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BACKWARD STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
RELATED TO UTILITY MAXIMIZATION AND HEDGING

M. Mania and R. Tevzadze UDC 519.2

ABSTRACT. We study the utility maximization problem, the problem of minimization of the hedging
error and the corresponding dual problems using dynamic programming approach. We consider an
incomplete financial market model, where the dynamics of asset prices are described by an R%-valued
continuous semimartingale. Under some regularity assumptions, we derive the backward stochastic
PDEs for the value functions related to these problems, and for the primal problem, we show that the
strategy is optimal if and only if the corresponding wealth process satisfies a certain forward SDE.
As examples we consider the mean-variance hedging problem and the cases of power, exponential,
logarithmic utilities, and corresponding dual problems.
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PART 1

BACKWARD STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
RELATED TO THE UTILITY MAXIMIZATION PROBLEM AND
HEDGING

1.1. Introduction

Portfolio optimization, hedging, and derivative pricing are fundamental problems in mathematical
finance, which are closely related to each other. The basic optimization problem of mathematical
finance, the optimal portfolio choice or hedging, is to optimize

E[U(X7™)] over all 7 in the class II of strategies, (1.1.1)

where
t

X" = SL‘—|—/7TudSu
0
is the wealth process starting from the initial capital z, determined by the self-financing trading
strategy 7, and II is some class of admissible strategies. U is the objective function, which can also
depend on w. It can be interpreted as the utility function or a function that measures a hedging error.
If U(z) = (x — H)?, where H is a contingent claim at time 7', then (1.1.1) corresponds to the
well-known mean-variance hedging problem

minimize (X" — H)? over all 7 € II (1.1.2)

introduced by Follmer and Sondermann [29] and then developed by numerous authors (see, e.g., [20,
33, 36, 37, 83-85] for further generalizations and related results).
If the objective function U is the utility function, then (1.1.2) is the utility maximization problem

maximize E[U(X7")] over all 7 € II, (1.1.3)

i.e., for a given initial capital > 0, the goal is to maximize the expected value from the terminal
wealth.

The utility maximization problem was first studied by Merton (1971) in a classical Black—Scholes
model. Using the Markov structure of the model, he derived the Bellman equation for the value
function of the problem and obtained a closed-form solution of this equation in the cases of power,
logarithmic, and exponential utility functions.

For general complete market models, it was shown by Pliska (1986), Cox and Huang (1989), and
Karatzas et al. (1987) that the optimal portfolio of the utility maximization problem is (up to a con-
stant) equal to the density of the martingale measure unique for complete markets. As was shown
by He and Pearson (1991) and Karatzas et al. (1991), for incomplete markets described by the It6
processes, this method gives a duality characterization of optimal portfolios provided by the set of
martingale measures. Their idea was to solve the dual problem of finding the suitable optimal mar-
tingale measure and then to express the solution of the primal problem by using the convex duality.
Extending the domain of the dual problem, the approach was generalized to semimartingale models
under weaker conditions on the utility functions by Kramkov and Schachermayer (1999) and Cvitanic,
Schachermayer, and Wong (2001).

These approaches mainly give a reduction of the basic primal problem to the solution of the dual
problem, but the constructive solution of the dual problem for general models of incomplete markets
is itself a demanding task.

Our goal is to derive a semimartingale Bellman equation (stochastic version of the Bellman equa-
tion) directly related to the basic (or primal) optimization problem, to study the well-posedness of
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such equations, and to give constructions of optimal strategies. The application of the dynamic pro-
gramming approach directly to the primal optimization problem can represent a valuable alternative
to the commonly used convex duality approach in many cases.

Let S be an R%valued continuous semimartingale defined on a filtered probability space satisfying
the usual conditions. The process S describes the discounted price evolution of d risky assets in a
financial market also containing a riskless bond of constant price. To exclude arbitrage opportunities,
we assume that the set M€ of equivalent martingale measures for S is nonempty. Since S is continuous,
the existence of an equivalent martingale measure implies that the structure condition is satisfied, i.e.,
S admits the decomposition

t

Sy = M + /d(M)s)\s, (A\-M) <oo foralltas., (1.1.4)
0
where M is a continuous local martingale and X is a predictable R%valued process.

We consider the utility function U mapping (0, c0) into R. It is assumed to be continuously differ-
entiable, strictly increasing, and strictly concave, and it satisfies the Inada conditions

U'(0) = lim U'(z) = 0o, U'(c0) = lim U'(z) = oo.
z—0 T—00
Also, we set U(0) = 1ir% U(z) and U(z) = —oo for all z < 0.
xTr—>
For any x € R,, denote by II, the class of predictable S-integrable processes m such that the

corresponding wealth process is nonnegative at any instant, i.e.,
t
X7 =x+ /wudSu >0 Vtelo,T].
0
For simplicity, in the introduction, we consider the case with a single risky asset.
Let us introduce the dynamical value function of problem (1.1.3) defined as
T
V(t,x) =esssupE (U | v + /WudSu /]—'t . (1.1.5)

TI'GHI t

The classical Itd formula (or its generalization given by Krylov in 1980) plays a crucial role in
deriving the Bellman equation for the value function of controlled diffusion processes. For our purposes,
the Ito formula is no longer sufficient, since the function V also depends on w even if U is deterministic.
Therefore, the Ito—Ventzell formula must be used.

Under some regularity assumptions on the value function (sufficient for the application of the It6—
Ventzell formula), in Theorem 1.3.1, we show that the value function defined by (1.1.5) satisfies the
following backward stochastic partial differential equation (BSPDE):

¢

S, T S S, T 2 /
V(t,x)—V(O,w)+%/ (pu (s, )v+?§i~)” :2)) d(M>5+/g0(s,x)dMs+L(t,x) (1.1.6)
0

with the boundary condition
V(T, x) - U(x),
where L(t, ) is a local martingale orthogonal to M for all x and the subscripts ¢,, V;, and V., denote
the partial derivatives. Moreover, a strategy 7* is optimal if and only if the corresponding wealth
process X7 is a solution of the forward SDE
t
oyt alu, XT) + M) Va(u, X77)
X =X{ / V(s X7°) dSy. (1.1.7)
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Thus, to construct the optimal strategy, we need:

(1) first, to solve the backward equation (1.1.6) (which determines V' and ¢ simultaneously) and
substitute the corresponding derivatives of V' and ¢ in Eq. (1.1.7);

(2) then to solve the forward equation (1.1.7) with respect to X7 ;

(3) finally, to reproduce the optimal strategy 7* from the corresponding wealth process X ™,

Theorem 1.3.1 is a verification theorem, since we require conditions directly imposed on the value
function V' (but not only on the function U). Therefore, we cannot state that the solution of Eq. (1.1.6)
exists, but for the standard utility functions, all the conditions of Theorem 1.3.1 are satisfied, and in
these cases, the existence of a unique solutions of the corresponding backward equations follows from
this theorem.

If U(z) = 2P, p € (0,1), then (1.1.3) corresponds to the power utility maximization problem:

T
maximize E(x + /wudSu)p over all m € II,. (1.1.8)
0
In this case, V(t,x) = zPV;, where V; is a semimartingale and all condition of Theorem 1.3.1

are satisfied. This theorem implies that the process V; satisfies the following backward stochastic
differential equation (BSDE):

t t

s AV
Vi=Vo+ 2/%d(M>S+/¢SdMS+Lt, Ve =1, (1.1.9)

0 0

where ¢ = p/(p — 1) and L is a local martingale strongly orthogonal to M. In addition, Eq. (1.1.7) is
transformed into the linear equation

t
A
Xr=z+(1 /90 T AV g, (1.1.10)
0

for the optimal wealth process.
Therefore,

X; =& ((1-q) (§+A)-S),

and the optimal strategy is of the form

* Pt '
T =z(1 —q) <Vt+At> & ((I—Q) (VJM) -S)-
If we assume that U(z) is strictly convex (for each w), then we can interpret U as a function that
measures a hedging error and consider the problem

minimize E[U(X7™)] over all 7 from II, (1.1.11)

where the class II will be specified later.
Note that the corresponding value function

T
V(t,x) =essinf B [ U x+/7rudSu /Fi (1.1.12)

mell
t

satisfies the same Eq. (1.1.6) as the value function of problem (1.1.3) (in this case, V,, is negative,
and hence V (¢, x) is now a submartingale for all z € RT). Equations for optimal wealth processes are
also the same, and the proof (see Theorem 1.5.1) is mainly similar to the proof of Theorem 1.3.1.

If U(x) = (x — H)?, where H is a contingent claim at time T, as was mentioned above, (1.1.11)
corresponds to the mean-variance hedging problem.
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We show that in this case, V (¢, z) is a quadratic trinomial of the form V(¢,xz) = Vy(t) — 2V4(t)x +
Va(t)z? and Eq. (1.1.6) gives a triangular system of backward equations for the coefficients V;, i =
0, 1,2, of the value function. Moreover, Eq. (1.1.7) transforms into the linear equation

L (R EAIG) [ eals) FASVS) 4
X; = +0/ 70 ds, / X?dS, (1.1.13)

Va(s)

for the optimal wealth process. A similar result was obtained in [2] for Markov diffusion processes by
using the dynamic programming approach.

Note that (1.1.13) gives an alternative equivalent form to the well-known feedback form solution of
problem (1.1.2), which is usually derived using the density process of the variance-optimal martingale
measure [36] (see also [37, 73, 79, 86]). At the end of Sec. 1.5, we also establish relations between
Egs. (1.1.13) and (1.5.21) derived in [36] and between the equations for V5 and for the value process
of the variance-optimal martingale measure (see [49, 61]).

The main tools of the work are backward stochastic differential equations, which were introduced
by J. M. Bismut in [4] for the linear case as the equations for the adjoint process in the stochastic
maximum principle; other works on the maximum principle in stochastic control were written by
Yu. Kabanov [42] and V. Arkin and M. Saksonov [1]. In [7, 74], the well-posedness results for BSDEs
with more general generators were obtained (see also [24] for references and related results). The
semimartingale backward equation that is a stochastic version of the Bellman equation in an optimal
control problem was first derived in [7] by R. Chitashvili.

The main results of this part are based on the authors’ papers [62, 63, 66].

1.2. Basic Assumptions and Some Auxiliary Facts

We consider an incomplete financial market model, in which the dynamics of asset prices are de-
scribed by an R%valued continuous semimartingale S defined on a filtered probability space (Q, F,
F = (F, t€10,T)), P) satisfying the usual conditions, where F' = Fr and T < oo is a fixed time
horizon. For all unexplained notation from the martingale theory, we refer the reader to [19, 39, 52].

Denote by M€ the set of martingale measures, i.e., the set of measures () equivalent to P on Fr
such that S is a local martingale under Q). Let Z;(Q) be the density process of @ with respect to
the basic measure P, which is a strictly positive uniformly integrable martingale. For any QQ € M°,
there is a P-local martingale M% such that Z(Q) = £(M®) = (§(M®),t € [0,T]), where £(M) is the
Doleans-Dade exponential of M.

Recall the definition of BMO-martingales and the reverse Holder condition.

A square integrable continuous martingale M belongs to the class BMO if there is a constant C' > 0
such that

EYV2((M)r — (M),|F,) <C P-as.
for every stopping time 7. The smallest constant with this property (or 4oo if this does not exist) is
called the BMO norm of M and is denoted by || M||smo-

A strictly positive adapted process Z satisfies the reverse Holder inequality R, (P), where 1 < p < oo,
if there is a constant C' such that

P
E ((%) |FT> <C P-as.

Proposition 1.2.1 (Kazamaki [41]). If M is a continuous BMO-martingale, then E(M) is a uni-
formly integrable martingale.

for every stopping time 7.

The following assertion relates BMO and the reverse Holder condition.
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Proposition 1.2.2 (Doleans-Dade and Meyer [21]). Let M be a local martingale and E(M) be its
Doleans exponential. The following assertions are equivalent:

(i) M belongs to the class BMO;
(ii) E(M) is a uniformly integrable martingale satisfying the reverse Holder inequality R,(P) for
some p > 1.

Let I, be the space of all predictable S-integrable processes 7 such that the corresponding wealth
process is nonnegative at any instant, i.e.,

t
x—i—/TrudSu >0 Vtelo,T].
0
In the sequel, sometimes, we use the notation (7 - S); for the stochastic integral fg TudSy.
Assume that the objective function U(z) = U(w, z) satisfies the following conditions:
(B1) V(0,z) < oo for some z;
(B2) U(x) is the utility function P-a.s.;
(B3) the optimization problem (1.1.3) admits a solution, i.e., for any ¢ and z, there is a strategy
7*(t, ) such that
T
Vit,e)=E|U | z+ /W;‘(t,:v)dss JFe |- (1.2.1)
t
Remark 1.2.1. As was shown by Kramkov and Schachermayer (1999), a sufficient (and necessary)

condition for (B3) is that the utility function U(z) have an asymptotic elasticity strictly less than 1,
ie.,

AE(U) = limsup xgé;;)

Remark 1.2.2. The strict concavity of U implies that the optimal strategy is unique, if it exists.
Indeed, if there exist two optimal strategies 7' and 72, then by the concavity of U, the strategy

T = %771 + %7['2 is also optimal. Therefore,

<1

T T T
1 1
§E U a:+/7T;dSS | F —|—§E U :B+/7r§d58 |F| = FE|U m+/7‘rsd55 | F
t

t t

and
T T T
1 1
§U .%—I—/T(‘;dss + §U :U—I—/ﬂgdSs =U x+/7‘rstS P-a.s.
t t t
Now the strict concavity of U leads to the relation
T T
/ﬂ;dss = /F?dSS.
t t

For convenience, we give the proof of the following well-known assertion.

Lemma 1.2.1. Under conditions (B1)—-(B3), the value function V (t,z) is a strictly concave function
with respect to x.
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Proof. The concavity of V(t,x) follows from (B2) and (B3), since for any «, 5 € [0,1] with a + 3 =1
and any x1,xs € R, we have

T T
aV(t,z1)+ BV (t,z2) =aFE (U | 1 —|—/ (t,x1)dSy | |Fe| +BE |U | x2 +/7T (t,z2)dSy | |F
t t

>E U | oz + Bra+ /(onru(t,a:l) + fr(t,x2))dSy | |Fe| = V(t, axy + Pxe). (1.2.2)
t
To show that V (¢, ) is strictly concave, we need to verify that if
aV(t,x1) + BV (t,x2) = V(t,axy + Bra) (1.2.3)
holds for some «, 5 € (0,1) with o + 5 = 1, then =1 = z».
Indeed, if Eq. (1.2.3) holds, then from (1.2.2) and the strict convexity of U, it follows that
T T
1 +/7r2(t,x1)d5u = T —|—/7r2(t, x9)dS, P-as.,
t t

which implies x1 = xo. O
Remark 1.2.3. The concavity of V' (0, x) and condition (B1) imply that V(0,z) < oo for all z € R.

The It6—Ventzell formula. Let (Y (¢,2),t € [0,7],z € R) be a family of special semimartingales
with the decomposition

Y(t,z) =Y (0,2) 4+ B(t,x) + N(t,z), (1.2.4)

where B(-,z) € Al and N (-, z) € My, for any x € R. By the Galtchouk-Kunita-Watanabe (GKW)
decomposition of N(-,z) with respect to M, a parametrized family of semimartingales Y admits the
representation

Y(t,z) = Y(0,2) + B(t,z) + /w(s, 2)dM, + L(t, ), (1.2.5)

where L(-,z) is a local martingale strongly orthogonal to M for all x € R.
Assume that the following conditions hold.

(C1) There exists a predictable increasing process (Ky,t € [0,7]) such that B(-,z) and (M) are
absolutely continuous with respect to K, i.e., there is a measurable function b(¢, z) predictable
for every xz and a matrix-valued predictable process v; such that

B(t,z) = /t b(s,z)dKs, (M), = /t vdK,.
0 0

Note that, by continuity of M, the square characteristic (M) is absolutely continuous with
respect to the continuous part K¢ of the process K and

¢ ¢
<M>t:/1/de§:/uSsz.
0 0

Without loss of generality, we can assume that v is bounded, and in the sequel, the inner
product u'viv for u,v € R? is denoted by (u, v),,;
(C2) the mapping x — Y (t,z) is twice continuously differentiable for all (w,t);
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(C3) the first derivative Y, (¢, x) is a special semimartingale admitting the decomposition
Yﬂﬂ(t7 I’) = YI(O? SL’) + B(x) (tv :‘C) + /d)x(sa :L‘)dMS + L(a:) (ta :L‘)a (126)

where B()(+,7) € Aloc, Lz)(+, ) is a local martingale orthogonal to M for all z € R, and 1, is
the partial derivative of ¢ at = (note that A,y and L(,) are not assumed to be the derivatives
of A and L, respectively, whose existence does not necessarily follow from condition (C2));

(C4) Yz (t,x) is RCLL process for every z € R;

(C5) the functions b(s, -), (s, "), and (s, -) are continuous at x u*-a.e.;

(C6) for any ¢ > 0,

T
E/sup95$dK < 00
O|{E|<C

for g equal to |b|, |1, and |¢|2.
In what follows, we need the following version of the It6—Ventzell formula.

Proposition 1.2.3. Let (Y (-, z),x € R) be a family of special semimartingales satisfying conditions
(C1)-(C6) and X™ = x + w-S. Then the transformed process Y (t,X]), t € [0,T] is a special
sememartingale with the decomposition

Y(t, X)) =Y(0,¢) + B + Ny,

where

t t
1
B, = / (Yo (s, XD)Nyd(M)s7s + tho(s, XT) d(M) g7 + §Ym(s,X;r)7rgd<M>s7rs] + /b(s,X;r)sz
0 0

(1.2.7)
and N is a continuous local martingale.

One can derive this assertion from of [50, Theorem 1.1} or [10, Theorem 2]|. Here we do not require
any conditions on L(¢,z) imposed in [10, 50], since the martingale part of the substituted process
X7 is orthogonal to L(-,x) and since we do not give an explicit expression of the martingale part N,
because this is not necessary for our purposes.

Remark 1.2.4. Since the semimartingale S is assumed to be continuous and is of the form (1.1.4),
only the latter term of (1.2.7) may have the jumps, i.e., the process K is not continuous in general.

1.3. Backward Stochastic Partial Differential Equation
for the Value Function

In this section, we derive the backward stochastic partial differential equation for the value function

related to the utility maximization problem.
Denote by V12 the class of functions Y : Q x [0,T] x R — R satisfying conditions (C1)—(C6).
Let us consider the following backward stochastic partial differential equation (BSPDE):

2z (8, )

Vita) = v (0.0) + 5 [ LD EREEI g0, (1, 5,0 + A 5. 0)
0
+/¢ s, 2)dM, + L(t,7), L(a)LM, (13.1)
0
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with the boundary condition
Y(T,z) =U(x). (1.3.2)
We say that Y solves problem (1.3.1), (1.3.2) if:
(i) Y(w,t,x) is twice continuously differentiable for each (w,t) and satisfies the boundary condi-
tion (1.3.2);
(i) Y(t,x) and Y, (¢, z) are special semimartingales admitting decompositions (1.2.5) and (1.2.6),
respectively, where 1, is the partial derivative of ¢ at x;
(iii) P-a.s. for all x € R,

B(t,x) =

d(M)s(a(s,z) + A(s)Yz(s, ). (1.3.3)

DO | —

/t (62 (5,7) + A(5) Yz (5,2))’
) Yoz(s,x)

Remark 1.3.1. If we substitute the expression of B(t,x) given by Eq. (1.3.3) in the canonical de-
composition (1.2.5) for Y, then we obtain Eq. (1.3.1).

According to Proposition 1.7.1, the value process V (¢, x) is a supermartingale for any z € R that
admits the canonical decomposition
¢

V(t,z) =V(0,z) + A(t,x) + /go(s,:n)dMs + m(t, x), (1.3.4)
0

where —A(-,z) € A" and m(-,z) is a local martingale strongly orthogonal to M for all x € R..
Assume that V' € V12, This implies that V, (¢, x) is a special semimartingale with the decomposition

¢
Va(t,x) = Vi(0,2) + Ay (t, ) + /gox(s,x)dMs +ma (t, 2), (1.3.5)
0

where A(;)(-, ) € Aloe, Mg (-;2) is a local martingale orthogonal to M for all z € Ry, and ¢,
coincides with the partial derivative of ¢ ( u®-a.e.). Moreover,

At,x) = /a(s,x)dKS
0

for a measurable function a(t, x).

Proposition 1.3.1. Assume that conditions (B1) and (B2) are satisfied and the value function V (t, x)
belongs to the class VY2. Then the inequality
1 la(s, @) + As) Va(s—, )2
<= s 1.3.6
afsa) < PRSI0 (136)
holds for all x € R p®-a.e. Moreover, if the strategy 7 is optimal, then the corresponding wealth
process X™ is a solution of the forward SDE
t * *
. . 0z (8, XT )+ A(s)Va(s, XT)
X =X§ - 5 =~ dS;. 1.3.7
t 0 / sz(87 X;r*) S ( )

Proof. Using the Ito—Ventzell formula (Proposition 1.2.3) for the function V (¢, z,w) € V%2 and for the

process
t

:E—I—/7rud5'u, s<t<T

s
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we have

t t u

v t,ac—i—/wudSu :V(s,x)—i-/a u,ac—i—/m,dSU dK,
t u
—|—/G u,wu,x+/7rvdsv dK, + Ny — Ng, (1.3.8)
where )
G(t,p, r,w) = Vo(t—, )p'vpA(t) + p'veps(t, ) + 5 Vaa (=, z)p'vp (1.3.9)

and N is a martingale. Since by Proposition 1.7.1 of the Appendix, the process
t

Vit x + /TrudSu), t e [s,T]

S

is a supermartingale for all s > 0 and 7w € II, the process

t I u u
—/ G u,ﬂu,x+/7rvd5v +a u,x—i—/wvdSv dK,

S S S

is increasing for any s > 0. Hence the process
t I u u T

—/ G u,wu,x+/7rvd5v +a u,m+/7rvdSv dK;,

S S S

is also increasing for any s > 0, where K = K¢ + K¢ is a decomposition of K into continuous and
purely discontinuous increasing processes. Therefore, taking 75(e) = inf{t > s : Kf — K > ¢} instead
of ¢, we have that for any ¢ > 0 and s > 0,

7s () u 7s(e) u
1 1
- / a u,a:+/7rvd5v dKng—g / G u,ﬂu,a:+/7rvdSv dKs. (1.3.10)
€

Passing to the limit in (1.3.10) as € — 0, from Proposition 1.7.2 of the Appendix we obtain
a(s,z) < —G(s,m,z) pf-ae.

for all w € II. Thus,

a(t,z) < eérseil%f (- G(t,m, ) i -ae.

On the other hand,

Va(t—, 2)A(t) + ¢a(t,2)[7
— t = t
esssup (= Gt o) W (t—, )
4 Valt= 2M0) + ¢a(t,2)
Tt sz (t—,l’)
Indeed, since V,, < 0, by Lemma 1.7.2 of Appendix 1.7, (1.3.11) holds.
Thus, for every x € Ry, we have

2 ) _ |Vx(t—,$))\(t) +90I(t7$) 1211. (1311)

1
S 5 Vxx t—,
-+ esssup ( 2V ( '1:) QV:px(t_v ZL‘)

mell

v

Va(t— 2)At) +¢a(t, )}, ge
< £ -a.e.
a(t,z) < Vo) uto-a.e
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Since pf-a.e. a(t,z) > 0 and uKd{V # 0} = 0, we obtain

Va(t— 2)A(t) + oa(t,2)7,
t,x) < ! -a.e. 1.3.12
alt,x) < i o (1.3.12)
Conditions (C2) and (C5) imply that inequality (1.3.12) holds u€-a.e. for all x € R.
Let us show now that if a strategy 7* is optimal, then the corresponding wealth process X™ is a

solution of Eq. (1.3.7). Let ©*(s, ) be the optimal strategy; denote by

t
X/ (s,z) =x+ /
the corresponding wealth process.
By the optimality principle, the process

t
V(t,:v+/7r2(s,x)d5u)

is a martingale on the interval [s, 7] and the It6—Ventzell formula implies that p/-a.s.,
a(tv X:(Sv x)) + ()‘ta 7rt(37 x)),,th(t—, X:(Sv x))
* * 1 * *
=+ (@x(t, Xt (87 x))? e (87 'T))Vt + E‘Wt (87 x)|12/t‘/ﬂfm(t_7 Xt (87 :E)) = 0. (1'3'13)

It follows from (1.3.12) and (1.3.13) that u€-a.e.,

9096(75’ X:(‘S’ l‘)) + )\(t)Vx(t—, Xt*(sv $))
Vaz (t—, X/ (s, 7)) v
Since V., < 0, integrating the latter relation by dK,, we obtain

Vi (t—, Xf(s,a:))}ﬂf(s,:r) +

<0.

t

e el X5, ) + A Vil X5, )
/ (”“(3"’”) ’ Va0, X3 (5,2)) ) UM

S

el X35, 2) MVl X2(5, )
(it + Vea 1, X305, 7)) )=

The Kunita—Watanabe inequality and (1.3.14) imply that the semimartingale

(1.3.14)

t

* o, X5(5,2)) + Mw)Va (o, X3 (5, )
/ (”"(S’”“’) * Vo (, X (5, 7)) ) 5

S
is indistinguishable from zero (since its S2-norm is zero), and we obtain that the wealth process of 7*
satisfies the equation
t

e [ K

S

which gives Eq. (1.3.7) for s = 0. O

Recall that the process Z belongs to the class D if the family of random variables Z: ;<) is
uniformly integrable for all stopping times 7.
Under the additional condition

(C*) (X{(s,x), t > s) is a continuous function of (s,x) P-a.s. for each t € [s,T],
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we show that the value function V satisfies Egs. (1.3.1)—(1.3.2).
This condition is satisfied, e.g., if the optimal wealth process (X[ (s, z), t > s) is independent of s
and x; this is the case for power, logarithmic, and exponential utility functions.

Theorem 1.3.1. Let V € VY2, Assume that conditions (B1)-(B3) and (C*) hold. Then the value
function is a solution of the BSPDE (1.3.1)—(1.3.2), i.e

Vita) = V(0.0) + 5 [ EDEIECI gy (o, 5,0) + A(3) V(5. 0)

vz (8, )

0
t

+/<P(Sa$)dMs+m(t,x), V(T,z) =U(x). (1.3.16)
0

Moreover, the strategy ™ is optimal if and only if the corresponding wealth process X™ is a solution
of the forward SDE (1.3.7) such that the process V (t, X" ) is from the class D.

Proof. Let m*(s,x) be the optimal strategy. By the optimality principle, (V (¢, X} (s,z)),t > s) is a
martingale. Therefore, using the It6-Ventzell formula and taking (1.3.14) into account, we have

t

o (u, X o(u, X3 (s, 7)) |
/ [aw,xzxs,x)) - 0 Xi(s,0) + [ (s,0) 4 LTI el Tl ] 4K, =0
for all ¢ > s P-a.s., where
(S fL’) _ l|g0 (S x) + A(S)VJJ(S x) 35
9 2 Via (s, ) ’
It follows from (1.3.14) that u’-a.e.,
Vo (u, X3 (5, 2)A(w) + 0 (u, Xii(5,2)) |?
* u u — 0
7Tu(3; l‘) + me(U,Xﬁ(S,ZL‘)) " )
and by (1.3.6),
a(s,x) < g(s,z) pX-ae. (1.3.17)
Thus,
t

/ la(u, X (s,2)) — g(u, X;(s,2))]dK, =0, t>s P-as.

This implies (a(s,x) — g(s,z))(Ks; — Ks—) = 0 for any s € [0,T]. Therefore,
a(s,x) = g(s,x) 1K ae. (1.3.18)

On the other hand,

T ) TS

/g/ la(u, X} (s,2)) — g(u, X;;(s,2))|dK{dKS =0 P-as.,

0 s

and by Proposition 1.7.2, we obtain that
T

/[a(s,:c) —g(s,x)][dK{ =0 P-as.
0
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Now (1.3.17), (1.3.18), and the latter relation imply a(s,z) = g(s,z) pf-a.e., and hence

_1 / ©z(s, ) —|—)\ $)Vi(s,z))
=3/

(8, )

d<M)5(g0x(8, x) + A(s)Va(s, x))a
0

and V (t, ) satisfies (1.3.1)—(1.3.2).

If 7 is a strategy such that the corresponding wealth process X7 satisfies Eq. (1.3.7) and V (t, X])
is from the class D, then 7 is optimal. Indeed, using the It6—Ventzell formula and Egs. (1.3.7) and
(1.3.16), we obtain that V (¢, XJ) is a local martingale, and hence it is a martingale, since it belongs
to the class D. Therefore, 7 is optimal by the optimality principle. O

Definition 1.3.1. We say that Y belongs to the class D(II) if for any € R and 7 € II,, the process
¢
Y|tz+ /WudSu
0

is from the class D.

Theorem 1.3.2. Let conditions (B1)—(B3) be satisfied. If the pair (Y, X) is a solution of the forward-
backward equation

Y(t,z) = d(M)s(pa(s,z) + A(s)Va(s,z))

vz (8, 1)

T
1 [ (z(s,x —i—)\( )Yi(s,2))
_5/

T
/@Z) s,x)dMs + L(T,x) — L(t,x), (1.3.19)

t

B Ph(s, Xs) + Ya(s, Xs)A(s)
X = / o ds.. (1.3.20)

0
X >0 and Y belongs to the class D(II), then such a solution is unique.

Proof. Using the It6—Ventzell formula for

t
Y t,x—i—/wudSu ,

S
we have

t

t
Y t,:c+/7rud5u :Y(s,x)+/b u,x—l—/mdSv dK,

S

u

s
t u

—I—/G u,ﬂu,c—l—/mdS’v dK, + Ny — Ng, (1.3.21)
S S

where

1
G(t’py €, w) = Yx(t_v [L‘)plljt)\(t) + p/Vt¢I(tv CC) + QYxx (t_7 Q:)p/ytp,
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Since Y solves (1.3.19), then Eq. (1.3.3) holds, which implies that
¢
Y t,w—i—/wudSu
S

is a local supermartingale for each w € II.
Since Y is from the class D(II), the process

t
Y |t,z+ / Ty dSy
s

is a supermartingale of class D for any 7 € Il,, and using the boundary condition, we have

T

Y(s,2) > E |U |z + /wudSu /Fs|,

s

which implies that
Y(s,x) > V(s, ). (1.3.22)

Now using the It6—Ventzell formula for Y (¢, X)) and taking into account that Y satisfies (1.3.19) and
X solves (1.3.20), we obtain that Y (¢, A;) is a local martingale, and hence it is a martingale, since

Y (t, X;) is from the class D.
Therefore, since Xy = x and Y (T,z) = U(x), we have

T
Yt,o)=E U [e— / Ya(u, X;j:g‘;)éfs(“ ) as | 7). (1.3.23)
t
Since
AW Yo (u, Xy) + e (u, X) eIl
Yao (u, Xy) ©
from (1.3.22) and (1.3.23) we obtain
Y(t,z) =V(t,x); (1.3.24)

hence the solution of (1.3.19) is unique, if it exists.

Relations (1.3.19), (1.3.20), and (1.3.20) imply that X satisfies Eq. (1.3.7). Moreover, according to
Proposition 1.3.1, the solution of (1.3.7) is the optimal wealth process, and hence X = X™ by the
uniqueness of the optimal strategy for problem (1.1.3) (see Remark 1.2.2). O

1.4. Utility Maximization Problem
for Power, Logarithmic, and Exponential Utility Functions

In this section, we calculate the value function and give constructions of optimal strategies for the
utility maximization problem corresponding to the cases of power, logarithmic, and exponential utility
functions.

1.4.1. Power utility. Let U(z) = 2P, p € (0,1). Then (1.1.3) corresponds to the power utility
maximization problem
T p
maximize F | z + /ﬂudSu over all m € 11, (1.4.1)
0
where II,, is the class of admissible strategies.
In this case, the value function V (¢, x) is of the form 2PV, where V; is a special semimartingale.
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Indeed, since I, is a cone (for any x > 0, the strategy 7 belongs to II, if and only if 7/x € II), we
have

T P T p
V(t,z) = esssup E T+ /ﬂudSu JFi | =aPesssupE 1+ / ﬂdSu JFe | = 2PV,
m€lly mwelly z
t t
where
T p
Vi = esssup E 1+ /WudSu /Fi
welly

t

is a supermartingale by the optimality principle.
Let V; = Vo + A; + N; be the canonical decomposition of V;, where A is a decreasing process and
N is a local martingale. Using the GKW decomposition, we have

t
Vi=Vo+ A+ /goSdMs + Ly, (1.4.2)
0

where L is a local martingale with (L, M) = 0.

It is obvious that all the conditions of Theorem 1.3.1 are satisfied. Note that one can take —A+ (M)
as a dominated process K and that V; > 0 for all ¢, since M # ().

Therefore, we have the following consequence of Theorem 1.3.1.
Theorem 1.4.1. IfU(x) = 2P, p € (0, 1), then the value function V (t,z) has the form xPVy, where V;
satisfies the following backward stochastic differential equation (BSDE):

¢ MV, ¢
+
Vi=W+ = 5 / %CKM%(‘PS + )\sVs) + /Sodes + Ly, Vp=1, (1'4'3)
S

0 0

where ¢ = p/(p— 1) and L is a local martingale strongly orthogonal to M. Moreover, the optimal
wealth process is a solution of the linear equation

t
X;=a2- q—1/"0 +)\VX*dS. (1.4.4)
0
Therefore,

XF = x&, (—(q ~1) (% +>\) -s)
and the optimal strategy is of the form

= (g —1)& (—(q 1) (% n A) : 5) (‘f/z n )\t) .

Now, we consider two cases where Eq. (1.4.3) admits an explicit solution.

Case 1. Let
t

Su(q) = Mi + g / d(M) A,
0

and @Q(q) be a measure defined by dQ(q) = Ep(—gA - M)dP. Note that S(q) is a local martingale
under Q(q) by the Girsanov theorem.
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Assume that
T

T M) c+/hudSu(q), (1.4.5)
0
where ¢ is a constant and h is a predictable S(g)-integrable process such that h - S(q) is a Q(q)-
martingale.
This condition is satisfied if and only if the g-optimal martingale measure coincides with the minimal
martingale measure. For diffusion market models, this condition holds for the so-called “almost
complete” models, where the market price of risk is measurable with respect to the filtration generated

by the price processes of basic securities.
Let condition (1.4.5) hold. Consider the process

Yi = (B(EL(=A- M)/F)) =5 (1.4.6)

Since

EL(=N- M) = & (—g- M)e" T M,
condition (1.4.5) implies

i T—q
Y, = (BEQW (M5 M =My py) 7 = M [ ¢y / hudSu(q)
0
By the It6 formula,
/ YX
Y, =Yo+ = /Y/\’ q / (M),
—q.) c+( )s
0
/ Y, b, 1 Ysh
q stvs
= d(M)shs + / dM,, (1.4.7
21—q2/c+h5’ (q))s)? (M) 1—qJ) ¢+ (h-S(q))s ( )
0 0

1 Yihs
q—1le+(h-5(q))s

t t
s + AsY5)'
0 ° 0

and denoting by 15, we obtain

Yh

It is obvi f 1.4.6) that Y7 = 1. Thus, the triple (Y, v, L h = L=0
is obvious from ( ) that Yp us, the triple (Y, 4, L), where 1) 1ok S@) ,
and Y is defined by (1.4.6), satisfies Eq. (1.4.3).
Case 2. Assume that
e 5OMT — o 4 (1.4.8)

where c is a constant and m is a martingale strongly orthogonal to M.

For diffusion market models, this condition is satisfied when the market price of risk is measurable
with respect to the filtration independent of the asset price process.

Let us consider the process

Y; = E(e” 3(Mr=( M) /. (1.4.9)
Condition (1.4.7) implies
Y; = e3 MMt (e 4 my),
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and by the It6 formula,
t

Y=Yyt [Vidno ).+ [ A0,
0

It follows from here that the triple (Y, 4, L), where ¢ = 0, Ly = [i e3*Msdm and Y is defined by
(1.4.8), satisfies Eq. (1.4.3).

1.4.2. Exponential utility. Let us consider the case of the exponential utility function
Ulz) = —e Y@= H)

with risk aversion parameter v € (0,00), where H is a contingent claim describing a random payoff at
time T'. We assume that H is a bounded Fp-measurable random variable.
Consider the maximization problem

T

max E | —exp | —v x+/7rudSu - H , (1.4.10)
well
0
which is the maximal expected utility that can be attained starting from the initial capital x, using
some strategy n € II, and paying out H at time 7.
The corresponding value function

T

V(t,z) =esssupE | —exp | —y | z + /WudSu -H JFi (1.4.11)
well, f
is of the form V(t,x) = —e™7*V;, where
T
Vi = eﬁgliqr;fE exp [ —v /WudSu —H | Fi (1.4.12)

t

is a special semimartingale.
Let V; = Vo + A; + N; be the canonical decomposition of V;, where A is a decreasing process and
N is a local matingale. Using the GKW decomposition, we have

t
Vi :‘/()+At+/g03dMs+Lt, (1413)
0

where L is a local martingale with (L, M) = 0.

It is obvious that all the conditions of Theorem 1.3.1 hold. Note that one can take —A + (M) as a
dominated process K and that V; > 0 for all ¢, since M # ().

Therefore, we have the following consequence of Theorem 1.3.1.

Theorem 1.4.2. The value function (1.4.11) has the form —e 7*V;, where V; satisfies the following

BSDE:
t ¢

Vo + ;/ Ps + Vol Ja, +/4,0de3 + Ly (1.4.14)
0 0
with the boundary condition
VT = e'yH,
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where L is a local martingale strongly orthogonal to M. Moreover, the optimal wealth process s
expressed as
¢

X, = —dS, 1.4.15
‘ x+/ Vo ( )
0

and the optimal strategy is of the form

7'('* — (pt"i')\t‘/t
! W

Now we give explicit solutions of Eq. (1.4.10) in two extreme cases.

Case 1. Assume that

T
1
~H — §</\ M) = c—{—/hudSu, (1.4.16)
0

where ¢ is a constant and h is a predictable S-integrable process such that h - .S is a martingale with
respect to the minimal martingale measure.

This condition is satisfied if and only if the minimal martingale measure coincides with the minimal
martingale measure and H is attainable. For diffusion market models, this condition holds for the
so-called “almost complete” models, i.e., when the market price of risk is measurable with respect to
the filtration generated by the price processes of basic securities.

Similarly to the case of power utility, we can show that the triple (Y, L), where

Y, = eBOmmOH=3 OMyr/F) -y — Vihy o Ly =0,

satisfies Eq. (1.4.14).

Case 2. Assume that

P H=3OMT — ¢ (1.4.17)

where c¢ is a constant and m is a martingale strongly orthogonal to M.

For diffusion market models, this condition holds when the market price of risk is measurable with
respect to the filtration independent of the asset price process.

We can show that the triple (Y, v, L), where

t
Y, = BOH-30Mr/F) -y 0 L, = / EAM g
0

satisfies Eq. (1.4.14).

1.4.3. Logarithmic utility. For the logarithmic utility
U(x) =logz, x>0,
the value function of the corresponding utility maximization problem takes the form
V(t,z) =logx + V¢,

where V4 is a special semimartingale.
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Indeed, since for any x > 0, the strategy 7 belongs to II, if and only if 7/x € II;, we have

T T
V(t,z) = esssup F | log a;+/7rud5u J/Fi | =esssupE | logx 1+/EdSu /Fi
mell, mwelly x

t t

T
logz + esssup E | log 1—|—/ﬂd5u J/Fi | =logx+ Vi,
well, €
€Il /
where
T
Vi = esssup F | log 1—1—/7rudSu /Fi
welly

t
is a supermartingale by the optimality principle.
It is also obvious that all the conditions of Theorem 1.3.1 hold. In this case, ¢, (t,x) = 0, V,.(t,x) =
1/, Viu(t,2) = —1/2%, and Eq. (1.3.7) gives the following linear BSDE for V;:

t

t
/Vsd<)\ M)+ /godes + Ly, Vp=0, (1.4.18)
0 0

Vi=VWo+

N | =

which admits the explicit solution
1
Vi = §E(<)\ M) — (A M)/ Fy).
Thus, we have the following consequence of Theorem 1.3.1.

Theorem 1.4.3. If U(x) = logx, then the value function of the problem is represented as
1
V(t,z) =logx + §E(<)\ “M)p — (N M)/ Fy).

Moreover, the optimal wealth process is a solution of the linear equation
¢
X/ = x—i—/)\uX;dSu. (1.4.19)

0

Thus,
X} = &+ S),
and the optimal strategy is of the form
;= X[ =aME(N-S).

1.5. Minimization of the Hedging Error. Mean-Variance Hedging
In this section, we consider the minimization problem

min E[U(X77)], (1.5.1)

mell

where
t

X" = a:—i—/ﬂudSu
0

is the wealth process starting from the initial capital  and U is the objective function, which can also
depend on w. It can be interpreted as a function that measures a hedging error.
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Let IT be the class of predictable S-integrable self-financing trading strategies closed with respect
to bifurcation, i.e., such that for any ¢t > 0, B € F}, and 7', 7% € II, the strategy

s = Fol(o<sat) T TedBI(s5t) + Tol eI (55)

belongs to the class II.

Note that for all known classes of admissible strategies, this condition holds. This condition guar-
antees the fulfillment of the optimality principle.

Let .

V(t7gp) = ess llllle Ulx+ /Wudsu /ﬁt (152)
TE
t

be the value function of problem (1.5.1).
Let IIP, p > 1, be the space of all predictable S-integrable processes m such that the stochastic

integral
t

(m-S) = /ﬂudS’u, te[0,T],
0
lies in the SP space of semimartingales, i.e.,

T p/2 T
E /ﬂ;d<M>S7TS +FE /]ﬂSdA5] < 0.
0 0

p

Define G%. as the space of terminal values of stochastic integrals, i.e.,
GL(I) = {(7 - S)p : T € IIP}.

For convenience, we give some assertions from [34, Theorem 4.1] (previously proved in [17] for the
case p = 2), which establishes necessary and sufficient conditions for the closedness of the space G’}
in LP.

Proposition 1.5.1. Let S be a continuous semimartingale. Let p > 1 and q be conjugate to p. Then
the following assertions are equivalent:

(1) there is a martingale measure Q € M€, and G%. is closed in L?;
(2) there is a martingale measure Q) that satisfies the reverse Holder condition Ry(P);
(3) there is a constant C such that for all m € IIP, we have

sup(m - S);

<C|(m - S)rllepy-
t<T

L»(P)

(4) there is a constant ¢ such that for every stopping time T, every A € F., and for every m € IIP
with ™ = 71, 71, we have

114 = (7 - S)7ll1o(py = cP(A)P.
Remark 1.5.1. Assertion (4) implies that for every stopping time 7 and for every = € ITP, we have
T p
E 1—/7TudSu JFr | > P
T

We assume that the function U(x) = U(w, ) satisfies the following conditions:

(D1) U(x) is nonnegative and EU(z) < oo for all z;
(D2) U(x) is strictly convex function P-a.s.;
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(D3) the optimization problem (1.5.2) admits a solution, i.e., for any ¢ and x, there is a strategy
7*(t, ) such that
T
Vit =E|U |2+ /ﬂ:(t,m)dss 7. (1.5.3)
t
Remark 1.5.2. For (D3), the following condition is sufficient:
(D3’) there exist v > 0, a positive integrable random variable &, and p > 1 such that U(z) > v|z|P —¢.

In Proposition 1.7.3 of the Appendix, it is proved that if conditions (D1), (D2), and (D3'), and the
reverse Holder condition R,(P), ¢ = p/(p — 1) hold, then the optimal strategy exists in the class II7.

Note that the function U(z) = |H — z|P for H € LP satisfies (D3') as well as conditions (D1)—(D2).

Now we give the formulations of the main statements, which are similar to the corresponding
assertions of Sec. 1.3.

The optimality principle in this case is of the same form (as Proposition 1.7.1) except that the
notion “supermartingale” must be replaced by the notion “submartingale.” Moreover, in the proof of
the existence of an RCLL modification of submartingale

t

Vtm+/mﬁu,
0

we need the following additional condition.

For any real number «, let constants C'y, and B, and an integrable random variable n exist such
that

U(ax) < CqU(x) + Ban for all x € R. (1.5.4)

This condition is needed to use the Fatou lemma (see the proof of Proposition 1.7.1 here or in [61]).
Note that the function U(x) = |H — z|P for H € LP also satisfies this condition.

Theorem 1.5.1. Let V € V12, Assume that conditions (D1)—(D3) and (C*) hold. Then the value
function is a solution of the BSPDE

ANs)Vals.2))'

(8,1’) <M>s(gpx(5,l‘) +)\(S)V;C(5,;1;))

Vit ) = V(O,2) + 5 / (%(S’x)vl
0

+/g0(s,:v)dMs+m(t,x), V(T,2) = Uz). (1.5.5)
0

Moreover, a strateqy 7 is optimal if and only if the corresponding wealth process X™ is a solution of

the forward SDE (1.3.7).

The proof is similar to the proof of Theorem 1.3.1. Note that in this case the process V (t, X”*) is
from the class D as a positive submartingale.

Definition 1.5.1. We say that Y belongs to the class DP(II) if:
(i) there is a positive process ¢; from the class D such that

Y(t,z) > —¢; forall x € R,

(ii) the process
¢

Y t,a:—i—/wudSu

0
is of class D for every 7 € 1I”, where the class I1? is defined in Sec. 1.2.
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Remark 1.5.3. Note that the value function V' (¢, z) belongs to the class DP(II), since for any 7 € II?,
¢ T
0<V [tz+ /wudSu <E|U|[z+ /wudSu I (1.5.6)
0
and the right-hand-side of (1.5.6) is a uniformly integrable martingale.

Theorem 1.5.2. Let conditions (D1), (D2), (D3'), and the reverse Holder condition Rq(P),q =
p/(p — 1) hold. If the pair (Y,X) is a solution of the forward-backward equation

T
¥(he) = Uto) - [ EERE B o o0) + M Valor2)

T
/@ZJ s,x)dMs + L(T,z) — L(t,z), (1.5.7)

[ (s X) —i—Y(sX))\()
=z / Viu(s, ) dSs, (1.5.8)

and Y belongs to the class V12 N DP(II ), then such a solution is unique. Moreover, Y coincides with
the value function and X with the optimal wealth process.

Proof. The inequality
Y(s,x) < V(s z) (1.5.9)
is proved similarly to (1.3.22). Let us show the converse inequality.

Now using the Ito—Ventzell formula for Y'(¢, X,) and taking into account the fact that Y satisfies
(1.5.7) and X solves (1.5.8), we obtain that Y (¢, X},) is a local martingale, and hence it is a super-
martingale, since Y is bounded from below by the process of class D. Therefore, since Xy = x and
Y (T,z) = U(x), we have

YuX /\ + 1o (u, Xy)

Y(t,2) > E(Y(T,Xp)/F) =E U | x+ (0, %) as, | /Fe | - (1.5.10)
Applying inequalities (1.5.9) and (1.5.10) for s = O, we obtain
Y Xu) A\ (U, X,
(1, %) + 9 (W X) 46 N 30 2) < V(0,2) < BU() < oo. (1.5.11)

muX)

Condition (D3') 1mphes that

T p
Vo (u, X)) Ay + Vo (u, Xy)
E|x +/ dSy
Ym:c(ua Xu)
Y Xy )\ (U, X,
<E oy el Ve X) jo V) 4 B < oo
Yoo (u, Xy)
Therefore, by Proposition 1.5.1,
M) Yy (u, Xy) + ¥z (u, Xy) c 1P

Yoo (u7 Xu)
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and it follows from (1.5.9) and (1.5.10) that
Y(t,x) =V(t,z), (1.5.12)

hence the solution of (1.5.5) is unique and coincides with the value function.

The relations (1.5.8) and (1.5.12) imply that X satisfies Eq. (1.3.7). Since X = X™ satisfies (1.3.7),
V(t, X) is a local martingale and hence it is a martingale, because V =Y € D(II). By the optimality
principle, X is optimal; moreover, it coincides with optimal wealth process by the uniqueness of the
optimal strategy for problem (1.1.2) (see Remark 1.5.2). O

Now let us consider the case where U(z) = (z — H)?, which corresponds to the mean-variance
hedging problem (1.1.2), where H is a Fp-measurable random variable describing the net payoff at
time T of some financial instrument.

Assume that

(A*) there exists a martingale measure that satisfies the reverse Holder condition Ry (P).
Theorem 1.5.3. Let H be a square integrable Fr-measurable random variable, and let the objective

function be of the form U(zx) = |H — x|?. Then the value function of problem (1.1.2) admits the
representation

V(t,z) = Vo(t) — 2Vi(t)x + Va(t)x?, (1.5.13)
where the processes Vy(t), Vi(t), and Va(t) satisfy the following system of backward equations:

(22(5) + NS(5))

Va(t) = Va(0) + 7o)

(M)s(p2(s) + A(s)Va(s))

pa(s)dMs + La(t), V2(T) =1, (1.5.14)

(92(5) + A)Va(s)'

(s) (M)s(p1(s) + A(s)Vi(s))

+ [ p1(s)dMs + La(t), VA(T)=H, (1.5.15)

— L O O O

0
Vo) = o)+ [ TR A1) + X Vil)
0

+ [ @o(s)dM, + Lo(t), Vo(T) = H?, (1.5.16)

o

where Ly, L1, and Ly are local martingales orthogonal to M.
If a triple (Yp,Y1,Y2), where Yo € D, Y2 € D, and ¢ < Yz < C for some constants 0 < ¢ < C,
satisfies system (1.5.14)—(1.5.16), then such solution is unique and coincides with the triple (Vp, Vi, Vo).
Moreover, the optimal wealth process X satisfies the linear equation

e (RO A o [ eals) FASV(S)
X = +/ o) dS; / 7o) X dS,. (1.5.17)
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Proof. Tt is obvious that U(z) = |H — x|? satisfies conditions (D1) and (D2) and condition (D3) follows
from Proposition 1.7.3 of the Appendix, since the function U(x) = |H — x|? satisfies condition (D3')
for p = 2 and the space GQT of stochastic integrals is closed by Proposition 1.5.1. Hence there exists
an optimal strategy 7*(¢,z) and

T 2

Vita)=E ||H—o— /WZ(t,x)dSu 7

t

Since ftT 7 (t,x)dS, coincides with the orthogonal projection of H — z € L? on the closed subspace

of stochastic integrals, the optimal strategy is linear with respect to =, i.e., mi(t, x) = 70(t) + xmwk(t).
This implies that the value function V (¢, z) is of the form (1.5.13), where

o )
Vo(t) = E /wg(t)dSu —H| |F|,
L t
B T T
Vit)=E |1+ /W;(t)dsu /wg(t)dsu —-H | |7, (1.5.18)
L t t
- ;
Va(t)=E /w;(t)dsu +1] |7
t

Obviously, the function U(x) = |x— H |? satisfies all the conditions of Proposition 2.9.1 and assertion (3)
of Proposition 1.5.1 implies II = IT2, where the class II is defined in the Appendix 1.7. Therefore,
according to Proposition 2.9.1 of the Appendix, V (¢,z) is an RCLL submartingale for each z € R.
Thus, Vp(t) = V (¢,0) is an RCLL submaringale. On the other hand, for any s > ¢,

1 1
E[Va(t)|Fs] = xhllgo PE[V(t,x)U:S] > xlggo FV(S,CL‘) =Va(s) P-as.,

and Va(t) is also a submartingale with RCLL trajectories as the uniform limit of RCLL processes.
Hence Vi (t) = 2(Vo(t) + Va(t) — V(t,1)) is a special semimartingale.

Since V and Vs are submartingales,

Va(t) < E(Va(T)/F) <1, Vo(t) < E(H?/Fy),
and V (t,7) = Vo(t) — 2V4(t)x + Va(t)z? > 0 for all z € R, we have V2(t) < Vo(t)Va(t); hence
Vi(t) < BE(H?|F).

Since V (t,z) is strictly convex and V. (t,x) = 2Va(t), the process V3 is strictly positive. Moreover,
from Proposition 1.5.1 (see Remark 1.5.1), it follows that there is a constant ¢ > 0 such that Va(t) > c.

Thus, Vp and V2 belong to the class D and the process Va satisfies the two-sided inequality

c<Vo(t) < 1.

Let
t

%w—%@+&®+/wwﬂﬁ+ww
0

be the canonical decomposition of V; for ¢ = 0, 1, 2, where m; is a local martingale strongly orthogonal
to M and A; € Ay, (moreover, Ag and Ag are increasing processes). Taking

K(t) = Ao(t) + As(t) + Var(Ay)(t) + (M) + t,
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we obviously see that condition (C1) is satisfied. It is easy to see that conditions (C2)—-(C6) also
hold. By Proposition 1.5.1, X/ (s, z) is a solution of the forward equation (1.3.7), which coincides with
the linear equation (1.5.17) in this case and can be explicitly solved in terms of V;,7 = 1, 2. Therefore
condition (C*) also holds, and we may apply Theorem 1.3.1. Equating the coefficients of the quadratic
trinomial (1.5.14) in Eq. (1.3.8), we obtain that Va2, V1, and V} satisfy Egs. (1.5.14), (1.5.15), and
(1.5.16), respectively. The boundary conditions for these equations follow from Eq. (1.5.18).

Proof of uniqueness. If a triple (Yp, Y1,Y2) is a solution of system (1.5.14)—(1.5.16), then the function

Y (t,x) = Yo(t)—2Y1(t)x+Ya(t)x? is a solution of (1.3.1), (1.3.2). By assertion (3) of Proposition 1.5.1,

the process ( fg 7rud5’u)2 is of class D. Since Y{2(t) € D, the Hélder inequality implies that the process

Yl(t)(fg WudSu) is of class D. Therefore, Y(t, T+ fg WudSu) belongs to the class D for every 7 € I1,.
It is easy to see that Ya(t) > ¢ implies

1
C

for all x € R. Thus, Y belongs to the class D(II), and Y (t,z) = V(¢t,z) by Theorem 1.5.2, which
implies Y; =V, for i = 0,1, 2. O

Remark 1.5.4. In a similar way, one can show that for U(z) = |H — z|P, the optimal strategy is also
linear with respect to x. Moreover if p is even, i.e., p = 2n, then the value function is a polynomial in

P :
z, e, V(t,z) = > Vj(t)2’ and (1.3.1) and (1.3.2) are transformed into a system of backward SDEs
j=0

of order 2n + 1 for the processes V;(t).

Remark 1.5.5. Equation (1.5.15) is linear with respect to (V4,p1), and V; is explicitly expressed in
terms of (Va, ¢2) as follows:

Vi(t)=E (H&T (— (% + A) ~S) /}"t> : (1.5.19)

1.5.1. Comparison of the direct and dual approaches. Now we give the relationship between
Eq. (1.5.14) and the known feedback form solution of problem (1.1.2) expressed in terms of the
variance-optimal martingale measure (see, e.g., [36]). For simplicity, we do this under the assumption
of continuity of the filtration F'. To this end, recall the notion of the variance-optimal martingale
measure.

The variance-optimal martingale measure is a signed measure such that its density with respect
to the reference measure P is of minimal L?-norm (see [17, 86] for the precise definition and related
results). According to [17, 86], the variance-optimal martingale measure Q* always exists, and it is a
probability measure equivalent to P if S is continuous and if the subset M of equivalent martingale
measures with square integrable densities is nonempty. Moreover, as was shown in [17], if @* is the
variance-optimal martingale measure, then the density Z7 of Q* with respect to the basic measure P
can be written as a constant plus a stochastic integral of S, and the density process Z; defined by
E*(Zr/F:) admits the same representation

t
Zr = E*Zp + / h:dsS,
0

for a predictable S-integrable process h*.
Let V! = E*(H/F;) and

t
VH = E*H + /gfdsu + LA (P X) =0, (1.5.20)
0
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be the Galtchouk—Kunita—Watanabe decomposition of VtH with respect to the variance-optimal mar-
tingale measure Q*.

It was shown in [36] (see also [37, 73, 79, 86]) that the optimal mean-variance hedging strategy is
expressed in the feedback form

t

mr=¢f — 2L ‘/tH—C—/ﬂ'ZdSu
0

Integrating both sides with respect to dS,, we obtain the following linear equation for the optimal
wealth process:

¢
x h n
XF —z+/ [5 VH] dSs + Z*X” dSs. (1.5.21)
0
To show that Egs. (1.5.21) and (1.5.17) are equivalent, we need the following assertion proved
n [57, 61]. Under the above assumptions, the variance-optimal martingale measure is a solution of

the optimization problem

f EZ
QlenMe 7(Q).

Let

- (i)

be the value process of the problem.
The following proposition is proved in Part 2. It is a consequnce of Theorem 2.3.1.

Proposition 1.5.2. Assume that the filtration F is continuous and condition (A*) holds. Then the
value process V' is a unique solution of the semimartingale backward equation

S

t t
1
/ (VaXid — 22X, d(M)ps) + vd(M)s + /(pdes +my, Vp=1, (1.5.22)
0 0

in the class of semimartingales Y satisfying the two-sided inequality
c<Y; <C. (1.5.23)

Moreover, the martingale measure Q* is variance-optimal if and only if the corresponding density is
represented as

: -
Zr =E&r —/)\SdMs - / VdmS . (1.5.24)
0 o °
or, equivalently, if and only if
Zh = & ((% _ /\) : S) . (1.5.25)

The following proposition shows that Egs. (1.5.21) and (1.5.17) are equivalent.

Proposition 1.5.3. Assume that the filtration F is continuous and condition (A*) holds. Then

L ke A0
YOS wa z e Y way

and the optimal wealth process X* satisfies Eq. (1.4.9).
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Proof. If we write the It6 formula for 1/V5(t), taking into account the fact that Va(t) satisfies (1.5.14),
we obtain that the semimartingale 1/Va(t) satisfies Eq. (1.5.22) with ¢ = —po/VZ, m = —1/V$ - L,
and by the uniqueness of solution (since ¢ < V5(t) < 1), we have

1 o) ¢a(t)

YOS5m0 (1.5.26)

It follows from (1.5.25) that

z; = B'(2i/F) = V& (2= A) - 9)

h;*—%(%—xt)st((%—A).s).

Therefore, (1.5.22) and (1.5.23) imply

and

hi _ o _ pa(t) + A(D)Va(?)
7T A\ = 0 . (1.5.27)
Now let us show that " OV
p1(t + A)Vi(t B h%k
Vat) —fH(t)—Z—ZVtH
From (1.5.21), we have
VE@l) = E (HEtT (—)\ M- % . m) /}"t> ,
Therefore, (1.5.19), (1.5.22), and the relation
oo o) e (7))
imply
E((&—N)-S Er((& =N -9)/F
VH(t) = CVI(t)gt(—()E"/M _)% .)m) = c%(t)E;(T_(A(YM _)% )Tg) =iV (t) = “28

and hence Vi (t) = VH (1) Va(t).
Using the formula of integration by parts and equating the martingale parts of V4 (¢) and V' (t)Va(t),
we obtain that p%-a.e.,
p1(t) = 2V (1) + E7 (VR (1)
Therefore, (1.5.26), (1.5.27), and the latter equality imply
p1(t) FAOVA(E) 2tV () + 7 () Va(t) + A(H)VA(H)

Va(t) B Va(t)

=€) = VIO + AV D) =€) - VL

and hence (1.5.21) and (1.5.17) are equivalent. O

Remark 1.5.6. Proposition 1.5.2 holds without assumption on the continuity of the filtration. To
this end, one needs to apply [60, Theorem 1] instead of Proposition 1.5.1.

Remark 1.5.7. The condition V € V!2 also holds in several other particular cases (e.g., in the case
of exponential hedging where U(z) = exp(H —x)), but it is important to derive the required properties
of the value function from the assumptions on the basic objects U and X, which we intend to do in
the future.
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Now let us consider the optimization problem

T 2
minimize E | ¢ + /WSdSS -H (1.5.28)
0
over all ¢ € R and 7 € II. Then for any ¢ € R,
T 2 T 2
Elc+ /ﬂ'SdSs —H| >FE|c+ /W:(c)dSs —H| =V(0,¢)=Vy(0)—2V1(0)+c*V5(0). (1.5.29)

0 0

The infinum on the right-hand side of (1.5.29) is attained for ¢ = V;(0)/V2(0). It follows from
Proposition 1.5.2 that
Vi(0)
V2(0)
where E* is the expectation with respect to the variance-optimal martingale measure.
Therefore,

=V = E*H,

T 2 T 2
E C+/7T5dSS—H >F E*H—i—/ﬂ'stS—H
0 0

for all ¢ and 7. Thus, if (¢*,7*) is a solution of (1.5.28), then ¢* = E*H, which was proved by
Schweizer in [86].

1.6. Stochastic Volatility Models

The main goal of this section is to establish the connection between the semimartingale backward
equation for the value process and the classical Bellman equation for the value function related to
the utility maximization problem in the case of Markov diffusion processes. For Markov diffusion
models, the value process can be represented as a space-transformation of an asset price process by
the value function. The problem is to establish the differentiability properties of the value function
from the fact that the value process satisfies the corresponding BSDE. The role of the bridge between
these equations is played by the statements describing all invariant space-transformations of diffusion
processes studied by Chitashvili and Mania [8] and formulated here in the Appendix in a suitable case
adapted to financial market models. This approach allows us to prove that there exists a solution (in
a certain sense) of the Bellman equation and that this solution is differentiable (in a generalized sense)
under mild assumptions on the model coefficients. Although, in our case, the generalized derivative
in t and the second-order generalized derivatives in x do not separately exist in general (we prove the
existence of a generalized L-operator), these derivatives do not enter the construction of the optimal
strategy explicitly given in terms of the first-order derivatives of the value function. It should be
noted that the theory of viscosity solutions is usually applied to such problems (see, e.g., El Karoui et
al. (1997)), but the differentiability of the value function is in general beyond the framework of this
method.

We assume that the dynamics of the asset price process is determined by the following system of
stochastic differential equations:

dS; = diag(St)(u(t, St, Rt)dt + Ul(t, St, Rt)thl), (161)
dRy =b(t, Sy, Ry)dt + 6(t, Sy, Ry)dW} + o (t, Sy, Ry)dWi, (1.6.2)
where W = (W', ... W") is the n-dimensional standard Brownian motion defined on a complete

probability space (€2, F, P) equipped with the P- augmented filtration generated by W, F = (Fj,t €
[0,T]). The d- and (n — d)-dimensional Brownian motions are denoted by W' = (W', ... W%) and
Wt = (Wt ... W™), respectively.
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Assume that the following conditions hold.

(S1) the coefficients y, b, §, o', and o' are measurable and bounded;
(S2) the (n x n)-matrix function oo’ is uniformly elliptic, i.e., there is a constant ¢ > 0 such that

(o(t, 5. )N 0(t, 5,7)A) > clAP
forallt € (0,7, s € RY, r € R" 4, and A € R", where o is defined by

al(t,s,r) 0
ottsn) = (G o))
(S3) system (1.6.1), (1.6.2) admits a unique strong solution.

Straightforward calculations yield that in this case
A = diag(S) "' (o'o") ",
where o/ denotes the transposition of o,
d{M)y
dt

is the 14 process, # = (') ™'y is the market price of risk, and

= diag(Sy)(c'a")(t, Sy, Ry) diag(S;)

t
(- M), = / 164 %ds
0

is the mean variance tradeoff.

By the results of Krylov (1980), for sufficiently smooth coefficients yu, o, b, and d, the value function
V(t,z) can be represented as v(t,x, St, R¢) with a sufficiently smooth function v(¢,z,s,r), t € [0,T],
rEeER, s € le_, r € R"¢. Hence, by Eq. (1.3.1) and the It6 formula, we obtain that v(t,z,s,)
satisfies the partial differential equation

Lo(t,x,s, 1)+ vs(t, z,s,7) diag(s)u(t, s,r) + v.(t, z,s,7)b(t,s,7)
~ 1vsa(t, 2,8,7) + diag(s) Yo' (t,s,7) 1 (t, 8, 7)vpa(t, 2, 5,7) + N (t, 5,7, (t, , s,m)|2,
2 Vga(t, 2, 8,7)

. (1.6.3)

(T, z,s,1r) =U(x), (1.6.4)
which coincides with the Bellman equation of the optimization problem (1.1.3), (1.6.1), (1.6.2) for a
controlled Markov process. Moreover, the optimal strategy is
Ve (t, x, 5,7) + diag(s) Lot (¢, s,7) 718 (t, 5, 7)o (b, 2, 8,7) + N (L, 5, 7)va(t, 2, 5,7)

*
t p—
Tt @, 5,7) Ve (t, 2, 8,7)

In this section, we study the solvability of (1.6.3), (1.6.4) in the particular cases of utility functions
but with weaker conditions on the coefficients.
First, we consider the case of a power utility.

Theorem 1.6.1. Let conditions (S1)—(S3) be satisfied. Then the value function v(t,s,r) admits all
first-order generalized derivatives vy and v, and the generalized L-operator

1 / ’
Lv =1+ 3 tr(diag(s)a'a’ (t,s,7) diag(s)vss + tr(da’ (t, 7, s) diag(s)vs,)

+ %tr((dé'(t, $,1) 4+ otot (t, 5, 7)) vrer)
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(in the sense of Definition 1.7.1 of the Appendiz) is a unique bounded solution of the equation

Lo(t,s,r) +vs(t,s,r) diag(s)u(t, s, ) + v.(t, s,7)'b(t, s,7)

(
_ g lvs(t, s,7) + diag(s)*lgl’(t, s,r)lft’(t, s,)?“)vr(t, s, 1)+ A(t, s, r)v(t, s,'r)|gt dtdsdrac. (1.6.5)
v(t,s,r

with the boundary condition
v(T,s,r) =1 (1.6.6)

Moreover, the optimal strategy is defined as

t
w (o) = (=) (Atsr) + 2000 ) o
and the optimal wealth process is of the form
x _ _ (¥ .
X; =&, ((1 q) (U +/\) 5),
where

o(t,s,r) =vs(t,s,r) + diag(s)_lal, (t, s, r)_lél(t, s, m)or(t, s,1).

Proof. Existence. Since (S, R) is a Markov process, the feedback controls are sufficient, and the value
process is expressed by

‘/t = U(t, St, Rt) a.s., (167)
where
T p
v(t,s,r) = sup F 1+ /Trudsu |Se=s,R=r
welly

t

(one can show this fact, e.g., similarly to [8]).
Since the value process satisfies Eq. (1.4.3), it is an Itd process. From

E(-N-M)=¢& —/9udw;
0

and the boundedness of 6 it follows that £(—A\ - M) satisfies the reverse Holder inequality. Thus, by
the Holder inequality,

T p
Vi = esssup F 1+ /ﬂudsu /Fi

welly f

is bounded, and its martingale part is in BMO by [56]. Hence the finite variation part of V; is of
integrable variation, and from (1.6.7) we see that v(t, Sy, R;) is an Itd process of the form (1.7.14)
(Appendix). Therefore, Proposition 1.7.4 of the Appendix implies that the function v(t, s, ) admits a
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generalized L-operator and all first-order generalized derivatives, and it can be represented as follows:

t
(t St,Rt = Vo +/ Us U SwR diag(Su)Ul(u, SuaRu)
0
t
0y (1, S, B8t Sup, Ra))dW! + / 00 (1 Sy B 0 (1, S, R)dIW -
0

t ¢
—|—/£v(u,5’u,R ds+/ vs(u, Sy, Ry) diag(Xs)pu(u, Sy, Ry)
0 0

+ vy (w, Suy Ru)b(u, Sy, Ru))du, (1.6.8)

where LV is the generalized L-operator.

On the other hand, the value process is a solution of (1.4.3), and by the uniqueness of the canonical
decomposition of semimartingales, comparing the martingale parts of (1.6.8) and (1.4.3), we have that
dt x dP-a.e.

Yy = Us(t, St, Rt) + diag(St)flal, (t, St, Rt)il(s/(t, St, Rt)vr(t, St, Rt), (169)
o = o' (t, S, R)v(t, Sp, Ry). (1.6.10)

Then, equating the processes of bounded variation of the equations and taking into account (1.6.8)
and (1.6.9), we derive that

.Cv (u, Suy Ry) + vs(u, Sy, Ry) diag(Sy) pu(u, Sy, Ry) + vp(u, Suy Ry)b(u, Sy, Ru))du

o\“

/ - SWR ) d (1.6.11)
which gives that v(¢, s, r) solves the Bellman equation (1.6.5).

Uniqueness. Let (t,s,7) be a bounded positive solution of (1.6.5), (1.6.6) from the class VI.
Then using the generalized It6 formula (Proposition 1.7.1 of the Appendix) and Eq. (1.6.5), we obtain
that o(t, S¢, Rt) is a solution of (1.4.3) and hence 0(t, S¢, Rt) coincides with the value process v by
Theorem 1.4.1. Therefore, 0(t, S, Ry) = v(t, Sy, Ry)-a.s. and © = v, dt dx dy-a.e. O

Now we consider extreme cases for the stochastic volatility models. In the first extreme case, we
assume that the coefficients p and o! do not contain the variable 7. Hence 6 and X are also independent
of the variable r and Eq. (2.4.19) takes the form

dS; = diag(Sy)(u(t, Sy)dt + o'(t, Sp)dW}). (1.6.12)
Let S(q) be the 1t6 process governed by SDE
dSi(q) = diag(Si(q))o" (t, Si(q)) (AW + ¢O(t, Si(q))dt), (1.6.13)

where dW/ + ¢f(t, S)dt is the Brownian motion with respect to measure

dQ(q) = Er(—q / 0, dw'))dP.
0
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Thus, by Theorem 1.4.1, the value process is represented as

Vi = o(t, Si(q)) = (3(t, Se(q)) ™7,

where
1 T
i(t,s) = E?@ [ exp % / |0ul*du | S¢(q) = s
t

Therefore, we have the following assertion.

Corollary 1.6.1. Let conditions (S1)—(S3) hold for the coefficients of system (1.6.13). Then the value
1

process can be represented as (0(t, Si(q)) =4, where 0(t, s) is the classical solution of the linear partial
differential equation

Bt )+ %tr(diag(s)alol/ (t, ) diag(s)bss (£, 5)) + q(q; Yot ) 20(t, 5) = 0, (1.6.14)

5(T,s) = 1. (1.6.15)

The second extreme case corresponds to the stochastic volatility model of the form
dSy = diag(Sy) (u(t, Sp, Re)dt + o' (t, Sy, Re)dW}),
dRy = b(t, Ry)dt 4+ o (t, Ry)dW;.

Corollary 1.6.2. Let conditions (S1)—(S3) hold for the coefficients of system (1.6.16) and 0 be in-
dependent of the variable s. Then the value process of the optimization problem (1.4.1) has the form
Vi = v(t, Rt), where

(1.6.16)

T
v(t,r) = E | exp —g/\&(u,Ru)\zdu |Ry =r
t

satisfies the linear partial differential equation
ve(t,r) + %tr(aJ‘JJ‘/ (t, ) (t, 7)) + v (t,7)'b(t, 1) — g\@(t, r)|2v(t,7) =0, (1.6.17)
o(T,r) = 1. (1.6.18)
A similar result can be obtained for the exponential utility function.

Proposition 1.6.1. Let conditions (S1)—(S3) hold and H = g(St,Rr) for a continuous bounded
function g(s,r). Then the value function v(t,s,r) for problem (1.4.10) admits all first-order generalized
derivatives vy and v, and the generalized L-operator is a unique bounded solution of the equation

Lo(t,s,r) + vs(t, s, r) diag(s)u(t, s, r) + v.(t, s,7) b(t, s, r)
_ Lus(t s,7) + diag(s)"'o"' (¢, s, 1) N0t s, r)or(t s, ) + At s, )o(t s, 73,

dtdsdr-a.e.
2 v(t,s,r) sarma.c
(1.6.19)
with the boundary condition
o(T, s,7) = e 796, (1.6.20)

Moreover, the optimal strategy is defined as

1 t
7 (t,x, 8,7) = § ()\(t, s,r) + M) T,

where /
o(t5,7) = vt 5,7) + diag(s) 10" (¢, 5,7) 710 (b5, ) (F, 5, 7)
and the optimal wealth process is defined by (1.4.15).
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In the case of logarithmic utility, from Theorem 1.4.2 and the Feynmann—Kac formula, we immedi-
ately obtain the following assertion.

Proposition 1.6.2. Let conditions (S1)—(S3) hold and U(x) = Inx. Then the value function can be
represented as v(t, Sy, Ry), where v(t, s, r) is a unique solution of the linear partial differential equation

Lo(t,s,r) +vs(t,s,r) diag(s)u(t, s,r) + v.(t,s,7)b(t, s,7) + |0(t, s,7)|?v(t, s,7) = 0, (1.6.21)
o(T,s,r)=1 (1.6.22)

and the optimal strategy is w*(t,x,s,r) = A(t, s,r)z.
Now we specify the result presented in Theorem 1.5.1 in the case of the stochastic volatility model

given by (2.4.19) and (2.4.20). For simplicity, we consider the case where 6 = 0 and assume that
H = g(St, Ry) for some continuous bounded g. In this case, the value process has the form

V(t) = UQ(t, St, Rt)a:2 — 2v; (t, St, Rt)l’ + ’Uo(t, St, Rt).
The following assertion can be proved similarly to Theorem 1.4.3.

Theorem 1.6.2. Let conditions (S1)—(S3) hold. Then the value function v(t,s,r) of problem (1.1.2)
admits all first-order generalized derivatives vs and vy, and the generalized L-operator (in the sense
of Definition 1.7.1 of the Appendix) is a unique solution of the system of partial differential equations

£'U2(t7 S, T) + U?S(tv S, T)/ dlag(s),u(t, S, T) + UQT(t7 S, T)/b(t, S, T)

‘UQ (t7 S, T) + )‘(tv S, T)UQ(tv S, T)‘Q
_ vB5r) gt ds dr-a.e., (1.6.23)
U2(t7 S, ’F)

vao(T,s,1) =1, (1.6.24)

Ly (t7 S, T) + vls(tv S, 7’)/ dlag(s)u(t, S, T) + Ulr(t7 S, T)/b(t, S, T)

(vls(t, $,17) + Aty s, r)vr(t, s,7),v25(t, 8,7) + A(t, 8,7)va2(t, s, T))V(

t,sr)

_ , 1.6.25
UZ(t7 S, T‘) ( )
v (T,s,1)=g(s,1), (1.6.26)
Lug(t, s, 1)+ vos(t, s, ) diag(s)u(t, s,7) + vo,(t, s,7) b(t, s,7)
|U1 (t7 S, T) + )\(t’ S, T)Ul (ta S, T)|2
_ vtsir) (1.6.27)
U2(ta S,T)
vo(T, s,7) = g(s,7)2. (1.6.28)
Moreover, the optimal strategy has the form
ot 5 1) = vis(t, s,7) + AL s, r)uilt, s, 1) wvas(t, s, 1) + AL, s, m)va(l, S’T)x
V2 (t7 S, 7’) UQ(t7 S, 7’)
1.7. Appendix
A. Let us show that the family
T
AT=E|U|z+ /WudSu |\Fe |, melly(m,t,T) (1.7.1)
0

satisfies the e-lattice property (with e = 0) for any ¢ € [0, 7] and 7. II(7,¢,T) is the set of predictable
S-integrable processes m from I, such that

Tg = ﬁsl(0§s<t)-

We write I1(¢, T') instead of II(0, ¢, T") for the class of strategies corresponding to 7 = 0 up to time ¢.
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We need to show that for any 7!, 72 € II(7,t,T), there exists a strategy 7 € II(7,¢,T) such that
AT = max(AT ,AT). (1.7.2)
For any 7! and 72, define the set
B={w:AT <A},
and let
s = Tsl(o<sct) + Mo IBI(s>0) + Mol pel(s5p).

Obviously, 7 € Il (respectively, m € II?) if 7, 7!, 72 € II, (respectively, IIP).
Since B is F;—measurable, we have

T T
Af=FE|U m+/7rud5u |F | = FE (U T+ 7rud5’u—|—IB/7r dSy —|—IBc/7T s, | |F
0 t

| t
|

T
=E|U x—i—/ﬂudSu 7| VE|U x+/7r3dsu 7|,
0 0

t

T
=IgE|U |z + / 7udSy + [ wldS, | |Fi | + Ip-E r+ [ 7udS, + / m2dS, | |F:
t

*\H

= r+ wdSu

/
()

T
|ft +IgcE|U x+/7rid5u ft)
0

and hence (1.7.2) is satisfied.

Proposition 1.7.1 (optimality principle). Let condition (B1) hold.
(a) For allz € R, m €11, and s € [0,T], the process
t
\% t,x—i—/ﬂudSu ,t>s
s

is a supermartingale, admitting an RCLL modification.
(b) 7*(s,x) is optimal if and only if
¢
v t,:r—l—/ﬂ;dSu ,t>s
S

s a martingale.
(c) For all s <t,
¢

V(s,z) = esssup E | V t,.’L’—l—/ﬂ'udSu |Fs | - (1.7.3)

well(s,T)
s

Proof. (a) For simplicity, we take s to be equal to zero. Let us show that

t
YV, =V t,x—i—/frudSu
0
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is a supermartingale for all z and 7. Since

t T
Y;=esssup B (U |z + /frudSu + [ m,dSy | |F
well(t,T) 0 f

using the lattice property of family (1.7.1) from [26, Lemma 16.A.5], we have

T

E(Y;|Fs) =FE | esssup E | U x+/ﬁud5u+/7rud5u |F: | | Fs
well(t,T)
0 t
T T
=F| esssup E|U a;—i—/ﬂudSu |Fi | | Fs | = esssup E (U x+/7rudSu | Fs
rEl(7,4,T) rETI(7,4,T)
0 0
1.7.4)
Obviously, II(7,t,T) C II(7, s, T) for s < t, which implies the inequality
T
esssup E | U J:+/7rud5u | Fs
rell(7,t,T)
0
T s
< esssup E|U x—}—/ﬂ'udSu |Fe | =V s,:n—i—/frudSu . (1.7.5)
well(7,s,T) 0 0

Thus, (1.7.4) and (1.7.5) imply E(Y:/Fs) < Y.
(b) If

t
V t,:c+/7r:;d3u
0

is a martingale, then
T

T T
inf EU :U+/7Tud5u =V(0,z) = EV(0,z) = EV T,x—i—/ﬂZdS’u =FEU .1‘—1—/71‘;6[5“ ,
0

well

0 0

and hence 7* is optimal.
Conversely, if 7* is optimal, then

T T T
EV(0,2) = sup EU x—i—/ﬂudSu = FEU x—i—/ﬂZdSu =FEV T,x—i—/deSu
well 0 0 0
Since
¢
Vite+ /WZdSu

0
is a supermartingale, the latter equality implies that this process is a martingale (this follows from [51,
Lemma 6.6]).

(c) Since

t
n:Vtw+/Mwu

S
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is a supermartingale, for any 7 € II(s,T), z € R, and ¢t > s, we have
t

V(S,ZE) Z ElV t,-T + /ﬁ'uds’u |fs )

s

and hence
t

V(s,z) < esssup E | V t,x—l—/frudSu |Fs | - (1.7.6)

well(s,T)
s

On the other hand, for any 7,

¢ ¢
E|V t,a:—i—/frudSu esssup £ | U x—i—/frudSu—i-/ﬂudSu | Fe | Fs
well(t,T)
E ( TudSy | |Fi | Fs | =E (U x+/ﬁud5u | Fs
Taking esssup of both parts we obtain
esssup B | V t,w+ ﬂudS > esssup B (U a:—i—/frudSu |Fs | =V(s,z). (1.7.7)
well(s,T) 7ell(s,T) ]

Thus (1.7.3) follows from (1.7.6) and (1.7.7).
Let us show now that the process

t
17 t,x—l—/frudSu
0

admits an RCLL modification for all # € R and 7 € II. According to [51, Theorem 3.1], it suffices to

prove that the function
t

EV t,x+/ﬁudSu , telo,T],
0

is right-continuous for every z € R.
Let (t,,n > 1) be a sequence of positive numbers such that ¢, | t as n — oco. Since

t
1% t,x+/7~rudsu
0

is a supermartingale, we have

t tn

EV [tz + /ﬁudSu > lim EV [ t,,z+ /frudsu : (1.7.8)
n—oo
0 0
Let us show the converse inequality. For s = 0, (1.7.4) takes the form
t T

EV t,:p—s—/frudSu = max EU x—i—/wudSu : (1.7.9)
5 ﬂ'EH( 4,1 9
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Therefore, for any € > 0, there exists a strategy ¢ such that
t T
EV [t,z+ /frudSu < EU x—i—/frudSu + /wgdsu +e. (1.7.10)
0 t
Let us define the sequence (7", n > 1) of strategies
T = sl (s<t,) + Tl (s>t,,)-
Using inequality (1.7.10), the continuity of U (it follows from (B1) and (B2)), the convergence of the
stochastic integrals, and the Fatou lemma, we have
t t T
EV t,x—i—/ﬁudSu < EU x—ir/frudSu—i—/deSu +e
0 0 t
tn T
= F [lmU x+/ﬁudSu+/7ridSu +e€
! 0 tn
tn T

> lim E[E|U|x+ o dSy | /Ft, +e

o
Nl
S
- Sy
"
+
;\

n—o0
n T
> lim F esssup B | U ac—i—/frudSu—i-/wudSu /Fi, + €
n—0o0 Tl (7,tn,T) 3 e
tn
= lim EV tn,x+/frud5u +e (1.7.11)
e 0
Since ¢ is an arbitrary positive number, from (1.7.11) we obtain
t tn
EV t,x+/7~rudsu < lim EV tn,x+/ﬁud5u , (1.7.12)
0 e 0
which, together with (1.7.9), implies that the function
t
EV t,:c+/frudsu , telo,T],
0
is right-continuous. O

B. Let (K(t),t € R) be a strictly increasing continuous function. Define

Ts(e) =inf{t > s: K; — Ky > ¢}, os(e) =inf{t >0: K; — K; > —¢}.
Obviously, K, .y = Ks +¢ and K (o) = K; — €.
Lemma 1.7.1. For any K-integrable function F,

/%/‘F(t)—F(s)‘dK(t)dK(s)HO as e — 0.
R s
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Proof. First, assume that F is continuous and F(t) = 0 if |¢| > T for some T > 0. Then

1 S

_ — <
/ . / |F(s) = F(t)|dKdK, < /tg?i;
R s

R

(s) — F(t)|dK;

<  max ’F(s)—F(t)‘ ase — 0
0<s—t<r7—t

since F' is uniformly continuous on [-7,7T] and 77 —t — 0 as € — 0.
On the other hand,

fR % fsTs F(s

(t)|dKdK < |Flpigar) + Jp = fs F(t)|dKdK

—_

t
’F‘Ll(R,dK) +/—/F ‘dK th < Q‘F‘Ll(R dK) (1713)

™

since by the Fubini theorem

[ [irwarar. = [ [voasipolarar
R s R R

//|F )| dEdE; < /|F V(K — Koz )dK; < el Pl are).
R of

Using inequality (1.7.13), we can approximate each function F' € L'(R, dK) by compactly supported
continuous functions. O

Corollary 1.7.1. For F € L'(R,dK),

/ /F (t)dKy — F(s)|dKs — 0 ase — 0.

If

v
/F(s)sz =0 dK-a.s.,
t

then F; = 0 dK-a.s.

Proposition 1.7.2. Let (f(t,), (t,x) € R?) and (X (t,s),t > s) be measurable functions such that the
family x — f(-,x) is continuous in L' (R, dK), and let X (s,t) be a continuous function on {(t,s);t > s}
with X (s,s) = x for all s € R and some x € R. Then

/ é/f(t,X(t,s))th—f(s,x) dKs; — 0 ase— 0.

R
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Proof. Denote by b the expression max, | X (t,s) — z|. Then
0§ <s<
. s ) t
2 [lexs) - ssoldrcar, < [ 2 [ 50X - 1t dK.dx
R s R of

+/§/\f(t,m)—f(s,x)|thsz.
R s

The first term in the latter expression can be estimated by

f(t)x) - f(tay)‘th'

max
|z —y|<bF

Since X (-,-) is continuous, bf — 0 uniformly on each [-7,7T] as ¢ — 0, and by the continuity of the
family f(-,x) € L', we obtain that the first summand tends to zero. The second summand tends to
zero by Lemma 1.7.1. U

Remark 1.7.1. If the functions f and K are defined on the subsets [0, 7] x R and [0, 7], respectively,
then we can consider the functions

F ) fltx), (t,x) €[0,T xR,
f(t,z) = {0’ () € 0.7] x B

K(t), te[0,7],
K(t) = { t + K(0), t <0,

KT)+t-T, t>T
and further we can use Proposition 1.7.2.

C. Assume that the following condition holds:
(D3') there exist v > 0, a positive integrable random variable £, and p > 1 such that U(z) > y|z[P —&.
Note that the function U(z) = |H — z|P for H € LP satisfies (D3'), as well as conditions (D1)—(D2)
of Sec. 1.5.
Proposition 1.7.3. Assume that one of the assertions of Proposition 1.2.1 and conditions (D1),
(D2), and (D3') are satisfied. Then for any t and x, the problem
T

essiﬁle U :B+/7rsts /Fi
e
t

admits a unique solution with a p-integrable wealth process.
Proof. By the lattice property (see Sec. 1.7), we can choose a sequence 7" € II such that
T
Elv|z+ / AN AR
t
By condition (B1), one can choose a sequence 7, such that
T
elulest / wnas, | 7| < BU@)/F)
t

for all n > 1. Thus
T

EU m—i—/frg‘dSS — EV(t,z) asn — oo.

t
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By condition (B3'), there exists R > 0 such that
T p T
7Em+/ﬁgdss <EU x+/7€gdss + E¢ < R.
t t

Hence x+ ftT 7dS, is a bounded sequence in the space LP, and we can assume that it weakly converges.
By the Masure lemma (see, e.g., [25]), there exists a sequence of strategies

q(n)
"t = Z QT
k=n
where
(n)
Q(n) >n, Z Qfn = ]-a (0979 > 07
k=n

such that
T

T
/ﬂ?dSS —>/7r:dSS
t

t
in LP for some 7* € II. We can assume also that
T

T
/77? dSs — /7’[’: dSs P-as.
t t
By the convexity of U, we have
T T
E|U x—i—/w?dSS IRl <EB|U a:—i—/fr?dSs I
t t
Therefore,

n—od n—oo

T T
lim E (U a:+/7r§dss | 7| < lim E |U x-i—/ dSs | | Fe| = V(¢ ).
t t

On the other hand, the Fatou lemma implies that

T T
E U :L“+/7T;kd53 |F| < lim E |U CE—{—/W‘?dSS | F P-a.s.
t e t
Therefore, 7 is optimal and 7* is unique by Remark 1.2.3. O

Finally, we prove the following lemma used in the proof of Proposition 1.3.1.
Lemma 1.7.2. Let by be a predictable process and S be a continuous semimartingale. Denote by 11,
the space of all predictable S-integrable processes m such that for all t € [0,T],
t
T+ /WudSu > 0.
0
Then P-a.s. for all t € [0,T],

inf |y — by = 0.
e = b
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Proof. Taking by = btI(jp,|<n), We have

essinf |m — by < ess 1nf | — bF| + 0] — by
welly well

Therefore, without loss of generality, we may assume that b is S-integrable. Let 7 be a predictable
stopping time. Denote by (7,,n > 1) the predicted sequence of stopping times.
For each n > 1, let us define the strategy

1
TI';L = th(Tn,T](t)gt (EbI(Tn,T] . S) .

Obviously, ©" belongs to 11, for all n > 1.
Indeed,

t t
1 1
x+ /ﬂudsu =x+ x/(‘,'u ( (7] S) byl (s, 7)(u)dS, = x& (—bI(Tn y S) > 0.
x x '
0

0
Since 77 = ngr(%bI(Tn,T] -S) and S is continuous, we have that P-a.s.,
T — by asn — oo.
Denote by v; the expression ess 1iqu | — be|. Then
melly
vr = (essinf[m —bel) < (I = bel), = |7 —br| = 0

as n — o00. By the arbitrariness of n and 7, we obtain that P-a.s., 7, = 0 for any predictable stopping
time 7. Therefore v, is indistinguishable from zero. O

Corollary 1.7.2. Let K be an increasing process. Then

essinf |m, — b =0 pt

welly
D. Now we introduce some notions, which allow us to present an application of Theorem 1.3.1 to the
Markov case.

Consider the system of stochastic differential equations (2.4.19), (2.4.20) and assume that condi-
tions (B1) and (B2) are satisfied. Under these conditions, there exists a unique weak solution of
(2.4.19), (2.4.20), which is a Markov process, and its transition probability function admits a den-
sity p(s, (zo,%0), t, (x,y)) with respect to the Lebesgue measure. We use the notation p(t,z,y) =
p(0, (z0,40),t, (x,y)) for the fixed initial condition Sy = xo, Ry = yo.

Introduce the measure g on the space ([0,7] x R x R~ B([0,T] x R% x R*=9)):

p(dt, dx, dy) = p(t, x,y)dt dx dy.

Let C1? be the class of functions f continuously differentiable at ¢ and twice differentiable at z,y on
[0,7] x RY x R*=4. For functions f € C12, the L operator is defined as

Lf=fi+tr <% diag(z)o'o” diag(x)fm> + tr(60" diag(x) fzy) + tr (%(55/ + O'J‘O'J‘/)fyy> ,

where f;, fiz, foy, and fy, are partial derivatives of the function f, for which we use the matrix
notation.
Definition 1.7.1. We say that a function f = (f(t,z,y), ,x € RY, y € R"9) belongs to the

t>0
class VML if there exists a sequence of functions (f™,n > 1) from C'? and measurable ju-integrable

331



functions fy,(i <d), fy,(d <j <n)and (Lf) such that
ESUP ‘fn(S,S&Rs) — flu, Su,Ru)‘ —0 asn— oo,

J[ - Gnsww - .o stus dody) >0, i <d,

[0,T]xRE xRn—d

2 .
J[ Gptsom) = sy sm.0) nlds,dody) ~ 0, d<j<n

[0,T]xRE xR~

/ / ILf™(5,2,y) — (L) (5,2, )| u(ds, da, dy) — 0
[0,T]xRd xRn—d
as n — oQ.

Now we formulate the statement proved by Chitashvili and Mania [8] in the case convenient for our

purposes.

Proposition 1.7.4. Let conditions (B1)-(B2) hold and f(t,S:, Rt) be a bounded process.
process (f(t,St, Re),t € [0,T)) is an Ité process of the form
¢

t

f(t, S, Ry) = f(O,So,Ro)+/g(s,w)dWs+/a(s,w)dS a.s.
0 0

with

¢
E/gQSwds<oo E/\ (s,w)|ds < 0o
0

if and only if f belongs to VL. Moreover the process f(t, Sy, Rt) admits the decomposition

M&

t
F(t, S0 Re) = (0, So, Ro) + /f 5, S5, Ry)dS!
0

I
A

7

t
+Z/fy (s, Ss, Rs)dR] + /Lf (s, S5, Rs)ds.
0

j=d+17Y
Remark 1.7.2. For continuous functions f € VHL , the condition

Sup }f"(t,x,y) - f(t')xay)‘ —0 asn— o0
(tz,y)eD

Then the

(1.7.14)

(1.7.15)

(1.7.16)

for every compact set D € [0, 7] x Ri x R"~? can be used instead of the first relation in Definition 1.7.1.
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PART 2

SEMIMARTINGALE BACKWARD EQUATION
RELATED TO DUAL PROBLEMS

2.1. Introduction

The well-known tool in studying the optimization problem (1.1.3) is the use of the duality relation-
ships between the optimal strategies and the optimal martingale measures (see, e.g., [46]).
Let us denote by U : (0,00) — R the conjugate function of the utility U(x), i.e.,
Uly) = suplU(z) — zy].
>0

It is well known that if U is a utility function, then Uisa continuously differentiable, decreasing, and
strictly convex function satisfying U’(0) = —oo, U’(00) = 0, U(0) = U(o0), U(oc) = U(0), and

U(z) = ;I;% [U(y) +zy|, >0.

Moreover, the derivative of U is the inverse function of the derivative of U.
Note that for logx, 2P /p, and —e™?*, the corresponding convex conjugate functions are —logy — 1,
L 1y7%, and ¥ <log y_ 1), respectively.
p Y Y
The function U(y) is the Legendre transform of —U (—x), which is a useful tool in solving the utility
maximization problems (see, e.g., [4] for the application in finance).
The dual problem to (1.1.3) is given by

V(0,y) = it EUZ7), (2.1.1)

where ZZQ is the Radon—Nikodym density of () relative to the measure P.

It was shown in [46] that if V(0,y) < oo for each y > 0 and the dual minimizer Q*(y) € M¢ (called
the minimax martingale measure) exists, then the optimal solution 7*(x) to (1.1.3) also exists, and
letting y = V;(0,x), we have the following duality relation between 7*(z) and the dual minimizer
Q*(y): i ) )

2+ (7°(2) - S)r = ~Uyw2¥), yZ2 = Unlw+ (" () - $)r). (2.1.2)
Thus, the solution of the primal problem (1.1.3) of utility maximization reduces to the solution of the
dual problem (1.1.3), but the dual problem needs to be solved constructively. If the market considered
is complete (or “almost complete”), then the martingale measure is unique (respectively, the minimax
martingale measure coincides with the minimal martingale measure), and the dual problem is easier
to solve than the corresponding primal problem. The solution of the dual problem for more general
incomplete market models is quite complicated.

Let us introduce the value function of the dual problem defined by

V(t,y) = essinf E[U (yEx(M? .
(t,y) = essinf E[U(y&er (M™))|74]

Similarly to (2.1.2), the optimal wealth process
¢
X/ =z+ / o dS,y,
0
and the optimal martingale measure Y;* = y&(M®@*) satisfy the following duality relations (see [46]):

X, =-Vy(t,Z]), Zf =Vu(t, X]). (2.1.3)
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Using the same approach as in Part 1, we can also derive the backward stochastic PDE for the
value function of the dual problem. This equation is more complicated than Eq. (1.1.6). Therefore, in
addition, we assume the continuity of the filtration, since without this assumption, the equation for 1%
is very complicated (whereas the form of Eq. (1.1.6) is the same with and without assumption of the
continuity of the filtration). Since the dual optimizer contains an orthogonal (to M) martingale part
in general, we need stronger regularity assumptions on f/(t, y) for the application of the It6-Venzell
formula. The BSPDE for the function V(¢,7) is

2

t t

o Y

V(t9) = V0.0) = % [ Tl +y [ @65, 9ra000),
0 0

t t
; O/ Vy(i’y)d@y(',y»ﬁ 0/ B(s,y)dM, + L(t,y) (21.4)

with the boundary condition ) )
V(T,y) =Ul(y),
where f/(t,y) is a local martingale orthogonal to M for all y. Moreover, the density of the optimal
martingale measure Z* is a unique solution of the forward semimartingale equation
¢ ¢

1 -
0 yy (8, Z5)
where fo y(ds, Z7) is the stochastic line integral with respect to the family of local martingales

(Ly(t,y), v E R*) (see [8, 31] for the definition of stochastic line integrals). Thus, we see that for
conjugate functions of general utility functions, Eqs. (2.1.4) and (2.1.5) are complicated. Therefore,
we do not give here the derivation of Eqgs. (2.1.4) and (2.1.5) (and do not specify conditions sufficient
to this end) and in this part, we study only dual problems of utility maximization and hedging for
power and exponential functions, which are problems of finding the p-optimal and the minimal entropy
martingale measures. The main results of the next sections were published in [57-59, 61].

2.2. p-Optimal Martingale Measures

Assume that the dynamics of the discounted prices of some traded assets is described by an R%-
valued continuous semimartingale X = (X, t € [0,7]) defined on a filtered probability space (92, F,
F = (F;, t € [0,T]), P) satisfying the usual conditions, where F = Fr and T' < oo is a fixed time
horizon. The process X is adapted to the filtration F' and admits the decomposition

X; = Xo + At + M, (2.2.1)

where M is a continuous local martingale and A is a continuous process of finite variation. For the
absence of “arbitrage” in this market, it is necessary to assume that X satisfies the structure condition;
this means that there exists a predictable R%-valued process A = (¢, t € [0,77]) such that

T
dAy = d(M)iA a.s. for t € [0,T7, Kr = /A;d(M}S)\S < oo as.,
0

where ’ denotes the transposition. The process K is called the mean-variance tradeoff process of X
(see [84, 85] for the interpretation of the process K).

By M we denote the set of measures @ absolutely continuous with respect to P on Fp such that
X is a local martingale under Q). Let M€ be the set of equivalent martingale measures, i.e., a subset
of M3 containing probability measures that are equivalent to P. Let Z;(Q) be the density process
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of @ relative to the basic measure P. For any @ € M¢, there is a P-local martingale M Q such that
79 = E(M®) = (&(M®),t € [0,T]). If the local martingale Z; = &(—\- M),t € [0,T]) is a strictly
positive martingale, then dP/dP = Zp defines an equivalent probability measure called the minimal

martingale measure for X.
Let

dQ\"*
M;:{QEMelEn<ﬁ> <OO}7
where 7 is a nonnegative Fpr-measurable random variable.

Throughout this section, we make the following assumptions:

(A) there is an equivalent martingale measure Q such that
Enél (M Q) < 00;

(B) all P-local martingales are continuous;

(C) there is a constant k; such that n > k; > 0.

Remark 2.2.1. Condition (A) is natural and is related to some kind of nonarbitrage condition if n = 1
(see [18] for the definition of “arbitrage” and related results). We note that since X is continuous,
the existence of an equivalent martingale measure implies that the structure condition holds. In
particular, Assumption (B) means the continuity of filtration F', and it is restrictive, but it is satisfied
if the filtration F' is generated by a Brownian motion, or, more generally, if F' admits the integral
representation property relative to some vector-valued continuous martingale. Also, we note that the

1
main results are true if we replace condition (C) by EnT-r < oo, p > 1.
Sometimes, we replace condition (A) by the following stronger condition:
(A*) the random variable 7 is bounded, i.e.,
n < ke (2.2.2)

for some constant k9 > ki, and there exists the minimal martingale measure satisfying the
reverse Holder inequality R,(P), i.e., there is a constant C' such that

B p(=A-M)|F;) < C
for any stopping time 7.
Here and in what follows, we use the notation

Er(N
() = G = €N = V)
for a continuous local martingale NN.
We consider the following optimization problems:
in EnEl (M9 > 1 2.2.3
Qrgﬂ;nT( ), p=1, (2.2.3)
EnEP(M?), 0<p<1. 2.24
Joax EnEr(M~) p< (2.2.4)
Let
Vi(p) = essinf E(EL.(M@Q)|Fy), p>1, (2.2.5)
QeMs
Vi(p) = esssup E(nEL(M@)|F,), 0<p<1, (2.2.6)
QeMg

be the value processes of problems (2.2.3) and (2.2.4), respectively.
For p = 1, the processes V;(p) and V;(p) represent the lower and upper prices of a contingent claim
n at the moment t.
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For n = 1, (2.2.3) is the problem of finding the p-optimal martingale measure, in particular, for
p = 2 the solution of problem (2.2.3) gives the variance optimal martingale measure, which plays an
essential role in the mean variance hedging problem (see, e.g., [16, 33, 73, 78, 86]).

It is well known that the p-optimal martingale measure Q* exists in the class M, and it was
shown in [18] (in [34] for the case p > 1) that Q* is equivalent to P if condition (A) is satisfied and X
is continuous. It was proved in [18] (this fact was already observed in [20, 83, 86] to various extents of
generality) that if X is a locally bounded semimartingale, and if the measure Q* is variance optimal,
then the corresponding density Z* is represented as

T
Zh=c+ /hgdxs
0

for a constant ¢ and an X-integrable process h, where the process
t
/h;dXS, te[0,7],
0

is a @-martingale for any @ € MS.

We derive the corresponding fact for p > 1 (under assumptions (A) and (B)) using the semi-
martingale backward equation for the value process. Moreover, we obtain an explicit expression of
the integrand h in terms of the value process Vi(p) and show that V;(p) uniquely solves a suitable
semimartingale backward equation.

Now we formulate the main statement of this part, which is a combination of Theorem 2.3.1 and
Corollary 2.3.2 of Proposition 2.3.3.

Let Y be a semimartingale with the decomposition

Y =Yo+Bi+Li, BE€Ag, LeMj,, (2.2.7)
and let
t
Li= [widM+ L (L0 =0, (2.28)
0

be the Galtchouk—Kunita—Watanabe decomposition of L with respect to the martingale M.
If conditions (A*), (B), and (C) are satisfied, then the value process V(p) is a unique solution of
the semimartingale backward equation

t t
-1
vi=vo - 222 fvovagna+p [ X,
0 0

s

t t
p 1 - -
_P [, M, + Ly, t<T, (22
+ 3o [ gDt [oaMit B <1, (229)
0 0

with the boundary condition
Yr=n (2.2.10)

in the class of processes Y satisfying the two-sided inequality
c<Y, <C foralltel0,T]as., (2.2.11)

for some positive constants ¢ < C.
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Moreover, the martingale measure Q* is p-optimal if and only if its density Z* = &p(M?") is
expressed as

T !/
EN M) =Y + /55 (% +(1=p)A- X) <w7 +(1 —p))\s> dXs. (2.2.12)
S
0
We also show that the value process satisfies (2.2.9), (2.2.10) if we replace (A*) by condition (A)
(Theorem 2.3.1a), but in this case, the class of processes in which this solution is unique is not explicitly
described. .
The same problem was studied by Laurent and Pham [49], in the case p = 2 and 7 = e~ Jo
where the process r is the instantaneous interest rate. Using the dynamic programming approach, they
obtain a characterization of the variance-optimal martingale measure in terms of the value function
of a stochastic control problem (equivalent to (2.2.3)) in the case of Brownian filtration.
Note that one can use the processes V;(p) and V;(p) to calculate upper and lower prices of contingent
claims, since as proved in [57]
lim V;(p) = essinf E(nEr(M®)|Fy), lim Vy(p) = esssup E(nEr(M@)|F).
pll QeMe pTl QeMe

rsds
;

2.3. Backward Semimartingale Equation for the Value Process
Related to the p-Optimal Martingale Measure

We say that the process B strongly dominates the process A and write A < B if the difference
B—-Acec .Afgc, i.e., is a locally integrable increasing process.

Let (A9,Q € Q) be a family of processes of finite variations, zero at time zero. Denote by
ess ianeQ(AQ) the largest process of finite variation, zero at time zero, which is strongly dominated

by the process (AtQ, t €10,T)) for every Q € Q, i.e., this is “ess inf of the family (A9, Q € Q) relative
to the partial order <.
We will use the following assertion proved by Delbaen and Schachermayer [17] in the case p = 2.

Proposition 2.3.1. If U = (U, t € [0,T]) is a nonnegative p-integrable martingale (p > 1) with
Uy > 0 and if the stopping time T = inf{t : Uy = 0} is predictable and announced by a sequence of
stopping times (1p,,n > 1), then

on the F._-measurable set {U; = 0}.
If p <1 and U is a uniformly integrable martingale, then

UP
E (U—g]FTn) — 0, n— oo,

on the set {U. = 0}.

Proof. For p > 1, the proof is the same as in [17]. In the case 0 < p < 1, one can prove this assertion
using arguments similar to [17]. Using the Holder inequality, we have

Uf? UZQ 1-p
B\ gp ) = B\ gplw.20)lFr | < B0, 20)1Fr,)

and the Lévy theorem implies that E*~P(I(;;._g)|F~, ) tends to zero on the set (U = 0). O

Since X is continuous, any element @ of M€ is given by the density Z;(Q), which is expressed as
an exponential martingale of the form

E(=N-M+N),
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where N is a local martingale strongly orthogonal to M.

By N (X) we denote the class of local martingales N strongly orthogonal to M such that the process
(&(=A-M + N),t €]0,T]) is a martingale under P.

Let NV,(X) be the subclass of N'(X) of local martingales N such that the process (&(—\-M + N),
t € [0,T)) is a strictly positive P-martingale with EnEf.(—A- M + N) < co. Then

aQ
P

The following assertion can be proved in the standard manner (see, e.g., [26, 49]).

M = {QNP: |FT:€T(—)\-M+N),NENP(X)}. (2.3.1)

Proposition 2.3.2 (optimality principle).  (a) There exists an RCLL semimartingale, still denoted
by Vi(p), such that for each t € [0,T],

Vilp) = essinf EmELp(MO)F)  as.
Vi(p) is the largest RCLL process equal ton at time T such that V;(p)EF (M®) is a submartingale
for every Q € M.

(b) The following properties are equivalent:
(i) Q* is p-optimal, i.e.,

Vo(p) = Qier}\f/le EnS%(MQ) — EnE?(MQ*);
p

(il) Q* is p-optimal for all conditional criteria, i.e., for all t € [0,T],
Vilp) = EmER(MO)|F)  as.;
(iii) Vi(p)EF (M) is a P-martingale.

We recall that the process X belongs to the class D if the family of random variables X I(;<7) for
all stopping times 7 is uniformly integrable.

Let S (respectively, S;) be the class of semimartingales (respectively, strictly positive semimartin-
gales).

Definition 2.3.1. We say that Y belongs to the class D), if Y is an RCLL process such that for every
Q € M the process £ (M@)Y; is in D.

Remark 2.3.1. Since for every Q € M, the process EP(M®) belongs to the class D as a positive
submartingale (see [19]), then any bounded positive process Y belongs to the class D,.

Definition 2.3.2. By S (X) we denote the class of strictly positive semimartingales Y such that
Y € D, and ——1~ - L € N(X), i.e., such that

o
(&(A-MM/-E), te[O,T})

is a martingale, where L is the local martingale introduced in (2.2.8).

Let us consider the optimization problem (2.2.3). One can rewrite the value process V(p) of this
problem in the form

Vi(p) = Neesjsvir(l)f() EmEL (=X M + N)|F), (2.3.2)

Since M€ # (), the process V(p) is a semimartingale with respect to the measure P; let
Vip) =mi+ Ay, me My, A€ A, (2.3.3)

be the canonical decomposition of V (p).
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Let
t

my = /wdes + e, (m, M) =0, (2.3.4)
0
be the Galtchouk—Kunita—Watanabe decomposition of m with respect to M.

Theorem 2.3.1. Let conditions (A), (B), and (C) be satisfied. Then the following assertions hold.
(a) The value process V(p) is a solution of the semimartingale backward equation
¢

1
Y: =Yy — essinf —p(p—1)/Y5d<—)\-M+N>5+p<)\'M—|—N,L>t + L, t<T, (2.3.5)
NeN,(X) | 2
0

with the boundary condition

Yr=mn. (2.3.6)
This solution is unique in the class S(X) of semimartingales. Moreover, the martingale measure
Q* is p-optimal if and only if it is given by the density dQ* = ET(MQ*)dP, where

t t

. 1 1
ME = —/Xdes —F/V(p)dms. (2.3.7)
0 0

(b) If, in addition, condition (A*) is satisfied, then the value process V is a unique solution of the
semimartingale backward equation (2.3.5), (2.3.6) in the class of semimartingales Y satisfying
the two-sided inequality

c<Y; <C forallte|0,T] a.s. (2.3.8)
for some positive constants ¢ < C.

Proof. (a) Existence. According to (2.3.2), E'(M®)V;(p) is a P-submartingale for every Q € M.
Therefore, by assumption (A) (since there exists Q € My with (M Q) strictly positive), V(p) is a
P-semimartingale with decomposition (2.3.3).

Using the relation

EP(MO) = € <pMQ 4 p—(pQ D) (MQ>)

and the It formula for £7(M®)V,(p), we have

t

£ (MO)Vi(p) = Volp) + / £2(MO) Vi (p)
0

+ [V eruapu@ + B2l +p [ ey ), @)

2
0 0

= V(o) + [ exuyaa, +

0

(V_(p) - (MO))5 + p(M?,m),)

t t
+/5£’(MQ)dms +p/%_(p)5§(MQ)dM§?. (2.3.9)
0 0
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Since £ (M?)V;(p) is a P-submartingale for all Q € Mg and & (M Q) is strictly positive, we obtain
from (2.3.9) that

— D /Vs(p)d(MQ>s +p(M@ m), € A, (2.3.10)
0

for every @ € Mj,.

It is well known that for convex coercive continuous functions defined on a closed convex subset
of a reflexive Banach space, the infimum is attained (see [25]). Since the set of densities Z7(Q) of
absolutely continuous local martingale measures @ with EnZ%(Q) < oo is a closed convex subset of
LP(n- P) and || - H’ip(n_ p) is a convex coercive function, the optimal martingale measure Q" exists.
Note that the class of densities (Z(Q),Q € Mj) is not closed in general. Therefore, we only have that

Q* € Mgbs, where
dQ\"*
abs __ abs .
M, —{QEM .En(dP> <oo}.

Let us show that the existence of an equivalent martingale measure Q with Enél (M Q) < oo implies
that @Q* is equivalent to P. We prove this fact using the idea of Delbaen and Schachermayer [17].
Since Q* is optimal, we have
EnZp(Q*) < EnER(M®), (2.3.11)

where we denote by Z;(Q*) the density process of Q* relative to the measure P.
Following [17], we define the stopping times

T = inf{t : Z,(Q%) < 1/n}, 7=inf{t: Z,(Q*) =0}. (2.3.12)

Inequality (2.3.11) implies that for every n > 1,

Z2(Q EP(MQ
E [ = (Q ) | F } L)mn a.s. (2.3.13)
Indeed, if the measure of the set B defined by
Q") EP(MQ)

B={w:FE n—1—_|F,, 2.3.14
{ @) E e i) (2344

is strictly positive, then constructing a new (absolutely continuous) martingale measure Q by dQ =
ZrdP,

X Q
Ip = IpZ,, (Q7) ST%Q) + Ipe Zr(Q)
we have ’
. Q) Zr(@) |
En(Zr)? = EnZ? (Q") |1 (MQ) + IBCZ Q")
= FEZP (Q") [IBE< %!F ) +IBcE< Z ((g))> )| < EnZE(QF),

which contradicts the optimality of Q*. Now by Proposition (2.3.1) and condition (C), the left-hand
side of (2.3.13) tends to infinity on the set Z,(Q*) = 0 as n — co. On the other hand, since the measure
Q is equivalent to P, the limit of the right-hand side of (2.3.13) is finite. Thus, P(Z,(Q*) = 0) = 0,
and hence Q* is an equivalent local martingale measure.
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Therefore, by the optimality principle (see Proposition 2.3.2) the process Vi(p)EF(M®") is a mar-
tingale and using the Tt6 formula (2.3.9) for Vi(p)EP(M®"), we obtain

t
- 1 * *
A+ P20 [y )aar® ), 4+ p(u ) = (23.15)
0
The last equation, together with relation (2.3.10), implies
t
A= —t—:C-QSESAlfllef /Vs s +p(M? m) |, (2.3.16)
0

and hence the value process V(p) satisfies Eq. (2.3.5) (obviously, V(p) also satisfies the boundary

condition V;(p) = n). We note that (2.3.15) implies that the process A; and hence V;(p) is continuous.
Now let us show that the optimal martingale measure Q* is given by (2.3.7) and that the value

process V (p) belongs to the class S(X) of semimartingales. From (2.3.16) and (2.3.1), we have

¢ ¢
/VS /d()\-M m)s— essmf
NeNy(
0

t
O/VS d(\ - M), /d(A-Mm)s

t

A =

s +p<N7m>t

[e=]

— ess 1nf
NEN, (X

\
]
=
+

7

T~

T&.
3

\/

[N}

)
| =3

o .

o

@ —
=
=

since

Negjsvinf <,/ /\/—dN + / _1 /\/_de> =0. (2.3.18)

Indeed, it is obvious that for any stopping time 7,, defined by
Tp, = inf{t : &(N) >n},

where
t

~ 1 1
N, :——/—dﬁls, 2.3.19
1) V) 2319

the stopped martingale N ;" belongs to the class N,(X) and 7, T T'. Therefore,
t

st (V22 o -1/ ) | <w | v

(2.3.20)
for each n > 1, and (2.3.17) holds since the right-hand side of the latter relation tends to zero as
n — oo.

We observe that by the Jensen inequality, from condition (C) we have the inequality Vi(p) > k1, so
that all integrals in (2.3.17) are well defined.
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By the optimality principle, V;(p)&F (M?") is a martingale. Since V(p) solves Eq. (2.3.5), this
implies that

e |20 [ Viw)aa1®). + pias,m), _ L) [ Vioau @) pa? . (2321
0 0

Since M is represented in the form —\- M + N* for some N* € N?(X), it follows from (2.3.17) and
(2.3.19) that the processes N* and N and hence the processes

t

t
\ 1 1
Me, —/)\SdMS——/ ding
) p—lo Vs(p)

are indistinguishable.
Therefore,, the p-optimal martingale measure is unique and admits representation (2.3.7).
By definition of V(p), we have that for any Q € M,

Vo (p)ER(MO) < B(n€R(MO)|Fy). (2.3.22)

Therefore, for any @ € M3, the process Vi(p)EF (M @) is a submartingale of class D as a positive
process majorized by a uniformly integrable martingale (see [19]) and V' (p) € D, by Definition 2.3.1.

Finally, since Q* € M7 and the processes M Q" and —\- M — zﬁﬁ -1 are indistinguishable, we
have that &(—\- M — W -m) is a martingale and hence V' (p) € S(X).

Uniqueness. Let Y be a solution of (2.3.5), (2.3.6) of class S(X). This means that Y is a semi-
martingale with decomposition (2.2.7), (2.2.8) such that Y =7,

t

1
By = —essinf | 22=1 /Y;d(MQ)S +p(MQ, L), |, (2.3.23)
QeEMs 2
0

and (& (=AM — ﬁ - L),t € [0,T]) is a martingale.
Since (2.3.21) implies that
¢

pp—1) / Yod(MQ), + p(MQ, L), € Af,,

0
using decomposition (2.3.7) and the It6 formula for £7(M®)Y; we obtain that the process E’(M®)Y;
is a local submartingale for all @ € M7. Since Y € D), we have that EP(M Q)Y; is a submartingale of
class D. Therefore, it follows from the boundary condition (2.3.6) that for every @ € M,

E7(MO)Y; < B[R (MP)Yr|F) = E[nep(M)|F].

Hence
Yi < Bl (M9)| B
for all @ € M7 and

Yi < essinf Blnépr(M@)|F) = Vi(p). (2.3.24)
Let us show the converse inequality. Similarly to (2.3.17), we can show that
(1) ¢ ¢ ¢ .
p\p — / / p 2
By = ————= [ Y, d{M)s\s A d{M — | —d(L 2.3.25
p= P [vdon e [ Xaonw+ 5 [ G, (2.325)
0 0 0

342



and the infimum is attained for the martingale
. t
1 -
N = ——/—dLS, (2.3.26)
0

where L is the orthogonal martingale part of L in the Kunita—Watanabe decomposition (2.2.8).
Therefore, using the It6 formula once again, one can show that £/(—=\ - M + N°)Y; is a local
martingale, since (2.3.23) and (2.2.8) imply

t t
1 ~
EP(=X-M + NOY, =Y, + /55(—)\ M + N (ths — pYihs) dM, — - /85(—)\ - M + N°)dLs,.
0 0

By the definition of the class S(X), we have that the process &(M@") is a martingale, where M@’ =
—A- M + N Hence dQ° = Er(M QO)dP is an absolutely continuous local martingale measure. Let
us show that Q° € MG

To show that Ep(M QO) is strictly positive, we use the Delbaen—Schachermayer lemma (see Propo-

sition 2.3.1). Let 7, and 7 be stopping times defined by (2.3.12) for the process &(M@").
From inequality (2.3.22), we have that for any stopping time o,

Yo < Vo(p) = essinf EEL (M) Fy) < EnEy 1 (MO)|Fy) (2:3.27)
eMg ’ ’

for any Q € M.
Since any positive local martingale is a supermartingale, we have

E2MLYY, > B(YreR(MY)|Fy), (2.3.28)
and from the boundary condition (2.3.6), replacing o by 7,,, we obtain
P(M)
Y, >E|n-——L|F, 2.3.29
Therefore, (2.3.25) and (2.3.27) imply the inequality
EpM) £4(M)
T g | < B gL LR, | 2.3.30
["5%(1\4@“)' =T ) 2430

Now (2.3.28), (2.3.1), and condition (C) imply that Q¥ is an equivalent local martingale measure.
On the other hand, using inequalities (2.3.25) and (2.3.26) we have that for 0 =0

Eneb(M@) < Yy < Vo(p) < Engh(M?) < oo

and 7L (M?’) is integrable.
Thus, Q° € M, and since Y € D), the process Y;EP (M QO) is from the class D and hence it is a
uniformly integrable martingale. Now, the martingale property and the boundary condition imply

Y, = EME (=AM + N)|F). (2.3.31)

Therefore, (2.3.22) and (2.3.29) imply Y; = Vi(p) a.s. for all t € [0,T], and hence the solution of
equation (2.3.5), (2.3.6) is unique in the class S(X).
(b) It is easy to see that the value process satisfies the two-sided inequality

k1 < Vi(p) < Cky aus. (2.3.32)
for all ¢ € [0, 7).
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By the Jensen inequality,
Vilp) = s int Ol (MO)IF) 2 b esind FP(E (M) ) = .

On the other hand, if there exists a martingale measure Q satisfying the reverse Holder inequality,
we have that V' is bounded from above, since

Vi(p) = essinf EnE] (M) ) < EmEL(M?)|F) < Chs.
P

To prove this part of the theorem, we need to show that any solution Y satisfying the two-sided
inequality (2.2.11) belongs to the class S(X). Since any bounded positive process belongs to the class
D,, (see Remark 2.3.1), we need to show that the process

<5t<—A-M—ﬁ.i>, te[O,T})

is a martingale. According to [41, Theorem 2.3], it suffices to prove that the process —\- M — =Y L

belongs to the class BMO. Since the minimal martingale measure satisfies the reverse Hélder condition,
[21, Proposition 6] implies that —X - M € BMO. On the other hand, since Y > k; and (L) < (L), it
suffices to show that L € BMO.

Now let us show that if the random variable 7 is bounded and if there is an equivalent local
martingale measure () satisfying the reverse Holder condition, or, if the associated local martingale
M@ belongs to BMO, then the martingale part L of any bounded solution Y of (2.3.5), (2.3.6) belongs
to the class BMO.

By the It6 formula,

¢
V2= Y242 / Y.dY, + (L)s. (2.3.33)
0
Since Y7 = n and Y; > ¢, we have from (2.3.33)
T
(L)yr = (L)r + Z/st(Bs + L) =n* - Y2 < k3. (2.3.34)
T

Since Y satisfies (2.3.5), the process
w-1 |
-1
B + 2 /st<MQ)5 +p(M?, L),

2
0
is increasing and (2.3.32) implies that
T T T
(L) — (L), + 2/YSdLS —plp—1) /Y3d<MQ>S — Qp/Y;d(MQ,L>S) < k3. (2.3.35)
T T T

Without loss of generality, we may assume that L is a square integrable martingale; otherwise we can
use the localization arguments. Therefore, if we take conditional expectations and take the inequality
Y; < C into account, we obtain

T
E({L)r = (L)-|Fy) < C?*p(p = ) E(M®)p — (M®);|F) + k3 +2pCE /|d<MQ,L>s||FT - (2.3.36)

344



Now using the Kunita-Watanabe inequality
T
E /|d<MQ,L>sHFT < BV2((MO)p — (M@, |F)EY2(LYp — (L), Fy) (2.3.37)

and that M@ € BMO, we obtain from (2.3.34) that
E((L)r — (L)+|F;) < 1 + caEV2((L)r — (L) |Fy) (2.3.38)

for some positive constants ¢; and co that do not depend on 7. The last inequality implies that
E((L)r—(L);|F;) is bounded for every stopping time 7 by the same constant, and hence L € BMO. O

Remark 2.3.2. In particular, if M@ € M? and 7 is square integrable, the same arguments imply
that m is a square integrable martingale.

Remark 2.3.3. If Condition (A*) is satisfied, then the p-optimal martingale measure satisfies the
reverse Holder inequality R, (P), since for any stopping time 7,

* 1 *
E(Ef’T(MQ )Fr) < k—E(nEf’T(MQ )

1

F,)

— s B e (MO)F) < By (O)|Fy) < c.
Proposition 2.3.3. Equation (2.3.5), (2.3.6) is equivalent to the equation
Er(( —pX) - M)
& (L)
i.e., if Y is a solution of (2.3.5), (2.3.6), then the triple (¢,1), L), where

= enEL(=A- M), (2.3.39)

t
_ - o 1 / 1 -
c= ) ¢—Y7 L= p—l Y;dst
0
is a solution of (2.3.37). Conversely, if (¢,v, L) solves (2.3.37), then Y defined by
1 — —p, T o
Yy = —&((6 = pA) - M)E (L)E (=X~ M) (2.3.40)

satisfies (2.3.5), (2.3.6).

Proof. Let Y be a solution of (2.3.5), (2.3.6) which admits the decomposition (2.2.7), (2.2.8).
It follows from (2.3.23) that

t t t t

1 1 . -

o=y~ PO [yt [ Xdonw gt [ G [ @sa
0 0 0 ° 0

We introduce

Then
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and from (2.3.39), we have

1 _ -1 — _ _
dY; = Y; [—p ® =1 vaaryon + pxdanyis + P2V, f g, - - 0dz| . ve =

2 2
(2.3.42)
Solving this linear equation with respect to Y, we obtain
t t o 0
vi=Yoewp | - 2020 [ar A+p/ a) b, + 2 ),
0
t t
1 N — —
-3 D+ [TeaM,— (p- DL, (23.43)
0 0

which can be expressed by means of Doleans-Dade exponentials
Yi = Yo&i(( — pA) - M)E P (D)E P (—A- M). (2.3.44)

Now, using the boundary condition Y7 = 7, we see that (2.3.37) is satisfied for ¢ = 1/Yj.
Conversely, if a triple (¢, 1, L) satisfies (2.3.37), then it is also obvious that Y defined by (2.3.38) is
a solution of (2.3.5), (2.3.6). O

Corollary 2.3.1. The semimartingale Bellman equation (2.3.5), (2.3.6) coincides with the equation

Vilo) = Vi) - | (p 2Dy p)xai) n, - p>\’sd<M>s<Ps>
0

t

t
p Lo / .
+ / dms+/ Mg +my, Vr(p)=mn, (2.3.45
which is the same as (2.3.39) written for V(p) instead of Y. The equation

t
Rt:RO—/
0

(Bs = PAY AM)s(B5 = pA) + | ENA(M) A

DN | =

5 (@s — pAs)'dMs — (p — )my, Ry =Inn, (2.3.46)

O\w Or\“

t
1
+ 2 " tm), + /deM +
0

with respect to (R, §,m), which admits a unique solution in the class Sy x L ((M)) x N'(X), is also
equivalent to (2.3.5), (2.3.6).

Corollary 2.3.2. A martingale measure Q* is p-optimal if and only if
T
ngg—l(MQ*) —c4 /h;dXs (2.3.47)
0

for a constant ¢ and an X -integrable predictable process h such that
¢

/h'stS, t€[0,T]
0
is a QQ-martingale for every Q € M.
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Proof. Let Q* be a p-optimal martingale measure. According to Theorem 2.3.1, M%" admits repre-
sentation (2.3.7), and hence

« 1 1
LN M) = 27N (=N M) (——— : m) : 2.3.48
T ( ) T ( ) T p— 1 V(p) ( )
Therefore, using (2.3.38) and the relation % =&(X -Y —(X —-Y,Y)) valid for continuous semi-

martingales X and Y, we obtain

Vi(p)EP (M) = Vb(p)gt((¢ —p\) - M)

=W@)&(@+ (1 —p)A) - X).

E(—=A-M)
Thus, the boundary condition V(p) = n implies that ngg_l(MQ) is of the form (2.3.45) with
hs = (s + (1 =pA)E((@ + (1 =p)A) - X), s€[0,T]. (2.3.49)

Moreover, it follows from (2.3.47) that
t
Vo) + [ WX, = Vitper™ (4
0

and hence f(f hl.dX is a Q*-martingale by the optimality principle. The latter relation implies

t

/ hodXs > —Vi(p).
0

Since fg hLdX is a Q-local martingale, it is also a supermartingale and
¢
ER / RLdX, <0
0

(for any @ € Mj). On the other hand, since Q* is optimal, from Proposition 1.7.1 of the Appendix,
we have

T
B / WdX, = B9l (MP) = Vo(p) = Bnel (MP)(Er(M?) — £r(M?)) > 0,
0
which implies that
T
E@ / h.dX, =0,
0

and hence fg hid X is a martingale for all @ € M5,
Conversely, if Q" is a martingale measure satisfying relation (2.3.45) and the process
t
/h;dXs, t€[0,T]
0
is a Q-martingale for every Q) € Mj, then

el (M) = BV yel (M)
for any @, which implies that Q° is optimal by Proposition 1.7.1 of the Appendix. O
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Corollary 2.3.3. The minimal martingale measure is p-optimal if and only if
T
nEL(=X- M) =c+ /g;dMs (2.3.50)
0

for some M -integrable predictable g, and the process
¢

/g;dX87 t € [O7T]
0
1s a P-martingale.

Remark 2.3.4. Obviously, if (X - M) is deterministic and n = const, then

Ep(=A- M) = Ep(—pA- M)exp{l@(A : M>T}

T
—exp PPy o [eepn-anNan, |
p{ (A M>T} 1 p0/£( pA - M)N.dM

and (2.3.48) is satisfied.

The semimartingale backward equation for the value process V;(p) defined by (2.2.6) can be derived
in a similar way. Here, we give only the corresponding theorem and remark some differences.
Assume that the following conditions are satisfied:
(A1) Me #0;
(B) all P-local martingales are continuous;
(C') n is a strictly positive Fp-measurable random variable such that

Enli_P < 00.
Theorem 2.3.2 (Theorem 2.3.1"). Let 0 < p < 1 and conditions (A’), (B), and (C') be satisfied.

Then the following assertions hold.
(a) The value process V is a solution of the semimartingale backward equation

¢
1
Y: =Yy — esssup —p(pl)/YSd<—)\~M+N>s +pA\-M+N,L);| +L;, t<T, (2.3.51)
NeN(X)
0

with the boundary condition
Yr=n. (2.3.52)
This solution is unique in the class S(X) of semimartingales. Moreover, the martingale measure
Q* is p-optimal if and only if it is given by the density dQ* = Ep(M®")dP, where
t t

0 0

(b) If, in addition, the conditions k1 < n < kg, \- M € BMO are satisfied and there is a constant
c1 such that
E(Ef’T(—)\ -M)|F;) > 1 (2.3.53)

for any stopping time T, then the value process V (p) is a unique solution of the semimartingale
backward equation (2.3.49), (2.3.50) in the class of semimartingales Y satisfying the two-sided
inequality

c<Y; <C forallte|0,T] a.s..
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for some constants 0 < ¢ < C.

The proof is essentially similar to the proof of Theorem 2.3.1. In this case, the process V;(p)EP(M?)
is a P-supermartingale for all ) € M?¢, and the classes D, and S(X) are defined similarly. From
condition (C’) and the Holder inequality, we have that supg En&p (M Q) < 00, and the existence of an
optimal martingale measure Q* in the class M®* follows from the same arguments. We only show

that conditions (A’)—(C’) imply that Q* is equivalent to P. Since Q* is optimal, for the optimal
density Z9" and the stopping times 7, defined by (2.3.14), we have the inequality
* EP(MQ
AP B 11
for

E [ an(Q*) (MQ)/FT”] a.s. (2.3.54)

By the Holder inequality
e[p 22 ] -5 [ 29,
ZA(0D Z2.@Q)"
Condition (C’) and the Lévy theorem imply that

1
Iz (Q*)¢0>/Frn] <E"P (nl—pl(zT(Q*#o)/Fm) . (2.3.55)

El- p(nl p[ | )

tends to zero on the set (Z,;(Q*) = 0), hence the left—hand side of (2.3.53) tends to zero on the same
set. On the other hand,

P (supSf(MQ) > N) <

t<T

by the Doob inequality for the supermartingale £ (M ) and
. p 10 _
p (tlggE(ngT(M ) Fi) > 0> 1

since nE(M@) > 0. Therefore, the limit of the right-hand side of (2.3.53) is strictly positive, which
implies that P(Z;(Q*) =0) = 0 and Q* is equivalent to P.

Note that it follows from (2.3.51) that the value process V(p) is bounded from below, but this
condition (unlike the reverse Holder condition R,(P) for p > 1) does not imply that A - M € BMO.
Therefore, we assume in part (b) that A - M € BMO in order to guarantee

EST(—A-M—ﬁ.E):L

2.4. The It6 Process Model

2.4.1. Non-Markovian case. Let X be an Ito process

dX; = p(t, §)dt + (t, §)dwy, (2.4.1)
where & is the state process satisfying SDE
dé = b(t,&)dt + o(t,§)dw,. (2.4.2)

Here, w = (w;) is an n-dimensional Wiener process defined on a complete probability space (2, F, P),
and F' = (F,t € [0,T]) is the P-augmentation of the filtration generated by the Wiener process W.
The coefficients p, d, b, and ¢ are nonantisipative functions

p:[0,7] x C[0,T;R") = R™, 6:[0,7] x C[0,T];R") — R™*",
b:[0,7] x C[0,T;R") - R", o:[0,T] x C[0,T;R") - R"™" m <n.

We assume that the following conditions hold:
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(C1) the coefficients b, o are bounded continuous and such that Eq. (2.4.2) admits a unique strong
solution;
(C2) the coefficients p and § are such that the structure condition is satisfied.

Sometimes, we use the following stronger condition:
(C*2) the matrix §¢’ is nonsingular and the function § = §'(56") ! is bounded and continuous.
The process X defines a stock price process by
ds) = Sldxi, j=1,....,n. (2.4.3)
There are two important particular cases of the model (2.4.1)-(2.4.3).
Example 2.4.1. b=0, 0 =1, and & = w;. Then (2.4.1) is of the form

dX; = p(t,w)dt + §(t, w)dw;. (2.4.4)
Example 2.4.2. If the stock price process is described by SDE
dsi - .
i :m(t,S)dtJrZéij(t,S)dwt, j=1t,...,m, m=n, (2.4.5)
t j=1

and S = (5,8%), where S € R™ and S+ € R"™ denote the tradable and nontradable asset price
processes, then we can obtain the system (2.4.1)—(2.4.3) from (2.4.5) when &' = In S’

N(t7 Y) = ﬂ(t, eY)7 5(t7 Y) = S(ta 6Y)7

1 -
bi(t,Y) = f(t,e) + 5 S aE(teY), (LY)e0,T]xCm,
j=1

and dth = dS,f/Sg, j=1,...,m. Here, C"™ is the space of R"-valued continuous functions.
Denote by L?[0,T] the class of predictable processes ¥ such that

T
[ iPae < .
0

a.s., and let KC,(8) be the subset of L2[0, T defined by
v € Kp(0) < v e L?0,T) : vs € kerds Vit € [0,T] as.
and

70 = & / (—0(5,€) + va)'dwy), te[0.T)

is a p-integrable P-martingale.
Then the subclass M7 of equivalent martingale measures for (2.4.4) is given by

MG ={P" :dP"/dP = Z7, v € Kp(9)},
where § = 6'(66") "' = &' \. Here,

t t t t t
M; = /(5de5, (M) :/555;ds, /,usds = /d<M>S-)\5 :/555;/\5ds,
P 0 0 0 0
t t ¢

/ N.dM, = / N bydwy = / 0 duw,.
0

0 0
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By the martingale representation theorem, the martingale part of the value process is expressed as a

stochastic integral
t
my = / CLdws.
0

It is easy to show that in this case,

t

1

inf |=p(p—1) [ Ysd(—N M +N)y+p(\-M+N,L

v el bl )/ { +N)s + 1 + N, L)
0

t

= / ess inf {ZMVQ( —05(&) + 1/8)2 + p(—05(&) + VS)/CS:| ds. (2.4.6)

veK,(8) 2

Therefore, Eq. (2.3.5)—(2.3.6) takes the form
t

t
=Vy— /ess inf [ 1)V;( —05(8) +vs)” +p( = 05(6) + Vs)/<s:| ds + /Cédws, (2.4.7)
0 0
Vr =1, (2.4.8)

and according to Theorem 2.3.1, the process V is a unique solution of the BSDE (2.4.7) in the class
S(X) of the It6 processes (in the class of bounded strictly positive processes if C*2 is satisfied).

Remark 2.4.1. Using the properties of exponential martingales, we can rewrite the value process in
the form

V, = essyinfE [SfT (/(—95(5) + ys)’dws> /.7-}]
T
= eseint 5 |exp [ PO [ (a0 + vP)as | /7]

v
t

where EY is the expectation relative to the measure P¥ given by

Er (p/(—es(ﬁ) + Vs)’dws) .

By the Girsanov theorem, V; is the value for the optimization problem
T

Eexp / (|9(Safy)|2 + ‘l/s|2)d8 —s min
0
with the controlled system described by

g’ = [b(t, ") = po(t,€")(0(t,€") — vy)]dt + a(t,£")dwr.

Now taking the infimum in expression (2.4.6), we obtain

t t
Vit [ (P OF + 000 + 5 s G ) ds o+ [ G (249
0 0

Vp=1. (2.4.10)

Here and in what follows, I15 denotes the orthogonal projection on subspace H € R".
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If we change the variable z; = (;/V; and solve the resulting linear equation

t
Vi=tot [ (PO OR + p©nV 4 5 s

with respect to V', we obtain the following BSDE for (R =1nV, z):

t
%IﬂkerasCsF) ds+/V5§;dws (2.4.11)
0

R = R0+/ (—@\GS(S)F 4 ()2 + ﬁ
0

t
1
PR VY P
0

(2.4.12)
or, equivalently,

t

t
1 2 1 2 * plp—1) 2 *
R; = Ry +/ |:_§’err5t(§)zs’ + W|HRCLTL5:(£)ZS| + pl(§)zs — TWs(f)’ ds + | zgdws,
0
(2.4.13)
where Ry = 0. Equation (2.4.13) can be simplified if, instead of (2.4.1), we consider the equation
dX; = u(t,€)dt + 4(t, &) dwy, (2.4.14)

where 0(t,y) is an (m x m)-matrix.

Remark 2.4.2. Equation (2.4.1) can be reduced to (2.4.14) by using the Gram decomposition of a
matrix.

In this case, we have

t t
1 -1 — —1) -
R, = Ro+/ [—§|zs|2 +2 | 4 pBu(€)7 %\es(g)ﬁ] ds+/z;dws, Rr =0, (2.4.15)
0 0

where zZ = (21, ..., 2m), 2+ = — L 1(zm+1, ey Zn)
Introducing the variable z = Iz’) — pf we obtain
t t
R, =Ry + / [%yzsf + p%ﬂzsi 2] ds + /z;dws, (2.4.16)
0 0
T T
Re =~ [ po.¢)dw. - [ D160 ds (24.17)
0 0

This can be written as the equation

Er([ 2 dws) - e (_/ggdws> 7 (2.4.18)

e ([ 2 dwi

where ¢ > 0 is some constant.

Now we consider cases where this equation can be solved explicitly. Assume that the state process
¢ coincides with w and @ does not depend (a) on w or (b) on w.

(a) Equation (2.4.18) is solved by

hy

n _
zm =0, z= T, )
fo h.dws
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where

t
/ W.dw, = Elceh, ( / —égdws> F] - Bes? < / _égdws) .
0

(b) Since
. ¢
68:1; (/ —9_’8du_)s> = c€r </ —pé’sdws> exp p(pT_)/Ws\gds ,
0
we need to take Z = —pf and define z* from the equation
T
11\ —1+p p-1 g 12 1
& 2y dwy | = F |c exp 5 |0s]°ds | F;
0
ie.,
I Jt
I S
C + fo fédws
where
¢ ) T 1 T
/f;dwsL =F ¢ MPexp _1% /|§5]2d5 |.7:tL —E ¢ "Pexp —Z% /§3|2d8
0 0 0

2.4.2. Markovian case. Let us consider the Markovian case, i.e., assume that the coefficients of
(2.4.4)—-(2.4.5) are of the form pu(t, &), 3(t, &), b(t, &), o(t, &), where p, 6, b, and o are functions
defined on the set [0,7] x R™.

Let us introduce the value function

T
—1
V(t,y) = inf E"“Yexp pp—1) /(|95|2 + |vs|*)ds
veker § 2
t

Since the state process £ is Markovian and the feedback controls (i.e., controls u; expressed in the
form v(t, &) for some measurable function v (¢, x)) are sufficient, we can represent the value process V;
in the form

Vi=V(t,&) as. (2.4.19)

Since the value process V' is a solution of Eq. (2.3.45) and the square characteristic of any mar-
tingale is absolutely continuous relative to Lebesgue measure, we have that the value V is an Ito
process. Moreover, it follows from assumption (C2*) and from the proof of Theorem 2.3.1.b that the
martingale part m of the value process belongs to the class BMO. Therefore, from expression (2.3.45)
of the value process, we have that the finite variation part of the value process is of integrable varia-
tion. Thus, Eq. (2.4.19) implies that V(¢,&) is an Ito process of the form (1.7.15) and according to
Proposition 1.7.4, it admits the representation

t t
V(t, &) =V(0,%) +/AV(s,fs)ds+/Vy(t,5t)a’(t,gt)dws, (2.4.20)
0 0

where (AV)(t,y) = (LV)(t,y) + V' (1, y)Vy (t,y).
Now, comparing Eq. (2.4.20) with (2.3.5) and using Eq. (2.4.19) and the uniqueness of the canonical
decomposition of semimartingales, as a corollary we obtain from Theorem 2.3.1 the following assertion.
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Theorem 2.4.1. Assume that conditions (C1), (C2*), and (A1)—(A3) are satisfied. Then the value
function V' admits a generalized L-operator LV, the first-order generalized derivatives V,,, and it is a
unique bounded solution of the equation

. -1
CLOICER 22Dyt gl — 6(t.) + o0 — 0(4,9))0 (. 9)Vy (k)| =0 dsdy-as.
(2.4.21)

V(T,y) = 1. (2.4.22)

Using the relation /\inlfi(—l/Q\)\F — b)) = —|lyb|?/2, from (2.4.20) we obtain the equation
€

(‘CV) (ta y) - pel(t7 y)al(tv y)Vy (tv y)

p plp—1
—§G:TBWHmemmUTtyﬂ%GJDF‘Wty)+ (2 :”ﬂtyﬂﬁqty)ZO-(242$

Denoting R(t,y) = InV(t,y), we have

(ER)(t,y) ~ b0 (,5) By 1,) + 310" (1) Ry 1,0)

—p 2 p(p B 1) 2
_ 30— 1) |err5/(t,y)g’(t, Yy )Ry, (t,y)|” + T’H(@yﬂ =0 (2.4.24)

or using |b|? = |Mier56|? + |TLRans'b|?, we obtain

1
(‘CR) (tv y) - pal(tu y)Ry(ta y) + 5 ‘errﬁ(t,y)al(tv y)Ry(tv y) |2
1 2 plp—1) 2
- m|ﬂRan6’(t,y)al(t7y)Ry(t7y)’ + T'H(t’ y)|7=0. (2.4.25)
The infimum in (2.4.20) is attained at

1 Vy(t,y) 1
ker §(t, z)II "(ty) L= = Il "(t,y)Ry(t
1—p er ( 7'%') ker §(t,2)0 ( ’y)V(T, y) 1—p ker §(t,2)0 ( 7y) y( ay)a

i.e., the p-optimal martingale measure can be given by the density

V(ta y) =

er ( [(-os.60+ v/ (s, 8w
= (= [ N8035, 800w+ 1 [ M Rl )o(s, €. ).

In the case of Eq. (2.4.14), we can take § = 6 'u, ker§ = {0} x R*™™ and (2.4.24) is transformed to
the equation

(LR)(t,y) ~ P (1) Ryt ) + 31 (t,9) Ryt 1)

p—1 pp—1) 5
oty By + PP D g =0, 24.26)

If, in addition, £ is a Wiener process, i.e., b =0 and o = I, then we can write

1 - - 1 = -1 —1) =
Ri(t.9) + SAR(Y) - (L) By(ty) + IRt~ Lo Ry + P2 D g = o
(2.4.27)
R(T,y) =0, (2.4.28)
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where o = (7, ﬁaL), & and ot are (n x m)- and n x (n —m)-matrices, respectively. Therefore,

v(t,x) = o (t,z) Ry(t, ) defines variance-optimal martingale measures by the density

Er </§(5,§5)’dw5 + lip /Rx(s,gs)/gL(s,gs)dwsL> .

Now let us apply this result to the stochastic volatility model considered by Laurent and Pham [49].
Assume that p = 2. Let an asset price process S be described by the SDE

dS; = diag(Sy) [a(t, Sp, Y)dt + 6(t, Sy, Yy)] iy,

N N (2.4.29)
d)/;f = (t7 St7 }/;f)dt + 51 (ta Sta }Q)dwt + 52(t7 St7 }/;f)dwt ’
where
s o
diag(Sy) = | ............... C S =", 8"y eR?, v e RV,
(m)
0 Sy

Let us introduce £ = (InS,Y) and rewrite (2.4.29) in the form (2.4.1)—(2.4.3) assuming

bw):<ﬂ<t,s,y>+%dg<5<t,s,y>5'<t,s,y>>>’ a(t,x>:<5<tasay> 0 > o0

w(t, s,y) o1(t, s,y) Oa2(t, 8, y)
p(t,x) = flts,y),  8(t,2) =0(t, 5,y),
where 2 = (In s,y) and by dg(T') = (711, - - - , Ymm)" We denote the vector of diagonal entries of a matrix

I'= (vij)ij<m-
Assume that the following conditions hold:
(D1) the coefficients fi, ut, 61, d2, and § are bounded continuous functions satisfying the local
Lipschitz condition;
(D2) there exists a constant ¢ > 0 such that

(o0'(s, )\, \) > eI\
for all s € [0, 7], z € R™, and A\ € R™, where o is defined by (2.4.30).
It is easy to see that (D1) and (D2) imply that conditions (C1), (C2*), and (A3) are satisfied.

The processes X (with coefficients (2.4.30)) and S from (2.4.1) and (2.4.29), respectively, admit the
same martingale measures

Er (—/5(s,ss,y;)’dws - /V;dwj> =& (—/0(8,58)'dw8 - /u;dwj) :

0(s,Ss,Ys) = (5*1(5, Ss, Ys)f(s,Ss,Ys) = 0(s,&s).
Therefore, the value processes corresponding to models (2.4.30) and (2.4.29) coincide and, by the
Markov property, it can be represented as v(t,St,Yt) = V(t,&). Thus, ‘N/(t,s,y) = V(t,lns,y) =
V(t,z), and the Bellman equation derived by Laurent and Pham for (2.4.29) (see [49, Eq. (6.14)]) can
be obtained from (2.4.9) for coefficients (2.4.30) by changing the variables (Ins,y) — x. Hence we
obtain the existence and uniqueness of a solution of (2.4.26) from [49] in the sense of Theorem 2.4.1.
Equation (2.4.26) for (2.4.30) can be rewritten as

where

_ _ 1 _ 2
(LR)(t ) = 20 (€ y) a1, @) = 5 |02l ¢, y) B (1)

_ - _ - 2 _ _
5 |80t ey Rt ) = 81t e, ) RE(t,2)| 4+ [0t 7, )2 = 0,

(t,x) = (t,z,y) € [0,T] x R™ x R"™™  (2.4.31)

N[ =
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since, in this case, 'R, = &R, — 0jR} and ot'R, = ShRL, where R, = (R.,—R}), R, =
(Royy-- Ry)s and R = —(Ry,yys - Ray).
Let us consider the following two cases:
Case I The coefficients i+, 8, 01, 62, and 6 are independent of the variable y, i.e., we have the func-
tions put(t,s), 8(t,s), 61(t, ), d2(t,s), and A(t,s). Then the solution of (2.4.31) is independent
of y and v = 0.
Case II The coefficients u', 5, and 6 are independent of s and §; = 0. Then the solution of
(2.4.31) is independent of s, and we have

(LR)(t,7) — %@(t,y)R;\? 0y =0, R(T,y)=0. (2.4.32)

For U(t,y) = e Y we obtain the linear SDE
(LU)(t,y) — 16(t,9)*U(t,y) =0, U(T,y) =1.

Therefore,
T
Ult,y) = B exp | — / B(s,Yo)Pds | . Rlt.y) = —WU(ty), o(t.y) = h(t.y)RE(t.y).
t

Remark 2.4.3. In Case II, Laurent and Pham [49], under some smoothness conditions on the coef-
ficients (using the results from Krylov [47] and Friedman), showed that Eq. (2.4.32) admits a unique
solution of class C12. In [49], Laurent and Pham also derived a Bellman equation equivalent to (2.4.26)
for a more general case (2.4.29). As was mentioned in [49], the solvability of (2.4.26) in the class C'!»?
is an open question and the value function can be characterized only in terms of viscosity solutions.
We solve Eq. (2.4.26) in the class VML of functions which, in contrast to viscosity solutions, admit all
generalized first-order derivatives.

2.5. Minimal Entropy Martingale Measure

The minimal entropy martingale measure minimizes the relative entropy of a martingale measure
with respect to the measure P. It is known (see [30, 71]) that for a locally bounded process X, the
minimal entropy martingale measure always exists, is unique, and if there is a martingale measure
with finite relative entropy, then the minimal entropy martingale measure is equivalent to P.

The aim of this section is to give the construction of the minimal entropy martingale measure when
the dynamics of the discounted assets price process is governed by a continuous semimartingale. We
obtain a description of the minimal entropy martingale measure in terms of the value function of a
suitable problem of an optimal equivalent change of measure and show that this value process uniquely
solves the corresponding semimartingale backward stochastic differential equation (BSDE). We show
that in two specific extreme cases (already studied in [5, 49, 73] in connection with the variance-
optimal martingale measures), this semimartingale BSDE admits an explicit solution, which gives an
explicit construction of the minimal entropy martingale measure. In particular, we give a necessary
and sufficient condition for the minimal entropy martingale measure to coincide with the minimal
martingale measure, as well as with the martingale measure appearing in the second above-mentioned
extreme case.

Let

Mg, ={Q € M*“: EZ%2 anng < 00}

We assume that the following conditions hold:

(A) all (F, P)-local martingales are continuous;

(B) there is an equivalent martingale measure @) such that EZjQ In Zj? < o0, i.e.,

nt # 0. (2.5.1)
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Note that conditions (A) and (B) imply that X is a continuous semimartingale satisfying the structure
condition. This means that X admits the decomposition

Xy = Xo + Ay + M, (2.5.2)

where M is a continuous local martingale and there exists a predictable R%valued process \ such that
dA = d(M)X with Kr = fOT Ned(M)shs < oo, where ’ denotes the transposition. The process K is
called the mean-variance tradeoff process of X (see [85] for the interpretation of the process K).
Since X is continuous, any element @) of M€ is given by the density ZtQ, which is expressed as an
exponential martingale of the form
E(=A-M+N), (2.5.3)

where IV is a local martingale strongly orthogonal to M and the notation A- M stands for the stochastic
integral.

If the local martingale Z = £(—\- M) is a true martingale, then dP/dP = Zr defines an equivalent
probability measure called the minimal martingale measure for X.

We denote by Nept(X) the class of local martingales N strongly orthogonal to M such that the
process (E(—=A-M+N),t € [0,T]) is a strictly positive P-martingale with EEp(—A- M+ N)InEp(—A-
M + N) < oo. Then

e _ _dQ
M(ﬁ'nt—{Q Pdp

We recall the definition of BMO-martingales and the reverse Holder L In L-condition.
The square integrable continuous martingale M belongs to the class BMO iff there is a constant
C > 0 such that

L =Er(-A-M+N), N ¢ Ngnt(X)} . (2.5.4)

E?((M)r — (M).|F,) < C (2.5.5)
for every stopping time 7. The smallest constant with this property is called the BMO norm of M

and is denoted by || M ||Bmo-
Let Z be a strictly positive uniformly integrable martingale.

Definition 2.5.1. The process Z satisfies the Rgp:(P) inequality if there is a constant Cy such that
Zr  Zr
EFl—Ih—IF. | <C 2.5.6
<ZT "z > = (2:5.6)
for every stopping time 7.

The proof of the following assertion can be found in [78] (see [21, 41] for the case zP, p > 1).

Proposition 2.5.1. Let E(M) be an exponential martingale associated with the continuous local mar-
tingale M. Then if E(M) is a uniformly integrable martingale and satisfies the Rgpi(P) inequality,
then M belongs to the class BMO.

Also, let us recall the concept of relative entropy (see [12] about the basic properties of the relative
entropy).

The relative entropy, or the Kullback—Leibler distance, I(Q, R) of the probability measure () with
respect to the measure R is defined as

I(Q,R) = ER% In %. (2.5.7)

The minimal entropy martingale measure QQ* is a solution of the optimization problem
inf I(Q,P)=1(Q" P),
Jn, 1Q.P) = 1@ P)

where M is the set of measures Q absolutely continuous with respect to P such that X is a local
martingale under Q.
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Proposition 2.5.2. If X is locally bounded and there exists Q € M™®* such that 1(Q, P) < oo, then
the minimal entropy martingale measure exists and is unique. Moreover if I(Q,P) < oo for some
Q € M°®, then the minimal entropy martingale measure is equivalent to P.

Remark 2.5.1. This assertion is proved in [30] under the assumption that X is bounded and defines
the class M€ as the set of equivalent measures @) such that X is a martingale (and not a local
martingale) under . The proof is the same if X is locally bounded and M¢ is defined as in the
Introduction.

Since any continuous process is locally bounded, under assumptions (A) and (B), the minimal
entropy martingale measure always exists and is equivalent to the basic measure P. Therefore, here-
after, we consider only equivalent martingale measures and focus our attention on the construction
and properties of optimal martingale measures.

Thus, we consider the optimization problem

inf EEHMO)InEr (M), 2.5.8
Qe%m T(M™)InEp (M) ( )

Let us introduce the following notation:

Er(M®)
Qy_ °T Qv QN (@
Er(M?) 5009) (M®)yp = (M) — (M?),,
and let
= essinf E M1 M®|E) = inf E9(1 —\-M + N)|F, 2.5.
Vi= gssinf B(Er(MO)mEr(MO)F) = essinf (In & ( +N)|F) (2.5.9)

be the value process corresponding to the problem (2.5.8).
Also, let us introduce the process

_ 1 .
Ve=3 gsint EQ((M®) | Fy). (2.5.10)

Remark 2.5.2. We see later that V; = V; if there exists an equivalent martingale measure satisfying
the Rgj,: inequality.

The optimality principle, which is proved in a standard way (see, e.g., [23, 41, 49]), takes the
following form in this case.

Proposition 2.5.3.  (a) There exists an RCLL semimartingale, still denoted by Vi, such that for
each t € [0,T7],
Vi = essinf EC(In &1 (MO)|Fy).

QeME'nt

V; is the largest RCLL process equal to 0 at time T such that Vi+1In & (M®) is a Q-submartingale
for every Q € Mg, ,.

(b) The following properties are equivalent:
(i) Q* is optimal, i.e.,

Vo= inf ECWm&E(M®)=E? In&Ep(MQ);
0= odbf. (M%) (M=)

(il) Q* is optimal for all conditional criteria, i.e., for each t € [0,T],
Vi = EQ (InEr(M)|F)  as.;
— (iii) Vi + n&(MQT) is a Q*-martingale.

The following statement proved in [15] is a consequence of Proposition 2.5.3b.
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Corollary 2.5.1. If there exists an equivalent martingale measure Q whose density satisfies the
Rent(P) inequality, then the density of the minimal entropy martingale measure also satisfies the
Reni(P) inequality.

Proof. 1t follows immediately, since for any stopping time 7

E(&r(MO)InEp(MY)|E,) = Qesi/itnf E(&r(M®)In & (MO)|F,)
E e

Ent
< BE(Ex(MO)In&7(M@)/F,) < C.
The corollary is proved. O

2.6. Backward Semimartingale Equation for the Value Process
Related to the Minimal Entropy Martingale Measure

We say that a process B strongly dominates a process A and we write A < B if the difference
B-Ace Afgc, i.e., if it is a locally integrable increasing process. Let (A?,Q € Q) be the family of
processes of bounded variations, zero at time zero. Denote by ess ianeQ(AQ) the largest process of
finite variation, zero at time zero, which is strongly dominated by the process A€ for every Q € Q,
i.e., this is “ess inf” of the family (A9, Q € Q) relative to the partial order <.

Let us consider the following semimartingale backward equation:

1
Y, =Yy — essinf |=(M% M@ L Ly, t<T, 2.6.1
¢ = Yo~ essinf 5 (M%)t +{ )t| + L (2.6.1)
with the boundary condition
Yr =0. (2.6.2)
We say that the process Y is a solution of (2.6.1), (2.6.2) if Y is a special semimartingale with
respect to the measure P with the canonical decomposition

Y; =Yo+ Bi+ Li, BE€Aq, LeMi,, (2.6.3)
such that Y7 =0 and
1
B, = — essinf |=(M@ M@, L),| . 2.6.4
== g [0+ 0r0.m 26
Let

t
Lo= [widst+ B (Ean <o, (2.65)

0

be the Galtchouk—Kunita—Watanabe decomposition (G-K-W) of L with respect to the martingale M.

Lemma 2.6.1. If there exists () € Mg, , such that M@ € BMO, then the martingale part L of any
bounded solution Y of Eq. (2.6.1), (2.6.2) belongs to the class BMO and

ILllemo < (2C + 1)%|M?||swmo, (2.6.6)

where C' is an upper bound of the process Y .

Proof. Using the It6 formula for Yi,% — Y2 and the boundary condition Y7 = 0, we have

T
(Lyr — (L)r + 2/st(Bs + L) <0 (2.6.7)
T
for any stopping time 7. Since Y satisfies (2.6.1)
1
By + 5 (M) + (M@, L), € A, (2.6.8)
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and, therefore, (2.6.7) implies that
T T T
(L)yp — (L), + 2/stLs — /st<MQ>s - 2/Y8d<MQ,L>S <0. (2.6.9)

Without loss of generality, we may assume that L is a square integrable martingale; otherwise, one
can use localization arguments. Therefore, if we take the conditional expectations in (2.6.9) having
inequality |Y;| < C in mind, we obtain

T
E((Lyr — (L);|F;) — CE ((M@)p — (M®),|F;) — 2CE / |d(M@ L),J||F. | <o0. (2.6.10)

Now using the conditional Kunita—Watanabe inequality from (2.6.10), we have
E((L)r = (L)-|Fy) = 2011M@gyi6 BV ((L)r = (L)+|F) = CIIM@lmyio < 0. (2.6.11)
Solving this quadratic inequality with respect to z = EV/2((L)p — (L),|Fy), we obtain the estimate
E((L)r — (L);|F7) < (2C + 1)*| M?|[pmo-

Since the right-hand side is independent of 7, estimate (2.6.6) also holds and L belongs to the
space BMO. 0

The value process of problem (2.5.8) defined by (2.5.9) is a special semimartingale with respect to
the measure P with the canonical decomposition

Vi=Vo+mi+ Ay, meM., A€ Ape. (2.6.12)
Let
t
my = /sO’des + g, (M, M) =0, (2.6.13)
0

be the GKW decomposition of m with respect to M.
Now we formulate the main statement of the paper.

Theorem 2.6.1. . Let conditions (A) and (B) be satisfied. Then the following assertions hold.

(a) The value process V is a solution of the semimartingale backward Eq. (2.6.1)—(2.6.2). Moreover,
a martingale measure Q* is the minimal entropy martingale measure if and only if it is given
by the density dQ* = Er(M®")dP, where

t
MY = —/Xdes — 1. (2.6.14)
0

(b) If, in addition, the minimal martingale measure exists and satisfies the reverse Holder Rgnt-
inequality, then the value process V is a unique bounded solution of (2.6.1)—(2.6.2).

Proof. (a) By Condition (B), there exists Qe Mg, ., and according to Proposition 2.5.3, the process
Zy=Vi+1n fi’t(M Q) is a Q-submartingale; hence it is a P-semimartingale by the Girsanov theorem.

Since Er(M®) is strictly positive and continuous, the process In & (M®) is a semimartingale; conse-
quently, the value process V is also a semimartingale under P. Condition (A) implies that any adapted
RCLL process is predictable (see [76]), and hence any semimartingale is special. Therefore, V is a
P-special semimartingale admitting decomposition (2.6.12).
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The processes m — (m, M?) and M@ — (M®) are Q-local martingales by the Girsanov theorem.
Therefore, since

1
Zy =Vi+In&(M®) = Vo +my + A+ MP — §<MQ>t
1
= Vo + (my — (m, MP),) + (M2 — (M®);) + A, + 5 (M) + (m, M), (2.6.15)
and since V; + In &(M@) is a Q-submartingale for every @ € ME, ., we have
1
A+ §<MQ>,5 + (m, M), € Al (2.6.16)
for every Q € Mg, ,.
On the other hand, according to Proposition 2.5.2, the optimal martingale measure QQ* exists and is

equivalent to P. Therefore, by the optimality principle, the process V;+1n & (M Q*) is a Q*-martingale,
and using the Girsanov theorem once again, we obtain

1
A+ 5<MQ*>t + (m, M@*), = 0. (2.6.17)
Relations (2.6.16) and (2.6.17) imply
1

and hence the value process V satisfies Eq. (2.6.1) and, obviously, V7 = 0. Relation (2.6.17) implies
that the processes A; and hence V; are continuous.

Now let us show that the optimal martingale measure Q* is given by (2.6.14).

From (2.6.18), we have

1

Ay = —%O\ M)+ (A M,m)y — essinf <§<

NENgnt(X)

N+ (N,

1 L 1 : -
= —§<)\ M)+ (X M,m); + §(m>t —5 Neejs&ir:(fx)«N + m)¢)

= _%Q\ M)+ (N M,m), + %<m>t, (2.6.19)

since

inf ((N +m)) = 0. 2.6.20
Ng?vii?(x>(< +1m)¢) ( )

To prove relation (2.6.20), let us define the sequence of stopping times
- 1
Tn:inf{t:gt(]\f) >— or &(—A-M—nm) Zn} AT,
n

where N is a local martingale from the class Mg, (X), which exists by condition (B). It is not difficult
to see that the local martingale N = —m™ + N — N™ belongs to the class Ng,.(X) and 7, T T.
Therefore,

Néa]svsgiltl(fx)((N +m)e) <(N" +m)y = (m—m™ +N—N™) <2((m)t — (M)tnr, + (N)t — (N)iar,)

for each n > 1 and (2.6.20) holds, since the right-hand side of the latter inequality tends to zero as
n — oo. Here, as above, m is the orthogonal martingale part of m in the GKW decomposition (2.6.13)
and m™ = (M., t € [0,T)) is a stopped martingale.
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By the optimality principle, V; + In&(M®?") is a Q*-martingale. Since V solves Eq. (2.6.1), this
implies
]. 1 * *
essinf | = (M@ + (M9 m);| = =(MP); + (MY m),. (2.6.21)
QEM;nt 2
Since M?" is represented in the form —\- M + N* for some N* € Ng,,;(X), it follows from (2.6.19) and
(2.6.21) that the processes N* and 7 and hence the processes M@ and —\- M — 7 are indistinguish-
able. Therefore, the minimal entropy martingale measure is unique and admits representation (2.6.14).
(b) It is easy to see that the value process satisfies the two-sided inequality for all ¢ € [0, T

0<V<C as. (2.6.22)

The positivity of V follows from the Jensen inequality. On the other hand, if there exists a martingale
measure () satisfying the reverse Holder Rg,: inequality, we have that V' is bounded above, since
Vi= ossinf E(Er(M®@)In & (MQ)|Fy) < E(Er (M) In & (MO)|F) < C.
€ gnt
Thus, V' is a bounded solution of (2.6.1), (2.6.2).
Uniqueness. Let Y be a bounded solution of (2.6.1), (2.6.2). Let us show that the processes Y and
V are indistinguishable. Since Y solves (2.6.1) we have

1
Y, +In&(M®) = Yy + Ly + B, + MP — §(MQ>,5
1 . 1
= Yo+ (L = (LM + (M2 = (49 + 5009, + (LM, ~ gssint | 3009, + (£,21,].
Ent
(2.6.23)

Therefore, the Girsanov theorem implies that Y; + In&(M®) is a Q-local submartingale for every
Q € Mgnt'
Thus, the process
YiE(M®) + E(MP)In&(M?)
is a local P-submartingale.

Since (&(M®),t € [0,T]) is a martingale satisfying the condition EE7(M®)InEp(M?) < oo, the
process &(M®)In &(M®) is from the class D, since a submartingale is bounded from below (by the
constant —1/e). On the other hand, the process Y;&(M®) is also from the class D, since Y is bounded
and &(M®) is a martingale (see, e.g., [19]). Thus, Y;&(M®) + & (M) 1In &(M®?) is a submartingale
from the class D, and hence from the boundary condition, we have

ViE(MO) + E(MP) In&(M?) < E(Er(M®) In Ep(MC)|Fy)

for all @ € Mg, , and
Y; < S5 inf E[Er(M®)InEqp(MP)|Fy] = V. (2.6.24)
€ g’nt
Let us show the converse inequality.
Similarly to (2.6.19) we have

1 1 -
By=—5(\- M)+ (X M, L)+ (L), (2.6.25)
and the infimum is attained for the martingale
N, = —L,, (2.6.26)

where L is the orthogonal martingale part of L in the GKW decomposition (2.6.5).
Let M@" = —X\- M — L. Since the minimal martingale measure satisfies the Ren(P) condition,
Proposition 2.5.1 implies —\ - M € BMO. On the other hand, for any s < ¢,

<L>t - <I~’>s < <L>t - <L>S7
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and hence Lemma 2.6.1 implies that M @” € BMO. Therefore, from [41], it follows that the process
(E(MQ°),t € [0,T)) is a martingale, and hence dQ° = Ep(MQ")dP defines an absolutely continuous
martingale measure.

It is casy to see that Y; + In&(M?") is a local martingale under Q°. Indeed, (2.6.25) and (2.6.5)
imply

1 1=
Y, +In&(MQ) =Yy + Ly — A M+ (A M, L)t + 5 (L

— (A M) = L= g M) (B = Yok (- ) - X) (2627)

which is a Q-local martingale, by the Girsanov theorem. Therefore,
Zy = ViE&(M?) + &(MP ) In &(M")

is a P-local martingale.
Let us show that Q¥ € Mg, and that the process Z is a martingale. It is easy to see that

1
Z, > —C&M) - =
e
Thus, Z is a local martingale majoring a uniformly integrable martingale, hence it is a supermartingale,

and we have
V&MY + &M ) nE(MP) > B(YrEr(MP) + Ep(M@) In&p(MP°) | F).
Therefore, from (2.6.2) and (2.6.24) we obtain
B(Eq (M) In&p(MY)|F) <Y, <V < C. (2.6.28)

The latter inequality implies that EEp(M QO) In&Ep(M QO) < oo and that QU is optimal, and hence by
Proposition 2.5.2, Q° is equivalent to P and Q° € M¢€. Using the same arguments as before, we have
that Z is a local martingale of class D and, therefore, it is a martingale (see, e.g., [19]). Now, the
martingale property and the boundary condition imply that

Y, = E(Er (M) In & (M@)|F). (2.6.29)
Since Q° € ME,,, the relation Y; = V; a.s. for all t € [0, 7] results from (2.6.24) and (2.6.29), hence V
is the unique bounded solution of Eq. (2.6.1), (2.6.2). O

Now we formulate Theorem 2.6.1(b) in the following equivalent martingale form.
Proposition 2.6.1. Let the conditions of Theorem 2.6.1(b) be satisfied, and let
t
Vi = Vo + A + /cp’des g, (M) =0, (2.6.30)
0

be the decomposition of the value process. Then the triple (Vy, ¢, m) is a solution of the martingale
equation

T
¢+ /¢;dMs + Ly = %(A-Mﬁ — (A M, M) — %<L>T (2.6.31)
0

and c € Ry, ¢ - M, and m € BMO. )
Conversely, if a triple (¢,v, L) such that ¢ € Ry and ¢ - M,L € BMO solves (2.6.31), then the
process Y defined by

Y, =F <%</\ My — (A M- M) — %<E>tT|Ft> (2.6.32)

is a bounded solution of (2.6.1)—(2.6.2) and coincides with the value process.
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Proof. Relation (2.6.19) implies that Eq. (2.6.1), (2.6.2) is equivalent to the backward semimartingale
equation

t
1 1 - -
YtZYO—5(/\'M>t+()\'M,Z/J'M>t+§<L>t+/¢édMs+Lt, (2.6.33)
0

Yy = 0. (2.6.34)

Since V solves Eq. (2.6.33), using the boundary condition (2.6.2), we obtain from (2.6.33) that the
triple (Vo, ¢, m) satisfies (2.6.31). Moreover, it follows from Lemma 2.6.1 that ¢ - M, m € BMO.
Conversely, let the triple (c,1, L) solve (2.6.31) and Y be the process defined by (2.6.32). Using
the martingale properties of the BMO-martingales ¢ - M and L, we see that the martingale part
of Y coincides with Vj + fg YLdM, + Ly, hence Y satisfies (2.6.1), (2.6.2). Since v - M, L € BMO,
the conditional Kunita—Watanabe inequality and (2.6.32) imply that Y is bounded and, therefore, YV
coincides with the value process by Theorem 2.6.1(b). O

It is well known (see [30, 78]) that Q* is the minimal entropy martingale measure if and only if

(i) Er(MP") = ectlo WadXs for some constant ¢ and an X-integrable h;
(i) BQ" [ nldX,=0and E? [ hdX, >0 for any Q € M%,,.

The sufficiency part of this assertion is difficult to verify, since condition (ii) involves the optimal
martingale measure. The following consequence of Theorem 2.6.1 shows that the integrand h of the
minimal entropy martingale measure can be expressed in terms of the value process V', and since V'
solves Eq. (2.6.1), (2.6.2), condition (ii) is automatically satisfied.

Corollary 2.6.1. A martingale measure Q* is the minimal entropy martingale measure if and only
if the corresponding density admits representation

T
Er(MP) =exp | Vo + / (0s — Xs)dX, |, (2.6.35)
0

where @ is the integrand in the GKW decomposition of the martingale part m of the value process.

Proof. 1t follows from Theorem 2.6.1 and relation (2.6.19) that V satisfies the equation
1 1, . -
V}:Vb—§<A-M>t+<)\-M,cp-M>t+§<m)t+(g0-M)t+mt.

Taking the exponentials of both sides of the latter equation and using the definitions of the process
X and the Doleans-Dade exponential, we obtain

t
eVt =& (=AM —m)exp | Vo + /(cps —As)'dXs |, (2.6.36)
0
and from the boundary condition (2.6.2), we have
T
Er(=A-M —m) =exp | Vo + /(gos — ) dXs | . (2.6.37)
0

Now, since by Theorem 2.6.1, Q* is the minimal entropy martingale measure if and only if it satisfies
(2.6.14), the representation (2.6.35) follows from (2.6.14) and (2.6.37).
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Note that for the process ¢ — A, condition (ii) is satisfied. Indeed, (2.6.36) implies
t
Vi+In&(=X-M —m)=Vy + /(903 —Xs) dXs, (2.6.38)
0
and by the optimality principle,

¢
/(gos — ) dXs, t€10,T)
0
is a Q*-martingale, and hence
T
EY / (s — Xs)dXs = 0.
0

For any @ € Mg, , and = € [0,1], we set Q, = 2Q + (1 — 2)Q*. Then
7% = xEp (M) + (1 — 2)Ep(M?")

is the corresponding density and according to [30, Lemma 2.1], the function f(z) = EZfInZ7f is
differentiable in = and

4 B2 0 2l = B Er(M) (Er(MO) — £r(M),

Moreover, Q* is optimal if and only if % flz=0 = 0. Therefore, from (2.6.38) and the latter inequality,
we obtain

T
E¢ /(% — ) dX,=EC®IEp(—X\- M —1m) -V
0
> ElnEp(M9)(Er(M®) — Er(MY7)) >0 (2.6.39)
for any Q € Mg, ,, and hence (ii) is satisfied. O

Corollary 2.6.2. If there exists a martingale measure Q whose density satisfies the reverse Holder
inequality Rent(P), then )
Vi=Vi (2.6.40)

Proof. Denote by Ren:(X) the set of martingale measures ) whose densities Z€ satisfy the Rg,(P)
inequality. By Corollary 2.6.1, the minimal entropy martingale measure Q* is in Rgp:(X). Therefore,

Vi = Qegi/ilrelf EC(n&qr(MO)|F) = Qe%sinfx E9(In&p(MQ)|Fy)

Ent ERent

QERent(X) 2 QERen(X)
since Q € Rene(X) implies M@ € BMO (Proposition 2.5.1), and according to [21, Proposition 7],
from M® € BMO(P) we have that the process M% — (M%) is a BMO-martingale with respect to the

measure Q, and hence EQ(MS3. — (M)r|F;) = 0.
We recall that My = Mp — My and (M)yp = (M)p — (M)y. O

1 1
— essinf B9 (Mf% — (M) + §<MQ>tTyFt) =5 essinf E?((M)ir|F)

This expression of the value process allows us to determine easily the minimal entropy martingale
measure in some particular cases.

Proposition 2.6.2. Assume that the minimal martingale measure Q™™ belongs to the class Mg,
and X- X is a martingale with respect to any Q € Mg, ,. Then the following assertions are equivalent:

365



(1) the minimal entropy martingale measure Q* coincides with the minimal martingale measure
Qmin;

(2) the mean variance tradeoff admits the representation

N M)p=c+ / YLdX, (2.6.41)

for some constant ¢ and X -integrable process 1 such that
T T
Fin / YldX, =0, E9 / PhdXs >0
0

for any Q € Mg, ,.
Proof. (1)=(2). Let Q* = Q™. Then by Corollary 2.6.2,

T
Er(—A- M) = exp | Vo + / (05 — A)dX, | | (2.6.42)

where ¢ is defined by (2.6.30). It follows from (2.6.42) that
T T
exp{ — / N.dM, — <)\ M § = exp V0+ gosts - / NdM; — (- Mg 5 .
0 0

which implies
1 T
§<A “M)r=Vo + / psdXs, (2.6.43)
0

and hence (2.6.41) is satisfied with ¢ = 2¢p and ¢ = 2V4,.
Since

E? / MNdXs =0

for any Q € Mg, ,, it follows from (2.6.39) that
T T
EQ/go;dXS > EQ//\’SdXs =0
0 0

for any @ € Mg, ,. Moreover, (2.6.36) implies
t
Vi+In&(—X- M) =Vy+ /(905 =) dX (2.6.44)
0
and by the optimality principle,

t
/(905 - /\s)/dX57 te [07 T]
0
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is a Q™" -martingale, hence

T T
Emin / ©ldX, = E° / N.dX, = 0.
0 0
(2)=(1). If (2.6.41) is satisfied, then
T T
Er(-A- M) =expq — [ NdXo+ 500 Mr b —expd § 4+ [ (o= Ayax. b,
0 0
and it is obvious that .
E“ /(5% — X)) dXs >0
0
for any @Q € Mg, , and
T
Emin /(%ws - )\s)/dXs =0,
0
hence Q* = Q™™ by Theorem 2.3 of Frittelli (given above). O

Corollary 2.6.3. Assume that the mean variance tradeoff (A - M)t is bounded. Then Q* = Q™™ if
and only if (2.6.41) is satisfied for some constant ¢ and X -integrable process 1 such that

t
/¢;dXs, te[0,7T)
0

s Q™™ -martingale.

The proof follows from Proposition 2.3.2 since the boundedness of (A - M) implies that A - X is a
martingale with respect to any @ € Mg, ,. Moreover, if equality (2.6.41) is satisfied and if

t
/w;dXS, t e [0,T]
0

is a martingale with respect to some @ € Mg, ,, then this process is bounded and is a martingale with
respect to any Q@ € Mg, ,.

Remark 2.6.1. Condition (2.6.41) is satisfied in the case of “almost complete” diffusion models (see,
e.g., [73]) where the market price of risk is measurable with respect to the filtration generated by the
asset price process.

Corollary 2.6.4. The mean variance tradeoff (X - M) is deterministic if and only if the minimal

entropy martingale measure coincides with the minimal martingale measure and ¢ = 0 ptM)
where o is defined by (2.6.13) and ™) is the Dolean measure of (M).

-a.e.,

The proof immediately follows from Proposition 2.6.1.

Proposition 2.6.3. Assume that the minimal martingale measure exists and satisfies the reverse
Holder Rgni-inequality. Then the density of the minimal entropy martingale measure is of the form

40 _ _exp{= JTNdX )
4 Eexp{— fOT ANdXs}

(2.6.45)
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if and only if
1
exp{—§(/\-M>T} =c+mr (2.6.46)
for some constant ¢ and a martingale m strongly orthogonal to M.

Proof. Let Z1(Q*) be of the form (2.6.45). By (2.6.14), we have

T
— MNdX,
Er(—\- M — ) = expi fOTS }7
E exp{— fo NodXs}

which implies that

exp{—%()\ . M>T} _ cexp{—mT - %<m>T} — cEp(i) = c+c/T55(m)de,
0

where the martingale m orthogonal to M is defined by (2.6.13) and belongs to the class BMO according
to Lemma 2.6.1. Therefore, (2.6.46) is satisfied with

t
g = ¢ / €. () diis,
0

which is a martingale according to [41].
Conversely, let (2.6.46) be satisfied. Then using the It6 formula for In(c + 1), from (2.6.46), we

have
T

1 1 1/ 1
Inc+ dimg = ——(N-M)r + - dms )
nc /c msm 2( ) 2</c msm>

0
which implies that the triple

t

~ 1
—lne, ¢ =0, L:—/ —dmg
0

is a solution of the martingale equation (2.6.31). The martingale HLm - m belongs to the class BMO,
since by (2.6.46), ¢ +m; < 1 and Proposition 2.5.1 with the Jensen inequality imply

c+ 1y = E(67%</\'M>T/]-"t) > E(e*%(A'MhT/]:t) > o~ 3 E(A-M)er/F) > e3C

Since the solution of (2.6.31) is unique in the class R1 xBMO x BMO, we obtain that ¢ = 0. Therefore,
it follows from Corollary 2.6.2 that Z7(Q*) is of the form (2.6.45). O

2.7. The Ito Process Model

We consider the diffusion model for the financial market as in Karatzas et al. [40] and Laurent
and Pham [49]. Let W = (W', ..., W") be an n-dimensional standard Brownian motion defined
on a complete probability space (€2, F, P) equipped with the P-augmentated filtration generated by
W, F = (F,t € [0,7T]). Denote by W! = (W' ..., W9 and W+ = (WL .. W") the d- and
(n — d)-dimensional Brownian motions, respectively.

Assume that there are d risky assets (stocks) and a bond traded in the market. For simplicity, the
bond price is assumed to be 1 at all times and the stock price dynamics is given by

dX; = diag(X,)(pedt + o dW}), te[0,T), (2.7.1)
where diag(X) denotes the diagonal (d x d)-matrix with diagonal entries (X!,..., X9).
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The market coefficients: the d-dimensional vector process p of stock appreciation rates and the
volatility (d x d)-matrix o are progressively measurable with respect to F. We also require that for
any t € [0, 7], the volatility matrix is nonsingular almost surely. We take n > d, so that there are more
sources of uncertainty than stocks available for trading and the market is incomplete in the Harrison
and Pliska sense (see [35]).

Straightforward calculations yield that in this case, A = diag(X ~!)(co’) ™, where ¢’ denotes the

transposition of o,
t
/XdM /e’dwl )\-M)t:/HHSHst
0

is the mean variance tradeoff, and 0 = o~ !y is the market price of risk. As before, we denote by M¢
the set of equivalent martingale measures of X. Let K(o) be the class of F-predictable R"~%-valued

processes v such that fOT llv¢||?dt < oo, a.s. Since o is nonsingular, by the It6 representation theorem,
any local martingale N strongly orthogonal to M = diag(X)o - W' admits the integral representation

t
/udWL
0

for some v € (o), and from (2.5.3) the density of any martingale measures is expressed as
t

¢

7 — & —/e;dwg + / vawkt |, tep.m, (2.7.2)
0 0

for some v € K(0). Let

Kent(o) ={v e K(o) : EZ} =1, EZ{In Z} < co}.
Then the subclass Mg, , of equivalent martingale measures is given by
M, ={P" :dP"/dP = Z}, v € Kgni(0)}, (2.7.3)

and condition (B) is equivalent to Kgpt (o) # 0.
Assume that the following condition holds.

(C) the mean variance tradeoff is bounded, i.e.,

/||95H2d3 < C as. for some C > 0.

Remark 2.7.1. This condition is satisfied if the market price of risk # is bounded. Note that condition

(C) implies that the minimal martingale measure exists, i.e., EEp(— fo 0.dW!) = 1, and satisfies the
reverse Holder Rg,(P) inequality, since for any stopping time T,
E&r(=A-M)n& (=X M)|F;) = E(&r(=A- M){(\- M), r|F;) <C. (2.7.4)
According to Corollary 2.6.3 and (2.7.2), problem (2.5.10) is equivalent to
T
o E"/(]05||2 T lvl?)ds, (2.7.5)
2 VG’CEnt(U)
0
and the corresponding value process takes the form
T
1
Vi = = essinf E” /(HQSH2 + |lvs|P)ds| Fy | (2.7.6)
2 VE]ant(g)

t
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By the martingale representation theorem, the martingale part of the value process is expressed as

a stochastic integral
t t

me = /gpgdWsl 4—/<psl/aleL (2.7.7)
0 0

and it is easy to show (e.g., since the essential infimum in both expressions is attained) that in this
case,

t

1 1 1

st (M) + <MQ,m>t] =/Vg[§fd [§||93||2+ SVl = Oos + /5 | ds. (2.7.8)
0

Since condition (C) implies that the minimal martingale measure satisfies the Rg,:(P) inequality and
the filtration F' is continuous, the following statement follows from Theorem 2.6.1(b) and Eq. (2.7.8)
as a corollary.

Theorem 2.7.1. Let condition (C) be satisfied. Then the value process V is a unique bounded positive
solution of the BSDE

t t t
1 1 /
VYoo [ int G102+ gi? - o+t ase [uawis [uraws ve—o @19)
veR"—
0 0 0

Moreover, v* is optimal if and only if
vi = —¢f dt x dP-a.e., (2.7.10)

i.e., the density of the minimal entropy martingale measure has the form

Zy = &r —/egdW; —/@j‘/dW:‘ : (2.7.11)
0 0

Remark 2.7.2. Since the essential infimum in (2.7.8) is attained for v = —j-, Eq. (2.7.9) is equiv-
alent to

t t t
1 1 /
Vim Yo [ G102 - 00 gt P as [uiawle [odawt, ve—o. @7
0 0 0

Note that the martingale equation (2.6.31) equivalent to (2.7.9) takes the form
T T T . .
Yo+ / YWy + / vy AW = / [5H08HQ — O5tos — §rw$||2} ds. (2.7.13)
0 0 0

Now we consider two extreme cases in which Eq. (2.7.9) can be solved explicitly. These specific
examples were already studied by Pham et al. [73] and Laurent and Pham [49] in connection with the
variance optimal martingale measure using different methods.

Case 1. An “almost complete” diffusion model. Assume that the market price of risk is adapted to
the filtration F! generated by the Brownian motion W', i.e., § = (¢, W), ¢ € [0,T]). Denote by Q™"
the minimal martingale measure. Let E™™ be the expectation with respect to this measure.

By the Girsanov theorem, the process W' defined by

t
W} = /G(S,Wl)ds + W] (2.7.14)
0
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is the Brownian motion with respect to the measure Q™" and by the integral representation theorem
(see, e.g., [61, Theorem 7.12]), any @™"-local martingale adapted to F' ! is represented as a stochastic
integral; hence

T T T
/||95H2ds:Emin/\|6’s!\2ds+/zz;dwg. (2.7.15)
0 0 0
Obviously, from condition (C) we have
t
/ PLdW! e BMO.
0
Corollary 2.7.1. The triple (c,p, "), where
T
L min 2 1~ 1
=5F /HGSH ds |, ¢=59. ¢ =0,
is a unique solution of the martingale equation (2.7.13) in the class Ry x BMO x BMO. The process
T
s | [l0.pas | 1£)
t

coincides with the value process V', and the minimal entropy martingale measure coincides with the
minimal martingale measure, i.e., v* =0 and

78 = Ep(—0-Wh.

Proof. Let consider the process
Y; = 1Emin /|05||2ds|Ftl : (2.7.16)
Obviously, Y is bounded (by condition (C)) and positive. Since 6 is F! adapted, we have
T
Emm /||9 2ds|F! | — —/ye ds. (2.7.17)
0
Therefore, it follows from (2.7.14), (2.7.15), and (2.7.17) that
t
n:m—/(ﬂ&W—mew+§/%m& (2.7.18)
0 0

which means that Y is a bounded positive solution of (2.7.9) and (c, %@E, 0) is the unique solution of
(2.7.13) in the class R4 x BMO x BMO (see Proposition 2.6.1). Therefore, by Theorem 2.6.1(b), Y
coincides with the value process

T
1 .
V=g Em | [ Paslr
t
and hence the minimal martingale measure is optimal. O

371



Remark 2.7.3. Since the market price of risk is adapted to the filtration F*, the process 1 in (2.7.15)
is Fl-predictable. According to Corollary 2.6.4, the necessary and sufficient condition for Qr=Qm"
is that the mean variance tradeoff admits representation (2.7.15) for some F-predictable 1) such that

the process
t
[ v
0

Case 2. Assume that the market price of risk is adapted to the filtration F- generated by the Brownian
motion W+, i.e.,

is a martingale with respect to Q™™".

0=0(t,Wh), telo,T)).
Since 6 is F'+ adapted, by the integral representation theorem, there exists an F+ adapted process g
such that

T T T
1 1
exp —5/”95“2d8 = Eexp —§/HGSHst +/g;dWSL. (2.7.19)
0 0 0
Corollary 2.7.2. The triple (In(1/c), 1, ¢r), where
. T
Gt
c=FEexp{ —= / 105)1%ds p, ©=0, ¢if=— (2.7.20)
2 Bexp{=34 [ 6]2ds} + 5 gidW -

is a unique solution of (2.7.13) in the class Ry x BMO x BMO.

The process
T

1 2 12 1
2B | [ U817 = 1wt PyastE
t
coincides with the value process V', and the density of the minimal entropy martingale measure is of
the form

ZQ* N exp{— fOT )\;dXS}

(2.7.21)

T Bexp{— [ MdX,}
Proof. By the It6 formula, we have
T T T
In c+/ggdwj zlnc—/¢s’dwj - %/Hlﬁi‘wds (2.7.22)
0 0 0
and from (2.7.19) we obtain
T T
in(/e) + [ v aws =5 [(16.IP = st P)as, (2.7.23)
0 0

which coincides with Eq. (2.7.13) for ¢ = 0.

This means that the triple (In(1/c),, ") defined by (2.7.20) satisfies (2.7.13). Moreover, con-
dition (C) implies ¥ W+ € BMO, and since there is a unique solution of (2.7.13) in the class
R, x BMO x BMO, we obtain ¢ = ¢ = 0 and ¢+ = 1, where ¢ and ¢ are defined by (2.7.7).
Therefore, the process

T
1
Yi= 5 | [U8J7 - [01P)dsIF
t
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solves Eq. (2.7.9) and by Theorem 2.6.1(b), it coincides with the value process V, since fot Y dwlk e
BMO and condition (C) imply that the process Y is bounded. Since ¢ = 0, Corollary 2.6.2 implies
that the density of the minimal entropy martingale measure admits representation (2.7.21). O

2.8. Diffusion Model

We assume that the dynamics of the assets price process is determined by the following system of
stochastic differential equations:
dX; = diag(X,)(u(t, Xy, Y3)dt + o' (t, Xy, Yy)dW)), (2.8.1)
dY; = b(t, Xy, Yy)dt + 6(t, Xy, Yo)dW} + oL (t, Xy, Yy)dWi. (2.8.2)
Assume that the following conditions hold:
(D1) the coefficients p, b, 0, o!, and o are measurable and bounded;
(D2) the (n x n)-matrix function oo’ is uniformly elliptic, i.e., there is a constant ¢ > 0 such that
(o(s,z,9)\, o (s, z,y)A) > c|A]?
for all s € [0,T], x € Ri, y € R"? and A € R", where
it = (500 otin.)
In addition, we assume that
(D3) system (2.8.1), (2.8.2) admits a unique strong solution.

Let us introduce the value function
T

1 5
Vibay) =5 jnf B /(l!(%(s,Xs,Ys)H%Hv(s,Xs,Ys)H?)ds/Xt=x,Yt=y :
v Ent\T
t

where 6 = ¢! ' 1 and KM () is the class of feedback controls from Kgni(0), i.e., controls v € Kgnt (o)
expressed in the form v(t, X3, Y};) for some measurable function v(t,z,y), t € [0,T], = € Ri, y € R4,

Theorem 2.8.1. Let conditions (D1)—(D3) be satisfied. Then the value function V (t,z,y) admits
all first order generalized derivatives V, and V, and the generalized L-operator LV (in the sense of
Definition 1.7.1 of the Appendiz) is a unique bounded positive solution of the equation

1
LV(t,l‘,y) - Hl(tvxyy)dl(tvxa y)‘/y(ta 737y) + ‘/y/(tv x,y)b(t,x,y) + §||9(t7$)y)”2

1 /
+ iﬂgf . |:§||V||2 + Vot (t,x,y)V,(t,z,y)| =0 dtdrdy-a.s. (2.8.3)
ve
with the boundary condition
V(T,z,y) =0. (2.8.4)

Moreover, v* = —O’LVy, and the density of the minimal entropy martingale measure is of the form

Zh = Er —/0(3, X, Ye)dW! — /(alvy)(s,Xs, Y,)dWi
0 0
Proof. Ezistence. Since (X,Y) is a Markov process, the feedback controls are sufficient and the value
process is expressed by
Vi=V(t, X, Y:) as. (2.8.5)
(one can show this fact, e.g., similarly to [8]).

Moreover, the value process satisfies Eq. (2.7.9); therefore, it is an It6 process. It follows from
assumptions (D1) and (D2) that the value process is bounded and Theorem 2.6.1(b) implies that its
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martingale part is in BMO. Hence the finite variation part of V; is of integrable variation. Thus, from
(2.8.5), we have that V (¢, X, Y;) is an It6 process of the form (1.7.15) (see the Appendix). Therefore,
Proposition 1.7.1 of the Appendix implies that the function V (¢, z,y) admits a generalized L-operator,
all first-order generalized derivatives, and can be represented as

t
V(t, X, Yy) = Vo + / (Vi(s, X5, Ys) diag(X,)o' (s, Xy, Vo) + Vy (5, X, Ys)0(s, X, Ys) ) dW!
0

t t
- / Vi(s, X5, Yo)o (s, Xy, Y )dW,- + / LV (s, Xs,Ys)ds
0 0

t
+ /(Vx'(s,XS,YS) diag(Xs)p(s, Xs, Ys) + V, (s, X5, Ye)b(s, X, Ys))ds, (2.8.6)
0

where LV is the generalized L-operator defined in the Appendix (Definition 1.7.1).
On the other hand, the value process is a solution of (2.7.9) and by the uniqueness of the canonical

decomposition of semimartingales, comparing the martingale parts of (2.8.6) and (2.7.9), we have that
dt x dP-a.e.

or = Ul/(t,XnYt) diag(X;) Ve (t, Xy, Yy) + 0'(t, Xy, Ye)Vy (8, X, Y7), (2.8.7)
oif = o (t, Xi, YoV (t, X1, Y2). (2.8.8)

Then, equating the processes of bounded variation of the same equations and taking into account
(2.8.7) and (2.8.8), we obtain

t
1
/ |: S sty b(87X57YS) + §||9(S)XS7}/S)||2 - 0I(S7X57YS)C;/(SaXS)YS)Vy(SaXS)YS)
0

1 /
+ LV (s, X5, Ys) +  inf . <§||u\|2 + Vot (s, X5, Vi)V, (5, X, YS)) ]ds =0, (2.8.9)
ve

which gives that V (¢, z,y) solves the Bellman equation (2.8.3).

Uniqueness. Let V(t,x,y) be a bounded positive solution of (2.8.3), (2.8.4) from the class VL.
Then using the generalized It6 formula (Proposition 1.7.1 of the Appendix) and Eq. (2.8.3), we obtain
that V (¢, X;,Y;) is a solution of (2.7.9), and hence V (¢, X;,Y;) coincides with the value process V by
Theorem 2.7.1. Therefore, ‘N/(t,Xt,Y}) =V(t, X, Y;) a.s. and V =V, dtdzdy-a.e.

It is obvious that Theorem 2.7.1 and Eq. (2.8.8) imply that v* = —O’J‘l‘/y. O

Analogously to Remark 2.7.2, since the infimum is attained for v* = —aLlVy, we can rewrite (2.8.3)
as

1
b/(ta xz, y)Vy(t» z, y) + LV(t7 z, y) + 5 He(ta z, y)HQ - 9,(t7 z, y)dl(tv z, y)Vy(t, z, y)
1 /
- QHUL (t,z,y)Vy(t,z,y)||> =0 dtdzdy-a.s. (2.8.10)
Now we consider the two particular cases of the previous section.

Case 1. “Almost complete” diffusion model. Assume that the price process X is described by the
equation

dX, = diag(X;) (u(t, X;)dt + o' (t, X, )dW}), t € [0,T), (2.8.11)
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where ¢! satisfies the uniform ellipticity condition, and x and ¢! are bounded measurable and such
that Eq. (2.8.11) admits a unique strong solution. Then

Fl = F~ (2.8.12)

and the market price of risk 6(¢, X;) is F/-measurable. As is seen in Corollary 2.7.1,

1

Vt:§

T
g ([ ots. X0 asiE )
t
and (2.8.12) and the Markov property of X imply that V; = V (¢, X}) a.s., where
T
Vtx) = %Emin /||9(3,Xs)||2ds/Xt o
t

Since the conditions of Theorem 2.8.1 are satisfied, V (¢, z) is a unique bounded solution of the equation
1
LV (t,x) + 50, o)I>=0, V(T,z)=0 (2.8.13)

in the class VE.
Under suitable regularity conditions on y and o', the value function V'(¢,2) is a unique bounded
solution of (2.8.13) from the class C1? and

1 l
v =4 L ir(ding(x)o'o" ding(n)Vea).

Case 2. Let us consider the stochastic volatility model
dX; = diag(Xy)(u(t, Yy)dt + o' (t, Y;)dW]), dY; = b(t,Y:)dt + o (t, Y;)dW;, (2.8.14)

where Eq. (2.8.14) admits a unique strong solution. We assume that the coefficients of (2.8.14) satisfy
(D1) and (D2). We have that F- = FY and the market price of risk 6(¢,Y;) is F;- adapted. According
to Corollary 2.7.2, the value function is independent of z, i.e., V(t,z,y) = V(¢,y). Therefore, by
Theorem 2.8.1, V(t,y) is the unique bounded solution in the class V¥ of the equation

1 1. .
LV (ty) + 510 )17 + Vit b(ty) = Slo () V(L) |P =0 dtdy-as., (2.8.15)
V(T,y) = 0. (2.8.16)

For Ul(t,y) = e~V (%) Eq. (2.8.15) can be reduced to the linear SDE
1
LU(t,y) + (t9)Uy (8 y) + 5100 9)[PU (2 y) = 0.

Under additional smoothness conditions on the coefficients u, o', b, and o this equation with the
boundary condition U(T,y) = 1 has a unique solution in the class C? with LV the usual L-operator.
By the Feynmann—Kac formula, the value admits the representation

T
1
V(t,y)=—InFE |exp §/|0(S,Ys)]2ds| Yi=yvy
t
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2.9. Appendix

The proof of the following assertion for the case p = 2 can be found in [85]. For all cases we give
the proof for p > 1.

Proposition 2.9.1. Zy € Mgbs is p-optimal if and only if
En(Zr — Z7) 287 > 0 (2.9.1)
for all Z € MgP.
Proof. Let (2.9.1) be satisfied. We consider the function
f(x) = En(zZy + (1 — x) Zr)P.

Obviously, f is convex and continuously differentiable since the derivative pEn(Zy — ZT)(EZT +
(1 — Z)Z7)P~! of the function n(xZr + (1 — x)Z7)? is majorized by the integrable random variable
201 (Zr + ZT)(Zg_l + ngl). According to (2.9.1), f’(0) > 0. It follows from the convexity of f
that f(e) — f(0) < f(z) — f(x —¢) for all € and =z such that 0 < ¢ < = < 1, which implies that
f/(x) > f'(0) > 0. Hence f is a nondecreasing function and EnZb = f(1) > f(0) = EnZE. Thus, Zr
is p-optimal. Conversely, if Z is p-optimal, then, obviously, f’ (0) > 0 for any Z € M®* which gives
(2.9.1). O
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