartingale for all Q ∈ Me
p. Since Y ∈ Dp, we have that Ep

t (MQ)Yt is a submartingale of
class D. Therefore, it follows from the boundary condition (2.3.6) that for every Q ∈ Me

p,

Ep
t (MQ)Yt ≤ E[Ep

T (MQ)YT |Ft] = E[ηEp
T (MQ)|Ft].

Hence
Yt ≤ E[ηEp

tT (MQ)|Ft]

for all Q ∈ Me
p and

Yt ≤ ess inf
Q

E[ηEp
tT (MQ)|Ft] = Vt(p). (2.3.24)

Let us show the converse inequality. Similarly to (2.3.17), we can show that

Bt = −p(p− 1)
2

t∫

0

Ysλ
′
sd〈M〉sλs + p

t∫

0

λ′sd〈M〉sψs +
p

2(p− 1)

t∫

0

1
Ys
d〈L̃〉s (2.3.25)
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and the infimum is attained for the martingale

N0
t = − 1

p− 1

t∫

0

1
Ys
dL̃s, (2.3.26)

where L̃ is the orthogonal martingale part of L in the Kunita–Watanabe decomposition (2.2.8).
Therefore, using the Itô formula once again, one can show that Ep

t (−λ · M + N0)Yt is a local
martingale, since (2.3.23) and (2.2.8) imply

Ep
t (−λ ·M +N0)Yt = Y0 +

t∫

0

Ep
s (−λ ·M +N0)(ψs − pYsλs)′dMs − 1

p− 1

t∫

0

Ep
s (−λ ·M +N0)dL̃s.

By the definition of the class S(X), we have that the process Et(MQ0
) is a martingale, where MQ0

=
−λ ·M + N0. Hence dQ0 = ET (MQ0

)dP is an absolutely continuous local martingale measure. Let
us show that Q0 ∈ Me

p.
To show that ET (MQ0

) is strictly positive, we use the Delbaen–Schachermayer lemma (see Propo-
sition 2.3.1). Let τn and τ be stopping times defined by (2.3.12) for the process Et(MQ0

).
From inequality (2.3.22), we have that for any stopping time σ,

Yσ ≤ Vσ(p) = ess inf
Q∈Me

p

E(ηEp
τ,T (MQ)|Fσ) ≤ E(ηEp

σ,T (M Q̃)|Fσ) (2.3.27)

for any Q̃ ∈ Me
p.

Since any positive local martingale is a supermartingale, we have

Ep
σ(MQ0

)Yσ ≥ E(YTEp
T (MQ0

)|Fσ), (2.3.28)

and from the boundary condition (2.3.6), replacing σ by τn, we obtain

Yτn ≥ E

[
η
Ep

T (MQ0
)

Ep
τn(MQ0)

|Fτn

]
. (2.3.29)

Therefore, (2.3.25) and (2.3.27) imply the inequality

E

[
η
Ep

T (MQ0
)

Ep
τn(MQ0)

|Fτn

]
≤ E

[
η
Ep

T (M Q̃)

Ep
τn(M Q̃)

|Fτn

]
. (2.3.30)

Now (2.3.28), (2.3.1), and condition (C) imply that Q0 is an equivalent local martingale measure.
On the other hand, using inequalities (2.3.25) and (2.3.26) we have that for σ = 0

EηEp
T (MQ0

) ≤ Y0 ≤ V0(p) ≤ EηEp
T (M Q̃) <∞

and ηEp
T (MQ0

) is integrable.
Thus, Q0 ∈ Me

p, and since Y ∈ Dp, the process YtEp
t (MQ0

) is from the class D and hence it is a
uniformly integrable martingale. Now, the martingale property and the boundary condition imply

Yt = E(ηEp
t,T (−λ ·M +N0)|Ft). (2.3.31)

Therefore, (2.3.22) and (2.3.29) imply Yt = Vt(p) a.s. for all t ∈ [0, T ], and hence the solution of
equation (2.3.5), (2.3.6) is unique in the class S(X).

(b) It is easy to see that the value process satisfies the two-sided inequality

k1 ≤ Vt(p) ≤ Ck2 a.s. (2.3.32)

for all t ∈ [0, T ].
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By the Jensen inequality,

Vt(p) = ess inf
Q∈Me

p

E(ηEp
t,T (MQ)|Ft) ≥ k1 ess inf

Q∈Me
p

Ep(Et,T (MQ)|Ft) = k1.

On the other hand, if there exists a martingale measure Q̃ satisfying the reverse Hölder inequality,
we have that V is bounded from above, since

Vt(p) = ess inf
Q∈Me

p

E(ηEp
t,T (MQ)|Ft) ≤ E(ηEp

t,T (M Q̃)|Ft) ≤ Ck2.

To prove this part of the theorem, we need to show that any solution Y satisfying the two-sided
inequality (2.2.11) belongs to the class S(X). Since any bounded positive process belongs to the class
Dp (see Remark 2.3.1), we need to show that the process(

Et

(
−λ ·M − 1

(p− 1)Y
· L̃
)
, t ∈ [0, T ]

)

is a martingale. According to [41, Theorem 2.3], it suffices to prove that the process −λ ·M− 1
(p−1)Y ·L̃

belongs to the class BMO. Since the minimal martingale measure satisfies the reverse Hölder condition,
[21, Proposition 6] implies that −λ ·M ∈ BMO. On the other hand, since Y ≥ k1 and 〈L̃〉 ≺ 〈L〉, it
suffices to show that L ∈ BMO.

Now let us show that if the random variable η is bounded and if there is an equivalent local
martingale measure Q satisfying the reverse Hölder condition, or, if the associated local martingale
MQ belongs to BMO, then the martingale part L of any bounded solution Y of (2.3.5), (2.3.6) belongs
to the class BMO.

By the Itô formula,

Y 2
t = Y 2

0 + 2

t∫

0

YsdYs + 〈L〉t. (2.3.33)

Since YT = η and Yτ ≥ c, we have from (2.3.33)

〈L〉T − 〈L〉τ + 2

T∫

τ

Ysd(Bs + Ls) = η2 − Y 2
τ ≤ k2

2. (2.3.34)

Since Y satisfies (2.3.5), the process

Bt +
p(p− 1)

2

t∫

0

Ysd〈MQ〉s + p〈MQ, L〉t

is increasing and (2.3.32) implies that

〈L〉T − 〈L〉τ + 2

T∫

τ

YsdLs − p(p− 1)

T∫

τ

Y 2
s d〈MQ〉s − 2p

T∫

τ

Ysd〈MQ, L〉s) ≤ k2
2. (2.3.35)

Without loss of generality, we may assume that L is a square integrable martingale; otherwise we can
use the localization arguments. Therefore, if we take conditional expectations and take the inequality
Yt ≤ C into account, we obtain

E(〈L〉T −〈L〉τ |Fτ ) ≤ C2p(p− 1)E(〈MQ〉T −〈MQ〉τ |Fτ )+k2
2 +2pCE

⎛
⎝

T∫

τ

|d〈MQ, L〉s‖Fτ

⎞
⎠ . (2.3.36)
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Now using the Kunita–Watanabe inequality

E

⎛
⎝

T∫

τ

|d〈MQ, L〉s‖Fτ

⎞
⎠ ≤ E1/2(〈MQ〉T − 〈MQ〉τ |Fτ )E1/2(〈L〉T − 〈L〉τ |Fτ ) (2.3.37)

and that MQ ∈ BMO, we obtain from (2.3.34) that

E(〈L〉T − 〈L〉τ |Fτ ) ≤ c1 + c2E
1/2(〈L〉T − 〈L〉τ |Fτ ) (2.3.38)

for some positive constants c1 and c2 that do not depend on τ . The last inequality implies that
E(〈L〉T−〈L〉τ |Fτ ) is bounded for every stopping time τ by the same constant, and hence L ∈ BMO.

Remark 2.3.2. In particular, if MQ ∈ M2 and η is square integrable, the same arguments imply
that m is a square integrable martingale.

Remark 2.3.3. If Condition (A∗) is satisfied, then the p-optimal martingale measure satisfies the
reverse Hölder inequality Rp(P ), since for any stopping time τ ,

E(Ep
τ,T (MQ∗

)|Fτ ) ≤ 1
k1
E(ηEp

τ,T (MQ∗
)|Fτ )

=
1
k1

ess inf
Q∈Me

p

E(ηEp
τ,T (MQ)|Fτ ) ≤ 1

k1
E(ηEp

τ,T (M Q̃)|Fτ ) ≤ C
k2

k1
.

Proposition 2.3.3. Equation (2.3.5), (2.3.6) is equivalent to the equation

ET ((ψ̄ − pλ) ·M)
Ep−1

T (L̄)
= c̄ηEp

T (−λ ·M), (2.3.39)

i.e., if Y is a solution of (2.3.5), (2.3.6), then the triple (c̄, ψ̄, L̄), where

c̄ =
1
Y0
, ψ̄ =

ψ

Y
, L̄ = − 1

p− 1

t∫

0

1
Ys
dL̃s,

is a solution of (2.3.37). Conversely, if (c̄, ψ̄, L̄) solves (2.3.37), then Y defined by

Yt =
1
c̄
Et((ψ − pλ) ·M)E1−p

t (L̄)E−p
t (−λ ·M) (2.3.40)

satisfies (2.3.5), (2.3.6).

Proof. Let Y be a solution of (2.3.5), (2.3.6) which admits the decomposition (2.2.7), (2.2.8).
It follows from (2.3.23) that

Yt = Y0− p(p− 1)
2

t∫

0

Ysλ
′
sd〈M〉sλs +p

t∫

0

λ′sd〈M〉sψs +
p

2(p− 1)

t∫

0

1
Ys
d〈L̃〉s +

t∫

0

ψ′
sdMs + L̃t. (2.3.41)

We introduce

ψt =
ψt

Yt
, Lt = − 1

p− 1

t∫

0

1
Ys
dL̃s.

Then

ψt = ψtYt, L̃t = −(p− 1)

t∫

0

YsdLs
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and from (2.3.39), we have

dYt = Yt

[
−p(p− 1)

2
λ′td〈M〉tλt + pλ′td〈M〉tψt +

p(p− 1)
2

d〈L〉t + ψtdMt − (p− 1)dLt

]
, YT = η.

(2.3.42)
Solving this linear equation with respect to Y , we obtain

Yt = Y0 exp
[
− p(p− 1)

2

t∫

0

λ′sd〈M〉sλs + p

t∫

0

λ′sd〈M〉sψs +
p(p− 1)

2
〈L〉t

− 1
2

t∫

0

ψ
′
sd〈M〉sψs −

(p− 1)2

2
〈L〉t +

t∫

0

ψsdMs − (p− 1)Lt

]
, (2.3.43)

which can be expressed by means of Doleans-Dade exponentials

Yt = Y0Et((ψ̄ − pλ) ·M)E1−p
t (L)E−p

t (−λ ·M). (2.3.44)

Now, using the boundary condition YT = η, we see that (2.3.37) is satisfied for c̄ = 1/Y0.
Conversely, if a triple (c, ψ, L) satisfies (2.3.37), then it is also obvious that Y defined by (2.3.38) is

a solution of (2.3.5), (2.3.6).

Corollary 2.3.1. The semimartingale Bellman equation (2.3.5), (2.3.6) coincides with the equation

Vt(p) = V0(p) −
t∫

0

(
p(p− 1)

2
Vs(p)λ′sd〈M〉sλs − pλ′sd〈M〉sϕs

)

+
p

2(p− 1)

t∫

0

1
Vs(p)

d〈m̃〉s +

t∫

0

ϕ′
sdMs + m̃t, VT (p) = η, (2.3.45)

which is the same as (2.3.39) written for V (p) instead of Y . The equation

Rt = R0 −
t∫

0

1
2
(ϕ̄s − pλs)′d〈M〉s(ϕ̄s − pλs) +

t∫

0

p

2
λ′sd〈M〉sλs

+
p− 1

2
〈m̄〉t +

t∫

0

pλ′sdMs +

t∫

0

(ϕ̄s − pλs)′dMs − (p− 1)m̄t, RT = ln η, (2.3.46)

with respect to (R,ϕ,m), which admits a unique solution in the class S+ ×L2
loc(〈M〉)×N (X), is also

equivalent to (2.3.5), (2.3.6).

Corollary 2.3.2. A martingale measure Q∗ is p-optimal if and only if

ηEp−1
T (MQ∗

) = c+

T∫

0

h′sdXs (2.3.47)

for a constant c and an X-integrable predictable process h such that⎛
⎝

t∫

0

h′sdXs, t ∈ [0, T ]

⎞
⎠

is a Q-martingale for every Q ∈ Me
p.
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Proof. Let Q∗ be a p-optimal martingale measure. According to Theorem 2.3.1, MQ∗
admits repre-

sentation (2.3.7), and hence

Ep−1
T (MQ∗

) = Ep−1
T (−λ ·M)Ep−1

T

(
− 1
p− 1

1
V (p)

· m̃
)
. (2.3.48)

Therefore, using (2.3.38) and the relation E(X)
E(Y ) = E(X − Y − 〈X − Y, Y 〉) valid for continuous semi-

martingales X and Y , we obtain

Vt(p)Ep−1
t (MQ∗

) = V0(p)
Et((ϕ− pλ) ·M)

Et(−λ ·M)
= V0(p)Et((ϕ+ (1 − p)λ) ·X).

Thus, the boundary condition VT (p) = η implies that ηEp−1
T (MQ) is of the form (2.3.45) with

hs =
(
ϕs + (1 − p)λs)Es((ϕ+ (1 − p)λ

) ·X), s ∈ [0, T ]. (2.3.49)

Moreover, it follows from (2.3.47) that

V0(p) +

t∫

0

h′sdXs = Vt(p)Ep−1
t (MQ∗

)

and hence
∫ t
0 h

′
sdXs is a Q∗-martingale by the optimality principle. The latter relation implies

t∫

0

h′sdXs ≥ −V0(p).

Since
∫ t
0 h

′
sdXs is a Q-local martingale, it is also a supermartingale and

EQ

t∫

0

h′sdXs ≤ 0

(for any Q ∈ Me
p). On the other hand, since Q∗ is optimal, from Proposition 1.7.1 of the Appendix,

we have

EQ

T∫

0

h′sdXs = EQηEp−1
T (MQ∗

) − V0(p) = EηEp−1
T (MQ∗

)
(ET (MQ) − ET (MQ∗

)
) ≥ 0,

which implies that

EQ

T∫

0

h′sdXs = 0,

and hence
∫ t
0 h

′
sdXs is a martingale for all Q ∈ Me

p.
Conversely, if Q0 is a martingale measure satisfying relation (2.3.45) and the process⎛

⎝
t∫

0

h′sdXs, t ∈ [0, T ]

⎞
⎠

is a Q-martingale for every Q ∈ Me
p, then

EQηEp−1
T (MQ0

) = EQ0
ηEp−1

T (MQ0
)

for any Q, which implies that Q0 is optimal by Proposition 1.7.1 of the Appendix.
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Corollary 2.3.3. The minimal martingale measure is p-optimal if and only if

ηEp
T (−λ ·M) = c+

T∫

0

g′sdMs (2.3.50)

for some M -integrable predictable g, and the process⎛
⎝

t∫

0

g′sdXs, t ∈ [0, T ]

⎞
⎠

is a P -martingale.

Remark 2.3.4. Obviously, if 〈λ ·M〉 is deterministic and η = const, then

Ep
T (−λ ·M) = ET (−pλ ·M) exp

{
p(p− 1)

2
〈λ ·M〉T

}

= exp
{
p(p− 1)

2
〈λ ·M〉T

}⎛
⎝1 − p

T∫

0

Es(−pλ ·M)λ′sdMs

⎞
⎠ ,

and (2.3.48) is satisfied.

The semimartingale backward equation for the value process V̄t(p) defined by (2.2.6) can be derived
in a similar way. Here, we give only the corresponding theorem and remark some differences.

Assume that the following conditions are satisfied:
(A′) Me 
= ∅;
(B) all P -local martingales are continuous;
(C′) η is a strictly positive FT -measurable random variable such that

Eη
1

1−p <∞.

Theorem 2.3.2 (Theorem 2.3.1′). Let 0 < p < 1 and conditions (A′), (B), and (C′) be satisfied.
Then the following assertions hold.

(a) The value process V is a solution of the semimartingale backward equation

Yt = Y0 − ess sup
N∈N (X)

⎡
⎣1

2
p(p− 1)

t∫

0

Ysd〈−λ ·M +N〉s + p〈λ ·M +N,L〉t
⎤
⎦+ Lt, t < T, (2.3.51)

with the boundary condition
YT = η. (2.3.52)

This solution is unique in the class S(X) of semimartingales. Moreover, the martingale measure
Q∗ is p-optimal if and only if it is given by the density dQ∗ = ET (MQ∗

)dP , where

MQ∗
t = −

t∫

0

λ′sdMs +
1

1 − p

t∫

0

1
Vs(p)

dm̃s.

(b) If, in addition, the conditions k1 ≤ η ≤ k2, λ ·M ∈ BMO are satisfied and there is a constant
c1 such that

E(Ep
τ,T (−λ ·M)|Fτ ) ≥ c1 (2.3.53)

for any stopping time τ , then the value process V̄ (p) is a unique solution of the semimartingale
backward equation (2.3.49), (2.3.50) in the class of semimartingales Y satisfying the two-sided
inequality

c ≤ Yt ≤ C for all t ∈ [0, T ] a.s..
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for some constants 0 < c < C.

The proof is essentially similar to the proof of Theorem 2.3.1. In this case, the process V̄t(p)Ep
t (MQ)

is a P -supermartingale for all Q ∈ Me, and the classes Dp and S(X) are defined similarly. From
condition (C′) and the Hölder inequality, we have that supQEηEp

T (MQ) <∞, and the existence of an
optimal martingale measure Q∗ in the class Mabs follows from the same arguments. We only show
that conditions (A′)–(C′) imply that Q∗ is equivalent to P . Since Q∗ is optimal, for the optimal
density ZQ∗

and the stopping times τn defined by (2.3.14), we have the inequality

E

[
η
Zp

T (Q∗)
Zp

τn(Q∗)
|Fτn

]
≥ E

[
η
Ep

T (M Q̃)

Ep
τn(M Q̃)

/Fτn

]
a.s. (2.3.54)

By the Hölder inequality

E

[
η
Zp

T (Q∗)
Zp

τn(Q∗)
|Fτn

]
= E

[
Zp

T (Q∗)
Zp

τn(Q∗)
ηI(Zτ (Q∗)�=0)/Fτn

]
≤ E1−p

(
η

1
1−p I(Zτ (Q∗)�=0)/Fτn

)
. (2.3.55)

Condition (C′) and the Lévy theorem imply that

E1−p
(
η

1
1−p I(Zτ (Q∗)=0)|Fτn

)
tends to zero on the set (Zτ (Q∗) = 0), hence the left-hand side of (2.3.53) tends to zero on the same
set. On the other hand,

P

(
sup
t≤T

Ep
t (M Q̃) ≥ N

)
≤ 1
N

by the Doob inequality for the supermartingale Ep
t (M Q̃) and

P

(
inf
t≤T

E(ηEp
T (M Q̃)|Ft) > 0

)
= 1,

since ηEp
T (M Q̃) > 0. Therefore, the limit of the right-hand side of (2.3.53) is strictly positive, which

implies that P (Zτ (Q∗) = 0) = 0 and Q∗ is equivalent to P .
Note that it follows from (2.3.51) that the value process V̄ (p) is bounded from below, but this

condition (unlike the reverse Hölder condition Rp(P ) for p > 1) does not imply that λ ·M ∈ BMO.
Therefore, we assume in part (b) that λ ·M ∈ BMO in order to guarantee

EET

(
−λ ·M − 1

(p− 1)Ȳ
· L̃
)

= 1.

2.4. The Itô Process Model

2.4.1. Non-Markovian case. Let X be an Itô process

dXt = μ(t, ξ)dt+ δ(t, ξ)dwt, (2.4.1)

where ξt is the state process satisfying SDE

dξ = b(t, ξ)dt+ σ(t, ξ)dwt. (2.4.2)

Here, w = (wt) is an n-dimensional Wiener process defined on a complete probability space (Ω,F , P ),
and F = (Ft, t ∈ [0, T ]) is the P -augmentation of the filtration generated by the Wiener process W .
The coefficients μ, δ, b, and σ are nonantisipative functions

μ : [0, T ] × C[0, T ]; Rn) → R
m, δ : [0, T ] × C[0, T ]; Rn) → R

m×n,

b : [0, T ] × C[0, T ]; Rn) → R
n, σ : [0, T ] × C[0, T ]; Rn) → R

n×n, m < n.

We assume that the following conditions hold:
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(C1) the coefficients b, σ are bounded continuous and such that Eq. (2.4.2) admits a unique strong
solution;

(C2) the coefficients μ and δ are such that the structure condition is satisfied.
Sometimes, we use the following stronger condition:

(C∗2) the matrix δδ′ is nonsingular and the function θ = δ′(δδ′)−1μ is bounded and continuous.
The process X defines a stock price process by

dSj
t = Sj

t dX
j
t , j = 1, . . . , n. (2.4.3)

There are two important particular cases of the model (2.4.1)–(2.4.3).

Example 2.4.1. b = 0, σ = 1, and ξt = wt. Then (2.4.1) is of the form

dXt = μ(t, w)dt+ δ(t, w)dwt. (2.4.4)

Example 2.4.2. If the stock price process is described by SDE

dSi
t

Si
t

= μ̄i(t, S)dt+
n∑

j=1

δ̄ij(t, S)dwt, j = i, . . . ,m, m = n, (2.4.5)

and S = (S̄, S⊥), where S̄ ∈ R
m and S⊥ ∈ R

n−m denote the tradable and nontradable asset price
processes, then we can obtain the system (2.4.1)–(2.4.3) from (2.4.5) when ξi = lnSi

μ(t, Y ) = μ̄(t, eY ), δ(t, Y ) = δ̄(t, eY ),

bi(t, Y ) = μ̄i(t, eY ) +
1
2

n∑
j=1

δ̄2ij(t, e
Y ), (t, Y ) ∈ [0, T ] × Cn,

and dXj
t = dSj

t /S
j
t , j = 1, . . . ,m. Here, Cn is the space of R

n-valued continuous functions.
Denote by L2[0, T ] the class of predictable processes ψ such that

T∫

0

‖ψt‖2dt <∞,

a.s., and let Kp(δ) be the subset of L2[0, T ] defined by

ν ∈ Kp(δ) ↔ ν ∈ L2[0, T ] : νs ∈ ker δs ∀t ∈ [0, T ] a.s.

and

Zν
t = Et(

∫
(−θ(s, ξ) + νs)′dws), t ∈ [0, T ],

is a p-integrable P -martingale.
Then the subclass Me

p of equivalent martingale measures for (2.4.4) is given by

Me
p = {P ν : dP ν/dP = Zν

T , ν ∈ Kp(δ)},
where θ = δ′(δδ′)−1μ = δ′λ. Here,

Mt =

t∫

o

δsdws, 〈M〉t =

t∫

0

δsδ
′
sds,

t∫

0

μsds =

t∫

0

d〈M〉s · λs =

t∫

0

δsδ
′
sλsds,

t∫

0

λ′sdMs =

t∫

0

λ′sδsdws =

t∫

0

θ′sdws.
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By the martingale representation theorem, the martingale part of the value process is expressed as a
stochastic integral

mt =

t∫

0

ζ ′sdws.

It is easy to show that in this case,

ess inf
N∈N p(X)

⎡
⎣1

2
p(p− 1)

t∫

0

Ysd〈−λ′ ·M +N〉s + p〈λ′ ·M +N,L〉t
⎤
⎦

=

t∫

0

ess inf
ν∈Kp(δ)

[
p(p− 1)

2
Vs

(− θs(ξ) + νs

)2 + p(−θs(ξ) + νs)′ζs
]
ds. (2.4.6)

Therefore, Eq. (2.3.5)–(2.3.6) takes the form

Vt = V0 −
t∫

0

ess inf
ν

[
p(p− 1)

2
Vs

(− θs(ξ) + νs

)2 + p
(− θs(ξ) + νs

)′
ζs

]
ds+

t∫

0

ζ ′sdws, (2.4.7)

VT = 1, (2.4.8)

and according to Theorem 2.3.1, the process V is a unique solution of the BSDE (2.4.7) in the class
S(X) of the Itô processes (in the class of bounded strictly positive processes if C∗2 is satisfied).

Remark 2.4.1. Using the properties of exponential martingales, we can rewrite the value process in
the form

Vt = ess inf
ν

E

[
Ep

tT

(∫
(−θs(ξ) + νs)′dws

)
/Ft

]

= ess inf
ν

Eν

⎡
⎣exp

⎛
⎝p(p− 1)

2

T∫

t

(|θs(ξ)|2 + |νs|2
)
ds

⎞
⎠ /Ft

⎤
⎦ ,

where Eν is the expectation relative to the measure P ν given by

ET

(
p

∫
(−θs(ξ) + νs)′dws

)
.

By the Girsanov theorem, Vt is the value for the optimization problem

E exp

⎡
⎣

T∫

0

(|θ(s, ξν)|2 + |νs|2
)
ds

⎤
⎦→ min

with the controlled system described by

dξν =
[
b(t, ξν) − pσ(t, ξν)(θ(t, ξν) − νt)

]
dt+ σ(t, ξν)dwt.

Now taking the infimum in expression (2.4.6), we obtain

Vt = V0 +

t∫

0

(
−p(p− 1)

2
Vs|θs(ξ)|2 + pθ′s(ξ)ζs +

p

2(p− 1)
1
Vs

|Πker δsζs|2
)
ds+

t∫

0

ζ ′sdws, (2.4.9)

VT = 1. (2.4.10)

Here and in what follows, ΠH denotes the orthogonal projection on subspace H ∈ R
n.
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If we change the variable zt = ζt/Vt and solve the resulting linear equation

Vt = V0 +

t∫

0

(
−p(p− 1)

2
Vs|θs(ξ)|2 + pθ′s(ξ)zsVs +

p

2(p− 1)
Vs|Πker δsζs|2

)
ds+

t∫

0

Vsζ
′
sdws (2.4.11)

with respect to V , we obtain the following BSDE for (R = lnV, z):

Rt = R0+

t∫

0

(
−p(p− 1)

2
|θs(ξ)|2 + pθ′s(ξ)zs +

p

2(p− 1)
|Πker δs(ξ)zs|2 −

1
2
|zs|2

)
ds+

t∫

0

z′sdws, VT = 1,

(2.4.12)
or, equivalently,

Rt = R0 +

t∫

0

[
−1

2
|Πker δt(ξ)zs|2 +

1
2(p− 1)

|ΠRanδ∗t (ξ)zs|2 + pθ∗s(ξ)zs −
p(p− 1)

2
|θs(ξ)|2

]
ds+

t∫

0

z∗sdws,

(2.4.13)
where RT = 0. Equation (2.4.13) can be simplified if, instead of (2.4.1), we consider the equation

dXt = μ(t, ξ)dt+ δ̄(t, ξ)dw̄t, (2.4.14)

where δ̄(t, y) is an (m×m)-matrix.

Remark 2.4.2. Equation (2.4.1) can be reduced to (2.4.14) by using the Gram decomposition of a
matrix.

In this case, we have

Rt = R0+

t∫

0

[
−1

2
|zs|2 +

p− 1
2

|z⊥s |2 + pθs(ξ)′z̄s − p(p− 1)
2

|θ̄s(ξ)|2
]
ds+

t∫

0

z′sdws, RT = 0, (2.4.15)

where z̄ = (z1, . . . , zm), z⊥ = − 1
p− 1

(zm+1, . . . , zn).

Introducing the variable z̃ = z̄ − pθ̄ we obtain

Rt = R0 +

t∫

0

[
−1

2
|z̃s|2 +

p− 1
2

|z⊥s |2
]
ds+

t∫

0

z′sdws, (2.4.16)

RT = −
T∫

0

pθs(ξ)′dw̄s −
T∫

0

p

2
|θ̄s(ξ)|2ds (2.4.17)

This can be written as the equation

ET (
∫
z̄′sdw̄s)

Ep−1
T (

∫
z⊥s

′
dw⊥

s )
= cEp

T

(
−
∫
θ̄′sdw̄s

)
, (2.4.18)

where c > 0 is some constant.
Now we consider cases where this equation can be solved explicitly. Assume that the state process

ξ coincides with w and θ does not depend (a) on w⊥ or (b) on w̄.
(a) Equation (2.4.18) is solved by

z⊥ = 0, z̄t =
ht∫ t

0 h
′
sdws

,
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where
t∫

0

h′sdws = E[cEp
T

(∫
−θ̄′sdw̄s

)
|Ft] − EcEp

T

(∫
−θ̄′sdw̄s

)
.

(b) Since

cEp
T

(∫
−θ̄′sdw̄s

)
= cET

(∫
−pθ̄′sdw̄s

)
exp

⎛
⎝p(p− 1)

2

t∫

0

|θ̄s|2ds
⎞
⎠ ,

we need to take z̄ = −pθ̄ and define z⊥ from the equation

Et

(∫
z⊥s

′
dw⊥

s

)
= E

⎡
⎣c−1+p exp

⎛
⎝−p− 1

2

⎛
⎝

T∫

0

|θ̄s|2ds
⎞
⎠
⎞
⎠ |F⊥

t

⎤
⎦

i.e.,

z⊥t =
ft

c̄+
∫ t
0 f

′
sdws

,

where
t∫

0

f ′sdw
⊥
s = E

⎡
⎣c−1+p exp

⎛
⎝−p− 1

2

⎛
⎝

T∫

0

|θ̄s|2ds
⎞
⎠
⎞
⎠ |F⊥

t

⎤
⎦− E

⎡
⎣c−1+p exp

⎛
⎝−p− 1

2

⎛
⎝

T∫

0

|θ̄s|2ds
⎞
⎠
⎞
⎠
⎤
⎦ .

2.4.2. Markovian case. Let us consider the Markovian case, i.e., assume that the coefficients of
(2.4.4)–(2.4.5) are of the form μ(t, ξt), δ(t, ξt), b(t, ξt), σ(t, ξt), where μ, δ, b, and σ are functions
defined on the set [0, T ] × R

n.
Let us introduce the value function

V (t, y) = inf
ν∈ker δ

Et,y exp

⎛
⎝p(p− 1)

2

T∫

t

(|θs|2 + |νs|2)ds
⎞
⎠ .

Since the state process ξ is Markovian and the feedback controls (i.e., controls μt expressed in the
form ν(t, ξt) for some measurable function ν(t, x)) are sufficient, we can represent the value process Vt

in the form
Vt = V (t, ξt) a.s. (2.4.19)

Since the value process V is a solution of Eq. (2.3.45) and the square characteristic of any mar-
tingale is absolutely continuous relative to Lebesgue measure, we have that the value V is an Itô
process. Moreover, it follows from assumption (C2∗) and from the proof of Theorem 2.3.1.b that the
martingale part m of the value process belongs to the class BMO. Therefore, from expression (2.3.45)
of the value process, we have that the finite variation part of the value process is of integrable varia-
tion. Thus, Eq. (2.4.19) implies that V (t, ξt) is an Itô process of the form (1.7.15) and according to
Proposition 1.7.4, it admits the representation

V (t, ξt) = V (0, ξ0) +

t∫

0

AV (s, ξs)ds+

t∫

0

Vy(t, ξt)σ′(t, ξt)dWs, (2.4.20)

where (AV )(t, y) = (LV )(t, y) + b′(t, y)Vy(t, y).
Now, comparing Eq. (2.4.20) with (2.3.5) and using Eq. (2.4.19) and the uniqueness of the canonical

decomposition of semimartingales, as a corollary we obtain from Theorem 2.3.1 the following assertion.
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Theorem 2.4.1. Assume that conditions (C1), (C2∗), and (A1)–(A3) are satisfied. Then the value
function V admits a generalized L-operator LV , the first-order generalized derivatives Vy, and it is a
unique bounded solution of the equation

(LV )(t, y) + inf
ν∈ker δ(t,y)

[
p(p− 1)

2
V (t, y)|ν − θ(t, y)|2 + p(ν − θ(t, y))′σ′(t, y)Vy(t, y)

]
= 0 ds dy-a.s.,

(2.4.21)

V (T, y) = 1. (2.4.22)

Using the relation inf
λ∈H

(−1/2|λ|2 − b′λ) = −|ΠHb|2/2, from (2.4.20) we obtain the equation

(LV )(t, y) − pθ′(t, y)σ′(t, y)Vy(t, y)

− p

2(p− 1)

∣∣ΠRanδ′(t,y)σ
′(t, y)Ry(t, y)

∣∣2 V (t, y) +
p(p− 1)

2
|θ(t, y)|2V (t, y) = 0. (2.4.23)

Denoting R(t, y) = lnV (t, y), we have

(LR)(t, y) − pθ′(t, y)Ry(t, y) +
1
2
|σ′(t, y)Ry(t, y)|2

− p

2(p− 1)
|Πker δ′(t,y)σ

′(t, y)Ry(t, y)|2 +
p(p− 1)

2
|θ(t, y)|2 = 0 (2.4.24)

or using |b|2 = |Πker δb|2 + |ΠRanδ′b|2, we obtain

(LR)(t, y) − pθ′(t, y)Ry(t, y) +
1
2
|Πker δ(t,y)σ

′(t, y)Ry(t, y)|2

− 1
2(p− 1)

|ΠRanδ′(t,y)σ
′(t, y)Ry(t, y)|2 +

p(p− 1)
2

|θ(t, y)|2 = 0. (2.4.25)

The infimum in (2.4.20) is attained at

ν(t, y) =
1

1 − p
ker δ(t, x)Πker δ(t,x)σ

′(t, y)
Vy(t, y)
V (T, y)

=
1

1 − p
Πker δ(t,x)σ

′(t, y)Ry(t, y),

i.e., the p-optimal martingale measure can be given by the density

ET

(∫
(−θ(s, ξs) +

1
1 − p

ν ′(s, ξs))dws

)

= ET

(
−
∫
λ′(s, ξs)δ(s, ξs)dws +

1
1 − p

∫
Πker δ(t,ξs)R

′
y(s, ξs)σ(s, ξs)dws

)
.

In the case of Eq. (2.4.14), we can take θ̄ = δ̄−1μ, ker δ = {0} × R
n−m, and (2.4.24) is transformed to

the equation

(LR)(t, y) − pθ̄′(t, y)R̄y(t, y) +
1
2
|σ̄(t, y)′Ry(t, y)|2

− p− 1
2

|σ⊥(t, y)′Ry(t, y)|2 +
p(p− 1)

2
|θ̄(t, y)|2 = 0. (2.4.26)

If, in addition, ξ is a Wiener process, i.e., b = 0 and σ = I, then we can write

Rt(t, y) +
1
2
ΔR(t, y) − pθ(t, y)′R̄y(t, y) +

1
2
|R̄y(t, y)|2 − p− 1

2
|R⊥

y (t, y)|2 +
p(p− 1)

2
|θ(t, y)|2 = 0,

(2.4.27)

R(T, y) = 0, (2.4.28)
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where σ = (σ̄, 1
1−pσ

⊥), σ̄ and σ⊥ are (n × m)- and n × (n−m)-matrices, respectively. Therefore,
ν̄(t, x) = σ⊥(t, x)′Rx(t, x) defines variance-optimal martingale measures by the density

ET

(
−
∫
θ̄(s, ξs)′dw̄s +

1
1 − p

∫
Rx(s, ξs)′σ⊥(s, ξs)dw⊥

s

)
.

Now let us apply this result to the stochastic volatility model considered by Laurent and Pham [49].
Assume that p = 2. Let an asset price process S be described by the SDE

dSt = diag(St)
[
μ̄(t, St, Yt)dt+ δ̄(t, St, Yt)

]
dw̄t,

dYt = μ⊥(t, St, Yt)dt+ δ1(t, St, Yt)dw̄t + δ2(t, St, Yt)dw⊥
t ,

(2.4.29)

where

diag(St) =

⎛
⎜⎝
S

(1)
t . . . 0
. . . . . . . . . . . . . . .

0 . . . S
(m)
t

⎞
⎟⎠ , St = (S(1)

t , . . . , S
(m)
t ) ∈ R

m
+ , Yt ∈ R

n−m.

Let us introduce ξ = (lnS, Y ) and rewrite (2.4.29) in the form (2.4.1)–(2.4.3) assuming

b(t, x) =
(
μ̄(t, s, y) + 1

2 d̃g(δ̄(t, s, y)δ̄′(t, s, y))
μ⊥(t, s, y)

)
, σ(t, x) =

(
δ̄(t, s, y) 0
δ1(t, s, y) δ2(t, s, y)

)
,

μ(t, x) = μ̄(t, s, y), δ(t, x) = δ̄(t, s, y),
(2.4.30)

where x = (ln s, y) and by d̃g(Γ) = (γ11, . . . , γmm)′ we denote the vector of diagonal entries of a matrix
Γ = (γij)i,j≤m.

Assume that the following conditions hold:
(D1) the coefficients μ̄, μ⊥, δ1, δ2, and δ̄ are bounded continuous functions satisfying the local

Lipschitz condition;
(D2) there exists a constant c > 0 such that(

σσ′(s, x)λ, λ
) ≥ c|λ|2

for all s ∈ [0, T ], x ∈ R
m, and λ ∈ R

m, where σ is defined by (2.4.30).
It is easy to see that (D1) and (D2) imply that conditions (C1), (C2∗), and (A3) are satisfied.
The processes X (with coefficients (2.4.30)) and S from (2.4.1) and (2.4.29), respectively, admit the

same martingale measures

ET

(
−
∫
θ̃(s, Ss, Ys)′dw̄s −

∫
ν ′sdw

⊥
s

)
= ET

(
−
∫
θ̄(s, ξs)′dw̄s −

∫
ν ′sdw

⊥
s

)
,

where
θ̃(s, Ss, Ys) = δ̄−1(s, Ss, Ys)μ̄(s, Ss, Ys) = θ̄(s, ξs).

Therefore, the value processes corresponding to models (2.4.30) and (2.4.29) coincide and, by the
Markov property, it can be represented as Ṽ (t, St, Yt) = V (t, ξt). Thus, Ṽ (t, s, y) = V (t, ln s, y) =
V (t, x), and the Bellman equation derived by Laurent and Pham for (2.4.29) (see [49, Eq. (6.14)]) can
be obtained from (2.4.9) for coefficients (2.4.30) by changing the variables (ln s, y) → x. Hence we
obtain the existence and uniqueness of a solution of (2.4.26) from [49] in the sense of Theorem 2.4.1.

Equation (2.4.26) for (2.4.30) can be rewritten as

(LR)(t, x) − 2μ′(t, ex̄, y)R̄x(t, x) − 1
2

∣∣∣δ2(t, ex̄, y)′R⊥
x (t, x)

∣∣∣2

+
1
2

∣∣∣δ̄(t, ex̄, y)′R̄x(t, x) − δ1(t, ex̄, y)′R⊥
x (t, x)

∣∣∣2 + |θ(t, ex̄, y)|2 = 0,

(t, x) = (t, x̄, y) ∈ [0, T ] × R
m × R

n−m, (2.4.31)
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since, in this case, σ̄′Rx = δ̄′R̄x − δ′1R⊥
x and σ⊥′

Rx = δ′2R⊥
x , where Rx = (R̄x,−R⊥

x ), R̄x =
(Rx1 , . . . , Rxm), and R⊥

x = −(Rxm+1 , . . . , Rxn).
Let us consider the following two cases:
Case I The coefficients μ⊥, δ̄, δ1, δ2, and θ̄ are independent of the variable y, i.e., we have the func-

tions μ⊥(t, s), δ̄(t, s), δ1(t, s), δ2(t, s), and θ̄(t, s). Then the solution of (2.4.31) is independent
of y and ν̄ = 0.

Case II The coefficients μ⊥, δ2, and θ̄ are independent of s and δ1 = 0. Then the solution of
(2.4.31) is independent of s, and we have

(LR)(t, x) − 1
2
|δ2(t, y)R⊥

x |2 + |θ̄(t, y)|2 = 0, R(T, y) = 0. (2.4.32)

For U(t, y) = e−R(t,y), we obtain the linear SDE

(LU)(t, y) − |θ̄(t, y)|2U(t, y) = 0, U(T, y) = 1.

Therefore,

U(t, y) = Et,y exp

⎛
⎝−

T∫

t

|θ̄(s, Ys)|2ds
⎞
⎠ , R(t, y) = − lnU(t, y), ν̄(t, y) = δ′2(t, y)R

⊥
y (t, y).

Remark 2.4.3. In Case II, Laurent and Pham [49], under some smoothness conditions on the coef-
ficients (using the results from Krylov [47] and Friedman), showed that Eq. (2.4.32) admits a unique
solution of class C1,2. In [49], Laurent and Pham also derived a Bellman equation equivalent to (2.4.26)
for a more general case (2.4.29). As was mentioned in [49], the solvability of (2.4.26) in the class C1,2

is an open question and the value function can be characterized only in terms of viscosity solutions.
We solve Eq. (2.4.26) in the class V L

μ of functions which, in contrast to viscosity solutions, admit all
generalized first-order derivatives.

2.5. Minimal Entropy Martingale Measure

The minimal entropy martingale measure minimizes the relative entropy of a martingale measure
with respect to the measure P . It is known (see [30, 71]) that for a locally bounded process X, the
minimal entropy martingale measure always exists, is unique, and if there is a martingale measure
with finite relative entropy, then the minimal entropy martingale measure is equivalent to P .

The aim of this section is to give the construction of the minimal entropy martingale measure when
the dynamics of the discounted assets price process is governed by a continuous semimartingale. We
obtain a description of the minimal entropy martingale measure in terms of the value function of a
suitable problem of an optimal equivalent change of measure and show that this value process uniquely
solves the corresponding semimartingale backward stochastic differential equation (BSDE). We show
that in two specific extreme cases (already studied in [5, 49, 73] in connection with the variance-
optimal martingale measures), this semimartingale BSDE admits an explicit solution, which gives an
explicit construction of the minimal entropy martingale measure. In particular, we give a necessary
and sufficient condition for the minimal entropy martingale measure to coincide with the minimal
martingale measure, as well as with the martingale measure appearing in the second above-mentioned
extreme case.

Let
Me

Ent = {Q ∈ Me : EZQ
T lnZQ

T <∞}.
We assume that the following conditions hold:
(A) all (F, P )-local martingales are continuous;
(B) there is an equivalent martingale measure Q such that EZQ

T lnZQ
T <∞, i.e.,

Me
Ent 
= ∅. (2.5.1)
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Note that conditions (A) and (B) imply that X is a continuous semimartingale satisfying the structure
condition. This means that X admits the decomposition

Xt = X0 + Λt +Mt, (2.5.2)

where M is a continuous local martingale and there exists a predictable R
d-valued process λ such that

dΛ = d〈M〉λ with KT =
∫ T
0 λ′sd〈M〉sλs < ∞, where ′ denotes the transposition. The process K is

called the mean-variance tradeoff process of X (see [85] for the interpretation of the process K).
Since X is continuous, any element Q of Me is given by the density ZQ

t , which is expressed as an
exponential martingale of the form

Et(−λ ·M +N), (2.5.3)
where N is a local martingale strongly orthogonal to M and the notation λ·M stands for the stochastic
integral.

If the local martingale Ẑ = E(−λ ·M) is a true martingale, then dP̂ /dP = ẐT defines an equivalent
probability measure called the minimal martingale measure for X.

We denote by NEnt(X) the class of local martingales N strongly orthogonal to M such that the
process (Et(−λ ·M+N), t ∈ [0, T ]) is a strictly positive P -martingale with EET (−λ ·M+N) ln ET (−λ ·
M +N) <∞. Then

Me
Ent =

{
Q ∼ P :

dQ

dP

∣∣∣
FT

= ET (−λ ·M +N), N ∈ NEnt(X)
}
. (2.5.4)

We recall the definition of BMO-martingales and the reverse Hölder L lnL-condition.
The square integrable continuous martingale M belongs to the class BMO iff there is a constant

C > 0 such that
E1/2(〈M〉T − 〈M〉τ |Fτ ) ≤ C (2.5.5)

for every stopping time τ . The smallest constant with this property is called the BMO norm of M
and is denoted by ‖M‖BMO.

Let Z be a strictly positive uniformly integrable martingale.

Definition 2.5.1. The process Z satisfies the REnt(P ) inequality if there is a constant C1 such that

E

(
ZT

Zτ
ln
ZT

Zτ
|Fτ

)
≤ C1 (2.5.6)

for every stopping time τ .

The proof of the following assertion can be found in [78] (see [21, 41] for the case xp, p > 1).

Proposition 2.5.1. Let E(M) be an exponential martingale associated with the continuous local mar-
tingale M . Then if E(M) is a uniformly integrable martingale and satisfies the REnt(P ) inequality,
then M belongs to the class BMO.

Also, let us recall the concept of relative entropy (see [12] about the basic properties of the relative
entropy).

The relative entropy, or the Kullback–Leibler distance, I(Q,R) of the probability measure Q with
respect to the measure R is defined as

I(Q,R) = ER dQ

dR
ln
dQ

dR
. (2.5.7)

The minimal entropy martingale measure Q∗ is a solution of the optimization problem

inf
Q∈Mabs

I(Q,P ) = I(Q∗, P ),

where Mabs is the set of measures Q absolutely continuous with respect to P such that X is a local
martingale under Q.
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Proposition 2.5.2. If X is locally bounded and there exists Q ∈ Mabs such that I(Q,P ) < ∞, then
the minimal entropy martingale measure exists and is unique. Moreover if I(Q,P ) < ∞ for some
Q ∈ Me, then the minimal entropy martingale measure is equivalent to P .

Remark 2.5.1. This assertion is proved in [30] under the assumption that X is bounded and defines
the class Me as the set of equivalent measures Q such that X is a martingale (and not a local
martingale) under Q. The proof is the same if X is locally bounded and Me is defined as in the
Introduction.

Since any continuous process is locally bounded, under assumptions (A) and (B), the minimal
entropy martingale measure always exists and is equivalent to the basic measure P . Therefore, here-
after, we consider only equivalent martingale measures and focus our attention on the construction
and properties of optimal martingale measures.

Thus, we consider the optimization problem

inf
Q∈Me

Ent

EET (MQ) ln ET (MQ). (2.5.8)

Let us introduce the following notation:

EtT (MQ) =
ET (MQ)
Et(MQ)

, 〈MQ〉tT = 〈MQ〉T − 〈MQ〉t,

and let

Vt = ess inf
Q∈Me

Ent

E(EtT (MQ) ln EtT (MQ)|Ft) = ess inf
N∈NEnt(X)

EQ
(
ln EtT (−λ ·M +N)|Ft

)
(2.5.9)

be the value process corresponding to the problem (2.5.8).
Also, let us introduce the process

V̄t =
1
2

ess inf
Q∈Me

Ent

EQ(〈MQ〉tT |Ft). (2.5.10)

Remark 2.5.2. We see later that Vt = V̄t if there exists an equivalent martingale measure satisfying
the REnt inequality.

The optimality principle, which is proved in a standard way (see, e.g., [23, 41, 49]), takes the
following form in this case.

Proposition 2.5.3. (a) There exists an RCLL semimartingale, still denoted by Vt, such that for
each t ∈ [0, T ],

Vt = ess inf
Q∈Me

Ent

EQ(ln EtT (MQ)|Ft).

Vt is the largest RCLL process equal to 0 at time T such that Vt+ln Et(MQ) is a Q-submartingale
for every Q ∈ Me

Ent.
(b) The following properties are equivalent :

(i) Q∗ is optimal, i.e.,

V0 = inf
Q∈Me

Ent

EQ ln ET (MQ) = EQ∗
ln ET (MQ∗

);

(ii) Q∗ is optimal for all conditional criteria, i.e., for each t ∈ [0, T ],

Vt = EQ∗
(ln EtT (MQ∗

)|Ft) a.s.;

– (iii) Vt + ln Et(MQ∗
) is a Q∗-martingale.

The following statement proved in [15] is a consequence of Proposition 2.5.3b.
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Corollary 2.5.1. If there exists an equivalent martingale measure Q̃ whose density satisfies the
REnt(P ) inequality, then the density of the minimal entropy martingale measure also satisfies the
REnt(P ) inequality.

Proof. It follows immediately, since for any stopping time τ

E(EτT (MQ∗
) ln EτT (MQ∗

)|Fτ ) = ess inf
Q∈Me

Ent

E(EτT (MQ) ln EτT (MQ)|Fτ )

≤ E(EτT (M Q̃) ln EτT (M Q̃)/Fτ ) ≤ C.

The corollary is proved.

2.6. Backward Semimartingale Equation for the Value Process
Related to the Minimal Entropy Martingale Measure

We say that a process B strongly dominates a process A and we write A ≺ B if the difference
B − A ∈ A+

loc, i.e., if it is a locally integrable increasing process. Let (AQ, Q ∈ Q) be the family of
processes of bounded variations, zero at time zero. Denote by ess infQ∈Q(AQ) the largest process of
finite variation, zero at time zero, which is strongly dominated by the process AQ for every Q ∈ Q,
i.e., this is “ess inf” of the family (AQ, Q ∈ Q) relative to the partial order ≺.

Let us consider the following semimartingale backward equation:

Yt = Y0 − ess inf
Q∈Me

Ent

[
1
2
〈MQ〉t + 〈MQ, L〉t

]
+ Lt, t < T, (2.6.1)

with the boundary condition
YT = 0. (2.6.2)

We say that the process Y is a solution of (2.6.1), (2.6.2) if Y is a special semimartingale with
respect to the measure P with the canonical decomposition

Yt = Y0 +Bt + Lt, B ∈ Aloc, L ∈ M2
loc, (2.6.3)

such that YT = 0 and

Bt = − ess inf
Q∈Me

Ent

[
1
2
〈MQ〉t + 〈MQ, L〉t

]
. (2.6.4)

Let

Lt =

t∫

0

ψ′
sdMs + L̃t, 〈L̃,M〉 = 0, (2.6.5)

be the Galtchouk–Kunita–Watanabe decomposition (G-K-W) of L with respect to the martingale M .

Lemma 2.6.1. If there exists Q ∈ Me
Ent such that MQ ∈ BMO, then the martingale part L of any

bounded solution Y of Eq. (2.6.1), (2.6.2) belongs to the class BMO and

‖L‖BMO ≤ (2C + 1)2‖MQ‖BMO, (2.6.6)

where C is an upper bound of the process Y .

Proof. Using the Itô formula for Y 2
T − Y 2

τ and the boundary condition YT = 0, we have

〈L〉T − 〈L〉τ + 2

T∫

τ

Ysd(Bs + Ls) ≤ 0 (2.6.7)

for any stopping time τ . Since Y satisfies (2.6.1)

Bt +
1
2
〈MQ〉t + 〈MQ, L〉t ∈ A+

loc (2.6.8)
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and, therefore, (2.6.7) implies that

〈L〉T − 〈L〉τ + 2

T∫

τ

YsdLs −
T∫

τ

Ysd〈MQ〉s − 2

T∫

τ

Ysd〈MQ, L〉s ≤ 0. (2.6.9)

Without loss of generality, we may assume that L is a square integrable martingale; otherwise, one
can use localization arguments. Therefore, if we take the conditional expectations in (2.6.9) having
inequality |Yt| ≤ C in mind, we obtain

E (〈L〉T − 〈L〉τ |Fτ ) − CE
(〈MQ〉T − 〈MQ〉τ |Fτ

)− 2CE

⎛
⎝

T∫

τ

|d〈MQ, L〉s||Fτ

⎞
⎠ ≤ 0. (2.6.10)

Now using the conditional Kunita–Watanabe inequality from (2.6.10), we have

E(〈L〉T − 〈L〉τ |Fτ ) − 2C‖MQ‖1/2
BMOE

1/2(〈L〉T − 〈L〉τ |Fτ ) − C‖MQ‖BMO ≤ 0. (2.6.11)

Solving this quadratic inequality with respect to x = E1/2(〈L〉T − 〈L〉τ |Fτ ), we obtain the estimate

E(〈L〉T − 〈L〉τ |Fτ ) ≤ (2C + 1)2‖MQ‖BMO.

Since the right-hand side is independent of τ , estimate (2.6.6) also holds and L belongs to the
space BMO.

The value process of problem (2.5.8) defined by (2.5.9) is a special semimartingale with respect to
the measure P with the canonical decomposition

Vt = V0 +mt +At, m ∈M2
loc, A ∈ Aloc. (2.6.12)

Let

mt =

t∫

0

ϕ′
sdMs + m̃t, 〈m̃,M〉 = 0, (2.6.13)

be the GKW decomposition of m with respect to M .
Now we formulate the main statement of the paper.

Theorem 2.6.1. . Let conditions (A) and (B) be satisfied. Then the following assertions hold.
(a) The value process V is a solution of the semimartingale backward Eq. (2.6.1)–(2.6.2). Moreover,

a martingale measure Q∗ is the minimal entropy martingale measure if and only if it is given
by the density dQ∗ = ET (MQ∗

)dP , where

MQ∗
t = −

t∫

0

λ′sdMs − m̃t. (2.6.14)

(b) If, in addition, the minimal martingale measure exists and satisfies the reverse Hölder REnt-
inequality, then the value process V is a unique bounded solution of (2.6.1)–(2.6.2).

Proof. (a) By Condition (B), there exists Q̃ ∈ Me
Ent, and according to Proposition 2.5.3, the process

Zt = Vt + ln Et(M Q̃) is a Q̃-submartingale; hence it is a P -semimartingale by the Girsanov theorem.
Since ET (M Q̃) is strictly positive and continuous, the process ln Et(M Q̃) is a semimartingale; conse-
quently, the value process V is also a semimartingale under P . Condition (A) implies that any adapted
RCLL process is predictable (see [76]), and hence any semimartingale is special. Therefore, V is a
P -special semimartingale admitting decomposition (2.6.12).
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The processes m − 〈m,MQ〉 and MQ − 〈MQ〉 are Q-local martingales by the Girsanov theorem.
Therefore, since

Zt = Vt + ln Et(MQ) = V0 +mt +At +MQ
t − 1

2
〈MQ〉t

= V0 + (mt − 〈m,MQ〉t) + (MQ
t − 〈MQ〉t) +At +

1
2
〈MQ〉t + 〈m,MQ〉t (2.6.15)

and since Vt + ln Et(MQ) is a Q-submartingale for every Q ∈ Me
Ent, we have

At +
1
2
〈MQ〉t + 〈m,MQ〉t ∈ A+

loc (2.6.16)

for every Q ∈ Me
Ent.

On the other hand, according to Proposition 2.5.2, the optimal martingale measure Q∗ exists and is
equivalent to P . Therefore, by the optimality principle, the process Vt+ln Et(MQ∗

) is a Q∗-martingale,
and using the Girsanov theorem once again, we obtain

At +
1
2
〈MQ∗〉t + 〈m,MQ∗〉t = 0. (2.6.17)

Relations (2.6.16) and (2.6.17) imply

At = − ess inf
Q∈Me

Ent

[
1
2
〈MQ〉t + 〈MQ,m〉t

]
, (2.6.18)

and hence the value process V satisfies Eq. (2.6.1) and, obviously, VT = 0. Relation (2.6.17) implies
that the processes At and hence Vt are continuous.

Now let us show that the optimal martingale measure Q∗ is given by (2.6.14).
From (2.6.18), we have

At = −1
2
〈λ ·M〉t + 〈λ ·M,m〉t − ess inf

N∈NEnt(X)

(
1
2
〈N〉t + 〈N,m〉t

)

= −1
2
〈λ ·M〉t + 〈λ ·M,m〉t +

1
2
〈m̃〉t − 1

2
ess inf

N∈NEnt(X)
(〈N + m̃〉t)

= −1
2
〈λ ·M〉t + 〈λ ·M,m〉t +

1
2
〈m̃〉t, (2.6.19)

since
ess inf

N∈NEnt(X)
(〈N + m̃〉t) = 0. (2.6.20)

To prove relation (2.6.20), let us define the sequence of stopping times

τn = inf
{
t : Et(Ñ) ≥ 1

n
or Et(−λ ·M − m̃) ≥ n

}
∧ T,

where Ñ is a local martingale from the class NEnt(X), which exists by condition (B). It is not difficult
to see that the local martingale Nn = −m̃τn + Ñ − Ñ τn belongs to the class NEnt(X) and τn ↑ T .
Therefore,

ess inf
N∈NEnt(X)

(〈N + m̃〉t) ≤ 〈Nn + m̃〉t = 〈m̃− m̃τn + Ñ − Ñ τn〉 ≤ 2(〈m̃〉t − 〈m̃〉t∧τn + 〈Ñ〉t − 〈Ñ〉t∧τn)

for each n ≥ 1 and (2.6.20) holds, since the right-hand side of the latter inequality tends to zero as
n→ ∞. Here, as above, m̃ is the orthogonal martingale part of m in the GKW decomposition (2.6.13)
and m̃τn = (m̃τn∧t, t ∈ [0, T ]) is a stopped martingale.
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By the optimality principle, Vt + ln Et(MQ∗
) is a Q∗-martingale. Since V solves Eq. (2.6.1), this

implies

ess inf
Q∈Me

Ent

[
1
2
〈MQ〉t + 〈MQ,m〉t

]
=

1
2
〈MQ∗〉t + 〈MQ∗

,m〉t. (2.6.21)

Since MQ∗
is represented in the form −λ ·M+N∗ for some N∗ ∈ NEnt(X), it follows from (2.6.19) and

(2.6.21) that the processes N∗ and m̃ and hence the processes MQ∗
and −λ ·M − m̃ are indistinguish-

able. Therefore, the minimal entropy martingale measure is unique and admits representation (2.6.14).
(b) It is easy to see that the value process satisfies the two-sided inequality for all t ∈ [0, T ]:

0 ≤ Vt ≤ C a.s. (2.6.22)

The positivity of V follows from the Jensen inequality. On the other hand, if there exists a martingale
measure Q̃ satisfying the reverse Hölder REnt inequality, we have that V is bounded above, since

Vt = ess inf
Q∈Me

Ent

E(EtT (MQ) ln EtT (MQ)|Ft) ≤ E(EtT (M Q̃) ln EtT (M Q̃)|Ft) ≤ C.

Thus, V is a bounded solution of (2.6.1), (2.6.2).
Uniqueness. Let Y be a bounded solution of (2.6.1), (2.6.2). Let us show that the processes Y and

V are indistinguishable. Since Y solves (2.6.1) we have

Yt + ln Et(MQ) = Y0 + Lt +Bt +MQ
t − 1

2
〈MQ〉t

= Y0 + (Lt − 〈L,MQ〉t) + (MQ
t − 〈MQ〉t) +

1
2
〈MQ〉t + 〈L,MQ〉t − ess inf

Q∈Me
Ent

[
1
2
〈MQ〉t + 〈L,MQ〉t

]
.

(2.6.23)

Therefore, the Girsanov theorem implies that Yt + ln Et(MQ) is a Q-local submartingale for every
Q ∈ Me

Ent.
Thus, the process

YtEt(MQ) + Et(MQ) ln Et(MQ)
is a local P -submartingale.

Since (Et(MQ), t ∈ [0, T ]) is a martingale satisfying the condition EET (MQ) ln ET (MQ) < ∞, the
process Et(MQ) ln Et(MQ) is from the class D, since a submartingale is bounded from below (by the
constant −1/e). On the other hand, the process YtEt(MQ) is also from the class D, since Y is bounded
and Et(MQ) is a martingale (see, e.g., [19]). Thus, YtEt(MQ) + Et(MQ) ln Et(MQ) is a submartingale
from the class D, and hence from the boundary condition, we have

YtEt(MQ) + Et(MQ) ln Et(MQ) ≤ E(ET (MQ) ln ET (MQ)|Ft)

for all Q ∈ Me
Ent and

Yt ≤ ess inf
Q∈Me

Ent

E[EtT (MQ) ln EtT (MQ)|Ft] = Vt. (2.6.24)

Let us show the converse inequality.
Similarly to (2.6.19) we have

Bt = −1
2
〈λ ·M〉t + 〈λ ·M,L〉t +

1
2
〈L̃〉t, (2.6.25)

and the infimum is attained for the martingale

Nt = −L̃t, (2.6.26)

where L̃ is the orthogonal martingale part of L in the GKW decomposition (2.6.5).
Let MQ0

= −λ ·M − L̃. Since the minimal martingale measure satisfies the REnt(P ) condition,
Proposition 2.5.1 implies −λ ·M ∈ BMO. On the other hand, for any s ≤ t,

〈L̃〉t − 〈L̃〉s ≤ 〈L〉t − 〈L〉s,
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and hence Lemma 2.6.1 implies that MQ0 ∈ BMO. Therefore, from [41], it follows that the process
(Et(MQ0

), t ∈ [0, T ]) is a martingale, and hence dQ0 = ET (MQ0
)dP defines an absolutely continuous

martingale measure.
It is easy to see that Yt + ln Et(MQ0

) is a local martingale under Q0. Indeed, (2.6.25) and (2.6.5)
imply

Yt + ln Et(MQ0
) = Y0 + Lt − 1

2
〈λ ·M〉t + 〈λ ·M,L〉t +

1
2
〈L̃〉t

− (λ ·M)t − L̃t − 1
2
〈λ ·M〉t − 1

2
〈L̃〉t = Y0 + ((ψ − λ) ·X)t (2.6.27)

which is a Q0-local martingale, by the Girsanov theorem. Therefore,

Zt = YtEt(MQ0
) + Et(MQ0

) ln Et(MQ0
)

is a P -local martingale.
Let us show that Q0 ∈ Me

Ent and that the process Z is a martingale. It is easy to see that

Zt ≥ −CEt(MQ0
) − 1

e
.

Thus, Z is a local martingale majoring a uniformly integrable martingale, hence it is a supermartingale,
and we have

YtEt(MQ0
) + Et(MQ0

) ln Et(MQ0
) ≥ E(YTET (MQ0

) + ET (MQ0
) ln ET (MQ0

)|Ft).

Therefore, from (2.6.2) and (2.6.24) we obtain

E(EtT (MQ0
) ln EtT (MQ0

)|Ft) ≤ Yt ≤ Vt ≤ C. (2.6.28)

The latter inequality implies that EET (MQ0
) ln ET (MQ0

) < ∞ and that Q0 is optimal, and hence by
Proposition 2.5.2, Q0 is equivalent to P and Q0 ∈ Me. Using the same arguments as before, we have
that Z is a local martingale of class D and, therefore, it is a martingale (see, e.g., [19]). Now, the
martingale property and the boundary condition imply that

Yt = E(EtT (MQ0
) ln EtT (MQ0

)|Ft). (2.6.29)

Since Q0 ∈ Me
Ent, the relation Yt = Vt a.s. for all t ∈ [0, T ] results from (2.6.24) and (2.6.29), hence V

is the unique bounded solution of Eq. (2.6.1), (2.6.2).

Now we formulate Theorem 2.6.1(b) in the following equivalent martingale form.

Proposition 2.6.1. Let the conditions of Theorem 2.6.1(b) be satisfied, and let

Vt = V0 +At +

t∫

0

ϕ′
sdMs + m̃t, 〈M, m̃〉 = 0, (2.6.30)

be the decomposition of the value process. Then the triple (V0, ϕ, m̃) is a solution of the martingale
equation

c+

T∫

0

ψ′
sdMs + L̃T =

1
2
〈λ ·M〉T − 〈λ ·M,ψ ·M〉T − 1

2
〈L̃〉T (2.6.31)

and c ∈ R+, ϕ ·M , and m̃ ∈ BMO.
Conversely, if a triple (c, ψ, L̃) such that c ∈ R+ and ψ ·M, L̃ ∈ BMO solves (2.6.31), then the

process Y defined by

Yt = E

(
1
2
〈λ ·M〉tT − 〈λ ·M,ψ ·M〉tT − 1

2
〈L̃〉tT |Ft

)
(2.6.32)

is a bounded solution of (2.6.1)–(2.6.2) and coincides with the value process.
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Proof. Relation (2.6.19) implies that Eq. (2.6.1), (2.6.2) is equivalent to the backward semimartingale
equation

Yt = Y0 − 1
2
〈λ ·M〉t + 〈λ ·M,ψ ·M〉t +

1
2
〈L̃〉t +

t∫

0

ψ′
sdMs + L̃t, (2.6.33)

YT = 0. (2.6.34)

Since V solves Eq. (2.6.33), using the boundary condition (2.6.2), we obtain from (2.6.33) that the
triple (V0, ϕ, m̃) satisfies (2.6.31). Moreover, it follows from Lemma 2.6.1 that ϕ ·M , m̃ ∈ BMO.

Conversely, let the triple (c, ψ, L̃) solve (2.6.31) and Y be the process defined by (2.6.32). Using
the martingale properties of the BMO-martingales ψ · M and L̃, we see that the martingale part
of Y coincides with V0 +

∫ t
0 ψ

′
sdMs + L̃t, hence Y satisfies (2.6.1), (2.6.2). Since ψ ·M, L̃ ∈ BMO,

the conditional Kunita–Watanabe inequality and (2.6.32) imply that Y is bounded and, therefore, Y
coincides with the value process by Theorem 2.6.1(b).

It is well known (see [30, 78]) that Q∗ is the minimal entropy martingale measure if and only if

(i) ET (MQ∗
) = ec+

∫ T
0 h′

sdXs for some constant c and an X-integrable h;
(ii) EQ∗ ∫ T

0 h′sdXs = 0 and EQ
∫ T
0 h′sdXs ≥ 0 for any Q ∈ Me

Ent.

The sufficiency part of this assertion is difficult to verify, since condition (ii) involves the optimal
martingale measure. The following consequence of Theorem 2.6.1 shows that the integrand h of the
minimal entropy martingale measure can be expressed in terms of the value process V , and since V
solves Eq. (2.6.1), (2.6.2), condition (ii) is automatically satisfied.

Corollary 2.6.1. A martingale measure Q∗ is the minimal entropy martingale measure if and only
if the corresponding density admits representation

ET (MQ∗
) = exp

⎛
⎝V0 +

T∫

0

(ϕs − λs)′dXs

⎞
⎠ , (2.6.35)

where ϕ is the integrand in the GKW decomposition of the martingale part m of the value process.

Proof. It follows from Theorem 2.6.1 and relation (2.6.19) that V satisfies the equation

Vt = V0 − 1
2
〈λ ·M〉t + 〈λ ·M,ϕ ·M〉t +

1
2
〈m̃〉t + (ϕ ·M)t + m̃t.

Taking the exponentials of both sides of the latter equation and using the definitions of the process
X and the Doleans-Dade exponential, we obtain

eVt = E−1
t (−λ ·M − m̃) exp

⎛
⎝V0 +

t∫

0

(ϕs − λs)′dXs

⎞
⎠ , (2.6.36)

and from the boundary condition (2.6.2), we have

ET (−λ ·M − m̃) = exp

⎛
⎝V0 +

T∫

0

(ϕs − λs)′dXs

⎞
⎠ . (2.6.37)

Now, since by Theorem 2.6.1, Q∗ is the minimal entropy martingale measure if and only if it satisfies
(2.6.14), the representation (2.6.35) follows from (2.6.14) and (2.6.37).
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Note that for the process ϕ− λ, condition (ii) is satisfied. Indeed, (2.6.36) implies

Vt + ln Et(−λ ·M − m̃) = V0 +

t∫

0

(ϕs − λs)′dXs, (2.6.38)

and by the optimality principle, ⎛
⎝

t∫

0

(ϕs − λs)′dXs, t ∈ [0, T ]

⎞
⎠

is a Q∗-martingale, and hence

EQ∗
T∫

0

(ϕs − λs)′dXs = 0.

For any Q ∈ Me
Ent and x ∈ [0, 1], we set Qx = xQ+ (1 − x)Q∗. Then

Zx
T = xET (MQ) + (1 − x)ET (MQ∗

)

is the corresponding density and according to [30, Lemma 2.1], the function f(x) = EZx
T lnZx

T is
differentiable in x and

d

dx
EZx

T lnZx
T |x=0 = E ln ET (MQ∗

)
(ET (MQ) − ET (MQ∗

)
)
.

Moreover, Q∗ is optimal if and only if d
dxf |x=0 ≥ 0. Therefore, from (2.6.38) and the latter inequality,

we obtain

EQ

T∫

0

(ϕs − λs)′dXs = EQ ln ET (−λ ·M − m̃) − V0

≥ E ln ET (MQ∗
)
(ET (MQ) − ET (MQ∗

)
) ≥ 0 (2.6.39)

for any Q ∈ Me
Ent, and hence (ii) is satisfied.

Corollary 2.6.2. If there exists a martingale measure Q̃ whose density satisfies the reverse Hölder
inequality REnt(P ), then

Vt = V̄t (2.6.40)

Proof. Denote by REnt(X) the set of martingale measures Q whose densities ZQ satisfy the REnt(P )
inequality. By Corollary 2.6.1, the minimal entropy martingale measure Q∗ is in REnt(X). Therefore,

Vt = ess inf
Q∈Me

Ent

EQ(ln EtT (MQ)|Ft) = ess inf
Q∈REnt(X)

EQ(ln EtT (MQ)|Ft)

= ess inf
Q∈REnt(X)

EQ

(
MQ

tT − 〈MQ〉tT +
1
2
〈MQ〉tT |Ft

)
=

1
2

ess inf
Q∈REnt(X)

EQ(〈MQ〉tT |Ft)

since Q ∈ REnt(X) implies MQ ∈ BMO (Proposition 2.5.1), and according to [21, Proposition 7],
from MQ ∈ BMO(P ) we have that the process MQ − 〈MQ〉 is a BMO-martingale with respect to the
measure Q, and hence EQ(MQ

tT − 〈MQ〉tT |Ft) = 0.
We recall that MtT = MT −Mt and 〈M〉tT = 〈M〉T − 〈M〉t.
This expression of the value process allows us to determine easily the minimal entropy martingale

measure in some particular cases.

Proposition 2.6.2. Assume that the minimal martingale measure Qmin belongs to the class Me
Ent

and λ ·X is a martingale with respect to any Q ∈ Me
Ent. Then the following assertions are equivalent :
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(1) the minimal entropy martingale measure Q∗ coincides with the minimal martingale measure
Qmin;

(2) the mean variance tradeoff admits the representation

〈λ ·M〉T = c+

T∫

0

ψ′
sdXs (2.6.41)

for some constant c and X-integrable process ψ such that

Emin

T∫

0

ψ′
sdXs = 0, EQ

T∫

0

ψ′
sdXs ≥ 0

for any Q ∈ Me
Ent.

Proof. (1)⇒(2). Let Q∗ = Qmin. Then by Corollary 2.6.2,

ET (−λ ·M) = exp

⎛
⎝V0 +

T∫

0

(ϕs − λs)′dXs

⎞
⎠ , (2.6.42)

where ϕ is defined by (2.6.30). It follows from (2.6.42) that

exp

⎧⎨
⎩−

T∫

0

λ′sdMs − 1
2
〈λ ·M〉T

⎫⎬
⎭ = exp

⎧⎨
⎩V0 +

T∫

0

ϕ′
sdXs −

T∫

0

λ′sdMs − 〈λ ·M〉T

⎫⎬
⎭ ,

which implies

1
2
〈λ ·M〉T = V0 +

T∫

0

ϕ′
sdXs, (2.6.43)

and hence (2.6.41) is satisfied with ψ = 2ϕ and c = 2V0.
Since

EQ

T∫

0

λ′sdXs = 0

for any Q ∈ Me
Ent, it follows from (2.6.39) that

EQ

T∫

0

ϕ′
sdXs ≥ EQ

T∫

0

λ′sdXs = 0

for any Q ∈ Me
Ent. Moreover, (2.6.36) implies

Vt + ln Et(−λ ·M) = V0 +

t∫

0

(ϕs − λs)′dXs (2.6.44)

and by the optimality principle, ⎛
⎝

t∫

0

(ϕs − λs)′dXs, t ∈ [0, T ]

⎞
⎠
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is a Qmin-martingale, hence

Emin

T∫

0

ϕ′
sdXs = EQ

T∫

0

λ′sdXs = 0.

(2)⇒(1). If (2.6.41) is satisfied, then

ET (−λ ·M) = exp

⎧⎨
⎩−

T∫

0

λ′sdXs +
1
2
〈λ ·M〉T

⎫⎬
⎭ = exp

⎧⎨
⎩
c

2
+

T∫

0

(1
2ψs − λs)′dXs

⎫⎬
⎭ ,

and it is obvious that

EQ

T∫

0

(1
2ψs − λs)′dXs ≥ 0

for any Q ∈ Me
Ent and

Emin

T∫

0

(1
2ψs − λs)′dXs = 0,

hence Q∗ = Qmin by Theorem 2.3 of Frittelli (given above).

Corollary 2.6.3. Assume that the mean variance tradeoff 〈λ ·M〉T is bounded. Then Q∗ = Qmin if
and only if (2.6.41) is satisfied for some constant c and X-integrable process ψ such that⎛

⎝
t∫

0

ψ′
sdXs, t ∈ [0, T ]

⎞
⎠

is Qmin-martingale.

The proof follows from Proposition 2.3.2 since the boundedness of 〈λ ·M〉T implies that λ ·X is a
martingale with respect to any Q ∈ Me

Ent. Moreover, if equality (2.6.41) is satisfied and if⎛
⎝

t∫

0

ψ′
sdXs, t ∈ [0, T ]

⎞
⎠

is a martingale with respect to some Q ∈ Me
Ent, then this process is bounded and is a martingale with

respect to any Q ∈ Me
Ent.

Remark 2.6.1. Condition (2.6.41) is satisfied in the case of “almost complete” diffusion models (see,
e.g., [73]) where the market price of risk is measurable with respect to the filtration generated by the
asset price process.

Corollary 2.6.4. The mean variance tradeoff 〈λ ·M〉T is deterministic if and only if the minimal
entropy martingale measure coincides with the minimal martingale measure and ϕ = 0 μ〈M〉-a.e.,
where ϕ is defined by (2.6.13) and μ〈M〉 is the Dolean measure of 〈M〉.

The proof immediately follows from Proposition 2.6.1.

Proposition 2.6.3. Assume that the minimal martingale measure exists and satisfies the reverse
Hölder REnt-inequality. Then the density of the minimal entropy martingale measure is of the form

ZQ∗
T =

exp{− ∫ T
0 λ′sdXs}

E exp{− ∫ T
0 λ′sdXs}

(2.6.45)
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if and only if

exp
{
−1

2
〈λ ·M〉T

}
= c+ m̂T (2.6.46)

for some constant c and a martingale m̂ strongly orthogonal to M .

Proof. Let ZT (Q∗) be of the form (2.6.45). By (2.6.14), we have

ET (−λ ·M − m̃) =
exp{− ∫ T

0 λ′sdXs}
E exp{− ∫ T

0 λ′sdXs}
,

which implies that

exp
{
−1

2
〈λ ·M〉T

}
= c exp

{
−m̃T − 1

2
〈m̃〉T

}
= cET (m̃) = c+ c

T∫

0

Es(m̃)dm̃s,

where the martingale m̃ orthogonal toM is defined by (2.6.13) and belongs to the class BMO according
to Lemma 2.6.1. Therefore, (2.6.46) is satisfied with

m̂t = c

t∫

0

Es(m̃)dm̃s,

which is a martingale according to [41].
Conversely, let (2.6.46) be satisfied. Then using the Itô formula for ln(c + m̂t), from (2.6.46), we

have

ln c+

T∫

0

1
c+ m̂s

dm̂s = −1
2
〈λ ·M〉T +

1
2

〈 .∫

0

1
c+ m̂s

dm̂s

〉

T

,

which implies that the triple

− ln c, ψ = 0, L̃ = −
t∫

0

1
c+ m̂s

dm̂s

is a solution of the martingale equation (2.6.31). The martingale 1
c+m̂ · m̂ belongs to the class BMO,

since by (2.6.46), c+ m̂t ≤ 1 and Proposition 2.5.1 with the Jensen inequality imply

c+ m̂t = E(e−
1
2
〈λ·M〉T /Ft) ≥ E(e−

1
2
〈λ·M〉tT /Ft) ≥ e−

1
2
E(〈λ·M〉tT /Ft) ≥ e

1
2
C .

Since the solution of (2.6.31) is unique in the class R+×BMO×BMO, we obtain that ϕ = 0. Therefore,
it follows from Corollary 2.6.2 that ZT (Q∗) is of the form (2.6.45).

2.7. The Itô Process Model

We consider the diffusion model for the financial market as in Karatzas et al. [40] and Laurent
and Pham [49]. Let W = (W 1, . . . ,Wn) be an n-dimensional standard Brownian motion defined
on a complete probability space (Ω, F, P ) equipped with the P -augmentated filtration generated by
W , F = (Ft, t ∈ [0, T ]). Denote by W l = (W 1, . . . ,W d) and W⊥ = (W d+1, . . . ,Wn) the d- and
(n− d)-dimensional Brownian motions, respectively.

Assume that there are d risky assets (stocks) and a bond traded in the market. For simplicity, the
bond price is assumed to be 1 at all times and the stock price dynamics is given by

dXt = diag(Xt)(μtdt+ σtdW
l
t ), t ∈ [0, T ], (2.7.1)

where diag(X) denotes the diagonal (d× d)-matrix with diagonal entries (X1, . . . , Xd).
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The market coefficients: the d-dimensional vector process μ of stock appreciation rates and the
volatility (d × d)-matrix σ are progressively measurable with respect to F . We also require that for
any t ∈ [0, T ], the volatility matrix is nonsingular almost surely. We take n > d, so that there are more
sources of uncertainty than stocks available for trading and the market is incomplete in the Harrison
and Pliska sense (see [35]).

Straightforward calculations yield that in this case, λ = diag(X−1)(σσ′)−1μ, where σ′ denotes the
transposition of σ,

t∫

0

λ′sdMs =

t∫

0

θ′sdW
l
s, 〈λ ·M〉t =

t∫

0

‖θs‖2ds

is the mean variance tradeoff, and θ = σ−1μ is the market price of risk. As before, we denote by Me

the set of equivalent martingale measures of X. Let K(σ) be the class of F -predictable R
n−d-valued

processes ν such that
∫ T
0 ‖νt‖2dt <∞, a.s. Since σ is nonsingular, by the Itô representation theorem,

any local martingale N strongly orthogonal to M = diag(X)σ ·W l admits the integral representation

Nt =

t∫

0

ν ′sdW
⊥
s

for some ν ∈ K(σ), and from (2.5.3) the density of any martingale measures is expressed as

Zν
t = Et

⎛
⎝−

t∫

0

θ′sdW
l
s +

t∫

0

ν ′sdW
⊥
s

⎞
⎠ , t ∈ [0, T ], (2.7.2)

for some ν ∈ K(σ). Let

KEnt(σ) = {ν ∈ K(σ) : EZν
T = 1, EZν

T lnZν
T <∞}.

Then the subclass Me
Ent of equivalent martingale measures is given by

Me
Ent = {P ν : dP ν/dP = Zν

T , ν ∈ KEnt(σ)}, (2.7.3)

and condition (B) is equivalent to KEnt(σ) 
= ∅.
Assume that the following condition holds.
(C) the mean variance tradeoff is bounded, i.e.,

T∫

0

‖θs‖2ds ≤ C a.s. for some C > 0.

Remark 2.7.1. This condition is satisfied if the market price of risk θ is bounded. Note that condition
(C) implies that the minimal martingale measure exists, i.e., EET (− ∫ .

0 θ
′
sdW

l
s) = 1, and satisfies the

reverse Hölder REnt(P ) inequality, since for any stopping time τ ,

E(EτT (−λ ·M) ln EτT (−λ ·M)|Fτ ) = E(EτT (−λ ·M)〈λ ·M〉τT |Fτ ) ≤ C. (2.7.4)

According to Corollary 2.6.3 and (2.7.2), problem (2.5.10) is equivalent to

1
2

inf
ν∈KEnt(σ)

Eν

T∫

0

(‖θs‖2 + ‖νs‖2)ds, (2.7.5)

and the corresponding value process takes the form

Vt =
1
2

ess inf
ν∈KEnt(σ)

Eν

⎛
⎝

T∫

t

(‖θs‖2 + ‖νs‖2)ds|Ft

⎞
⎠ . (2.7.6)
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By the martingale representation theorem, the martingale part of the value process is expressed as
a stochastic integral

mt =

t∫

0

ϕ′
sdW

l
s +

t∫

0

ϕ⊥′
s dW⊥

s (2.7.7)

and it is easy to show (e.g., since the essential infimum in both expressions is attained) that in this
case,

ess inf
Q∈Me

Ent

[
1
2
〈MQ〉t + 〈MQ,m〉t

]
=

t∫

0

inf
ν∈Rn−d

[
1
2
‖θs‖2 +

1
2
‖ν‖2 − θ′sϕs + ν ′ϕ⊥

s

]
ds. (2.7.8)

Since condition (C) implies that the minimal martingale measure satisfies the REnt(P ) inequality and
the filtration F is continuous, the following statement follows from Theorem 2.6.1(b) and Eq. (2.7.8)
as a corollary.

Theorem 2.7.1. Let condition (C) be satisfied. Then the value process V is a unique bounded positive
solution of the BSDE

Yt = Y0 −
t∫

0

inf
ν∈Rn−d

[
1
2
‖θs‖2 +

1
2
‖ν‖2 − θ′sψs + ν ′ψ⊥

s

]
ds+

t∫

0

ψ′
sdW

l
s +

t∫

0

ψ⊥′
s dW⊥

s , YT = 0. (2.7.9)

Moreover, ν∗ is optimal if and only if

ν∗t = −ϕ⊥
t dt× dP -a.e., (2.7.10)

i.e., the density of the minimal entropy martingale measure has the form

Zν∗
T = ET

⎛
⎝−

.∫

0

θ′sdW
l
s −

.∫

0

ϕ⊥′
s dW⊥

s

⎞
⎠ . (2.7.11)

Remark 2.7.2. Since the essential infimum in (2.7.8) is attained for ν∗t = −ϕ⊥
t , Eq. (2.7.9) is equiv-

alent to

Yt = Y0 −
t∫

0

[
1
2
‖θs‖2 − θ′sψs − 1

2
‖ψ⊥

s ‖2

]
ds+

t∫

0

ψ′
sdW

l
s +

t∫

0

ψ⊥′
s dW⊥

s , YT = 0. (2.7.12)

Note that the martingale equation (2.6.31) equivalent to (2.7.9) takes the form

Y0 +

T∫

0

ψ′
sdW

l
s +

T∫

0

ψ⊥′
s dW⊥

s =

T∫

0

[
1
2
‖θs‖2 − θ′sψs − 1

2
‖ψ⊥

s ‖2

]
ds. (2.7.13)

Now we consider two extreme cases in which Eq. (2.7.9) can be solved explicitly. These specific
examples were already studied by Pham et al. [73] and Laurent and Pham [49] in connection with the
variance optimal martingale measure using different methods.

Case 1. An “almost complete” diffusion model. Assume that the market price of risk is adapted to
the filtration F l generated by the Brownian motion W l, i.e., θ = θ(t,W l), t ∈ [0, T ]). Denote by Qmin

the minimal martingale measure. Let Emin be the expectation with respect to this measure.
By the Girsanov theorem, the process W̃ l defined by

W̃ l
t =

t∫

0

θ(s,W l)ds+W l
t (2.7.14)

370



is the Brownian motion with respect to the measure Qmin, and by the integral representation theorem
(see, e.g., [51, Theorem 7.12]), any Qmin-local martingale adapted to F l is represented as a stochastic
integral; hence

T∫

0

‖θs‖2ds = Emin

T∫

0

‖θs‖2ds+

T∫

0

ψ̃′
sdW̃

l
s. (2.7.15)

Obviously, from condition (C) we have
t∫

0

ψ̃′
sdW̃

l
s ∈ BMO .

Corollary 2.7.1. The triple (c, ϕ, ϕ⊥), where

c =
1
2
Emin

⎛
⎝

T∫

0

‖θs‖2ds

⎞
⎠ , ϕ =

1
2
ψ̃, ϕ⊥ = 0,

is a unique solution of the martingale equation (2.7.13) in the class R+ × BMO×BMO. The process

1
2
Emin

⎛
⎝

T∫

t

‖θs‖2ds

⎞
⎠ |F l

t )

coincides with the value process V , and the minimal entropy martingale measure coincides with the
minimal martingale measure, i.e., ν∗ = 0 and

ZQ∗
T = ET (−θ ·W l).

Proof. Let consider the process

Yt =
1
2
Emin

⎛
⎝

T∫

t

‖θs‖2ds|F l
t

⎞
⎠ . (2.7.16)

Obviously, Y is bounded (by condition (C)) and positive. Since θ is F l adapted, we have

Yt =
1
2
Emin

⎛
⎝

T∫

0

‖θs‖2ds|F l
t

⎞
⎠− 1

2

t∫

0

‖θs‖2ds. (2.7.17)

Therefore, it follows from (2.7.14), (2.7.15), and (2.7.17) that

Yt = Y0 −
t∫

0

(
1
2
‖θs‖2 − 1

2
θ′sψ̃s

)
ds+

1
2

t∫

0

ψ̃′
sdW

l
s, (2.7.18)

which means that Y is a bounded positive solution of (2.7.9) and (c, 1
2 ψ̃, 0) is the unique solution of

(2.7.13) in the class R+ × BMO×BMO (see Proposition 2.6.1). Therefore, by Theorem 2.6.1(b), Y
coincides with the value process

Vt =
1
2
Emin

⎛
⎝

T∫

t

‖θs‖2ds|Ft

⎞
⎠

and hence the minimal martingale measure is optimal.
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Remark 2.7.3. Since the market price of risk is adapted to the filtration F l, the process ψ̃ in (2.7.15)
is F l-predictable. According to Corollary 2.6.4, the necessary and sufficient condition for Q∗ = Qmin

is that the mean variance tradeoff admits representation (2.7.15) for some F -predictable ψ̃ such that
the process

t∫

0

ψ̃′
sdW̃

l
s

is a martingale with respect to Qmin.

Case 2. Assume that the market price of risk is adapted to the filtration F⊥ generated by the Brownian
motion W⊥, i.e.,

θ = θ(t,W⊥), t ∈ [0, T ]).
Since θ is F⊥ adapted, by the integral representation theorem, there exists an F⊥ adapted process g
such that

exp

⎧⎨
⎩−1

2

T∫

0

‖θs‖2ds

⎫⎬
⎭ = E exp

⎧⎨
⎩−1

2

T∫

0

‖θs‖2ds

⎫⎬
⎭+

T∫

0

g′sdW
⊥
s . (2.7.19)

Corollary 2.7.2. The triple (ln(1/c), ψ, ψ⊥), where

c = E exp

⎧⎨
⎩−1

2

T∫

0

‖θs‖2ds

⎫⎬
⎭ , ϕ = 0, ψ⊥

t = − gt

E exp{−1
2

∫ T
0 ‖θs‖2ds} +

∫ t
0 g

′
sdW

⊥
s

(2.7.20)

is a unique solution of (2.7.13) in the class R+ × BMO×BMO.
The process

1
2
E

⎛
⎝

T∫

t

(‖θs‖2 − ‖ψ⊥
s ‖2)ds|F⊥

t

⎞
⎠

coincides with the value process V , and the density of the minimal entropy martingale measure is of
the form

ZQ∗
T =

exp{− ∫ T
0 λ′sdXs}

E exp{− ∫ T
0 λ′sdXs}

. (2.7.21)

Proof. By the Itô formula, we have

ln

⎛
⎝c+

T∫

0

g′sdW
⊥
s

⎞
⎠ = ln c−

T∫

0

ψ⊥′
s dW⊥

s − 1
2

T∫

0

‖ψ⊥
s ‖2ds (2.7.22)

and from (2.7.19) we obtain

ln(1/c) +

T∫

0

ψ⊥′
s dW⊥

s =
1
2

T∫

0

(‖θs‖2 − ‖ψ⊥
s ‖2)ds, (2.7.23)

which coincides with Eq. (2.7.13) for ψ = 0.
This means that the triple (ln(1/c), ψ, ψ⊥) defined by (2.7.20) satisfies (2.7.13). Moreover, con-

dition (C) implies ψ⊥W⊥ ∈ BMO, and since there is a unique solution of (2.7.13) in the class
R+ × BMO×BMO, we obtain ϕ = ψ = 0 and ϕ⊥ = ψ⊥, where ϕ and ϕ⊥ are defined by (2.7.7).
Therefore, the process

Yt =
1
2
E

⎛
⎝

T∫

t

(‖θs‖2 − ‖ψ⊥
s ‖2)ds|Ft

⎞
⎠
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solves Eq. (2.7.9) and by Theorem 2.6.1(b), it coincides with the value process V , since
∫ t
0 ψ

⊥′
s dW⊥

s ∈
BMO and condition (C) imply that the process Y is bounded. Since ϕ = 0, Corollary 2.6.2 implies
that the density of the minimal entropy martingale measure admits representation (2.7.21).

2.8. Diffusion Model

We assume that the dynamics of the assets price process is determined by the following system of
stochastic differential equations:

dXt = diag(Xt)(μ(t,Xt, Yt)dt+ σl(t,Xt, Yt)dW l
t ), (2.8.1)

dYt = b(t,Xt, Yt)dt+ δ(t,Xt, Yt)dW l
t + σ⊥(t,Xt, Yt)dW⊥

t . (2.8.2)

Assume that the following conditions hold:
(D1) the coefficients μ, b, δ, σl, and σ⊥ are measurable and bounded;
(D2) the (n× n)-matrix function σσ′ is uniformly elliptic, i.e., there is a constant c > 0 such that

(σ(s, x, y)λ, σ(s, x, y)λ) ≥ c|λ|2
for all s ∈ [0, T ], x ∈ R

d
+, y ∈ R

n−d, and λ ∈ R
n, where

σ(t, x, y) =
(
σl(t, x, y) 0
δ(t, x, y) σ⊥(t, x, y),

)
.

In addition, we assume that
(D3) system (2.8.1), (2.8.2) admits a unique strong solution.

Let us introduce the value function

V (t, x, y) =
1
2

inf
ν∈KM

Ent(σ)
Eν

⎛
⎝

T∫

t

(‖θ(s,Xs, Ys)‖2 + ‖ν(s,Xs, Ys)‖2)ds/Xt = x, Yt = y

⎞
⎠ ,

where θ = σl−1
μ and KM

Ent(σ) is the class of feedback controls from KEnt(σ), i.e., controls ν ∈ KEnt(σ)
expressed in the form ν(t,Xt, Yt) for some measurable function ν(t, x, y), t ∈ [0, T ], x ∈ R

d
+, y ∈ R

n−d.

Theorem 2.8.1. Let conditions (D1)–(D3) be satisfied. Then the value function V (t, x, y) admits
all first order generalized derivatives Vx and Vy and the generalized L-operator LV (in the sense of
Definition 1.7.1 of the Appendix ) is a unique bounded positive solution of the equation

LV (t, x, y) − θ′(t, x, y)δ′(t, x, y)Vy(t, x, y) + V ′
y(t, x, y)b(t, x, y) +

1
2
‖θ(t, x, y)‖2

+ inf
ν∈Rn−d

[
1
2
‖ν‖2 + ν ′σ⊥

′
(t, x, y)Vy(t, x, y)

]
= 0 dt dx dy-a.s. (2.8.3)

with the boundary condition
V (T, x, y) = 0. (2.8.4)

Moreover, ν∗ = −σ⊥Vy, and the density of the minimal entropy martingale measure is of the form

Z∗
T = ET

⎛
⎝−

·∫

0

θ(s,Xs, Ys)dW l
s −

·∫

0

(σ⊥Vy)(s,Xs, Ys)dW⊥
s

⎞
⎠ .

Proof. Existence. Since (X,Y ) is a Markov process, the feedback controls are sufficient and the value
process is expressed by

Vt = V (t,Xt, Yt) a.s. (2.8.5)
(one can show this fact, e.g., similarly to [8]).

Moreover, the value process satisfies Eq. (2.7.9); therefore, it is an Itô process. It follows from
assumptions (D1) and (D2) that the value process is bounded and Theorem 2.6.1(b) implies that its
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martingale part is in BMO. Hence the finite variation part of Vt is of integrable variation. Thus, from
(2.8.5), we have that V (t,Xt, Yt) is an Itô process of the form (1.7.15) (see the Appendix). Therefore,
Proposition 1.7.1 of the Appendix implies that the function V (t, x, y) admits a generalized L-operator,
all first-order generalized derivatives, and can be represented as

V (t,Xt, Yt) = V0 +

t∫

0

(
V ′

x(s,Xs, Ys) diag(Xs)σl(s,Xs, Ys) + V ′
y(s,Xs, Ys)δ(s,Xs, Ys)

)
dW l

s

+

t∫

0

V ′
y(s,Xs, Ys)σ⊥(s,Xs, Ys)dW⊥

s +

t∫

0

LV (s,Xs, Ys)ds

+

t∫

0

(V ′
x(s,Xs, Ys) diag(Xs)μ(s,Xs, Ys) + V ′

y(s,Xs, Ys)b(s,Xs, Ys))ds, (2.8.6)

where LV is the generalized L-operator defined in the Appendix (Definition 1.7.1).
On the other hand, the value process is a solution of (2.7.9) and by the uniqueness of the canonical

decomposition of semimartingales, comparing the martingale parts of (2.8.6) and (2.7.9), we have that
dt× dP -a.e.

ϕt = σl′(t,Xt, Yt) diag(Xt)Vx(t,Xt, Yt) + δ′(t,Xt, Yt)Vy(t,Xt, Yt), (2.8.7)

ϕ⊥
t = σ⊥

′
(t,Xt, Yt)Vy(t,Xt, Yt). (2.8.8)

Then, equating the processes of bounded variation of the same equations and taking into account
(2.8.7) and (2.8.8), we obtain

t∫

0

[
V ′

y(s,Xs, Ys)b(s,Xs, Ys) +
1
2
‖θ(s,Xs, Ys)‖2 − θ′(s,Xs, Ys)δ′(s,Xs, Ys)Vy(s,Xs, Ys)

+ LV (s,Xs, Ys) + inf
ν∈Rn−d

(
1
2
‖ν‖2 + ν ′σ⊥

′
(s,Xs, Ys)Vy(s,Xs, Ys)

)]
ds = 0, (2.8.9)

which gives that V (t, x, y) solves the Bellman equation (2.8.3).
Uniqueness. Let Ṽ (t, x, y) be a bounded positive solution of (2.8.3), (2.8.4) from the class V L.

Then using the generalized Itô formula (Proposition 1.7.1 of the Appendix) and Eq. (2.8.3), we obtain
that Ṽ (t,Xt, Yt) is a solution of (2.7.9), and hence Ṽ (t,Xt, Yt) coincides with the value process V by
Theorem 2.7.1. Therefore, Ṽ (t,Xt, Yt) = V (t,Xt, Yt) a.s. and Ṽ = V , dtdxdy-a.e.

It is obvious that Theorem 2.7.1 and Eq. (2.8.8) imply that ν∗ = −σ⊥′
Vy.

Analogously to Remark 2.7.2, since the infimum is attained for ν∗ = −σ⊥′
Vy, we can rewrite (2.8.3)

as

b′(t, x, y)Vy(t, x, y) + LV (t, x, y) +
1
2
‖θ(t, x, y)‖2 − θ′(t, x, y)δ′(t, x, y)Vy(t, x, y)

− 1
2
‖σ⊥′

(t, x, y)Vy(t, x, y)‖2 = 0 dt dx dy-a.s. (2.8.10)

Now we consider the two particular cases of the previous section.

Case 1. “Almost complete” diffusion model. Assume that the price process X is described by the
equation

dXt = diag(Xt)(μ(t,Xt)dt+ σl(t,Xt)dW l
t ), t ∈ [0, T ], (2.8.11)
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where σl satisfies the uniform ellipticity condition, and μ and σl are bounded measurable and such
that Eq. (2.8.11) admits a unique strong solution. Then

F l
t = FX

t (2.8.12)

and the market price of risk θ(t,Xt) is F l
t -measurable. As is seen in Corollary 2.7.1,

Vt =
1
2
Emin

⎛
⎝

T∫

t

‖θ(s,Xs)‖2ds|F l
t

⎞
⎠ ,

and (2.8.12) and the Markov property of X imply that Vt = V (t,Xt) a.s., where

V (t, x) =
1
2
Emin

⎛
⎝

T∫

t

‖θ(s,Xs)‖2ds/Xt = x

⎞
⎠ .

Since the conditions of Theorem 2.8.1 are satisfied, V (t, x) is a unique bounded solution of the equation

LV (t, x) +
1
2
‖θ(t, x)‖2 = 0, V (T, x) = 0 (2.8.13)

in the class V L.
Under suitable regularity conditions on μ and σl, the value function V (t, x) is a unique bounded

solution of (2.8.13) from the class C1,2 and

LV =
∂V

∂t
+

1
2

tr(diag(x)σlσl′ diag(x)Vxx).

Case 2. Let us consider the stochastic volatility model

dXt = diag(Xt)(μ(t, Yt)dt+ σl(t, Yt)dW l
t ), dYt = b(t, Yt)dt+ σ⊥(t, Yt)dW⊥

t , (2.8.14)

where Eq. (2.8.14) admits a unique strong solution. We assume that the coefficients of (2.8.14) satisfy
(D1) and (D2). We have that F⊥ = F Y and the market price of risk θ(t, Yt) is F⊥

t adapted. According
to Corollary 2.7.2, the value function is independent of x, i.e., V (t, x, y) = V (t, y). Therefore, by
Theorem 2.8.1, V (t, y) is the unique bounded solution in the class V L of the equation

LV (t, y) +
1
2
‖θ(t, y)‖2 + V ′

y(t, y)b(t, y) − 1
2
‖σ⊥′

(t, y)Vy(t, y)‖2 = 0 dt dy-a.s., (2.8.15)

V (T, y) = 0. (2.8.16)

For U(t, y) = e−V (t,y), Eq. (2.8.15) can be reduced to the linear SDE

LU(t, y) + b′(t, y)Uy(t, y) +
1
2
‖θ(t, y)‖2U(t, y) = 0.

Under additional smoothness conditions on the coefficients μ, σl, b, and σ⊥ this equation with the
boundary condition U(T, y) = 1 has a unique solution in the class C1,2 with LV the usual L-operator.
By the Feynmann–Kac formula, the value admits the representation

V (t, y) = − lnE

⎡
⎣exp

⎧⎨
⎩

1
2

T∫

t

|θ(s, Ys)|2ds|
⎫⎬
⎭ |Yt = y

⎤
⎦ .
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2.9. Appendix

The proof of the following assertion for the case p = 2 can be found in [85]. For all cases we give
the proof for p > 1.

Proposition 2.9.1. Z̃T ∈ Mabs
p is p-optimal if and only if

Eη(ZT − Z̃T )Z̃p−1
T ≥ 0 (2.9.1)

for all Z ∈ Mabs
p .

Proof. Let (2.9.1) be satisfied. We consider the function

f(x) = Eη(xZT + (1 − x)Z̃T )p.

Obviously, f is convex and continuously differentiable since the derivative pEη(ZT − Z̃T )(x̄ZT +
(1 − x̄)Z̃T )p−1 of the function η(xZT + (1 − x)Z̃T )p is majorized by the integrable random variable
2p−1η(ZT + Z̃T )(Zp−1

T + Z̃p−1
T ). According to (2.9.1), f ′(0) ≥ 0. It follows from the convexity of f

that f(ε) − f(0) ≤ f(x) − f(x − ε) for all ε and x such that 0 < ε < x ≤ 1, which implies that
f ′(x) ≥ f ′(0) ≥ 0. Hence f is a nondecreasing function and EηZp

T = f(1) ≥ f(0) = EηZ̃p
T . Thus, Z̃T

is p-optimal. Conversely, if Z̃ is p-optimal, then, obviously, f ′(0) ≥ 0 for any Z ∈ Mabs which gives
(2.9.1).
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